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each ¢,
F(@0) —F (— hido)— s
14+4 ’

(%) %y =

.

From (x) it follows that the sequence w; is also econvergent. Once this is

established the lemma follows by a routine argument using continuity
of f and the fact that the set X is closed.

‘We are now in a pogition to prove the main result.

(3.2) THEOREM. Let X be o closed, bounded subset of R™ for which the
origin 18 in a bounded component of R°— X and let fi X—>R** be a com-
pact vector field. Then there exist two points & and y in X and o positive
real nwmber i, such thot y = — Az and f(z) = f(y).

Proof. In view of the preceding lemma it suffices to find such a,
Y, A so that [|f(#)—f(y)|| < 6 where ¢ is a pre-assigned positive number.
Given such § we set ¢ = }6 and apply (2.7). This gives a finite dimensional
subspace E* of B® and a compact vector field f,: X—>R*® such that f,
maps X ~ RB* into a (k—1)-dimensional subspace R*~* and ||f()— f,(@)|
< 36 for every z ¢ X. As observed earlier, the set X ~ R* is a compact
subset of R* for which the origin lies in a bounded component of R*—
— (X ~ R¥). Applying Theorem A in the introduction to the restriction
map f,: X ~ R*—~R*¥* we get points © and y in X ~ R* and 4 > 0 such
that f(z) = f(y) and y = —2s. Since we have, ||f(%)—F(¥) < |If(®)—

— L@+ @)= LN+ 17y)—F @), it follows that ||f(x)—f(y)| < 6 and
the theorem is proved. )
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Wide tree-like spaces have a fixed point
by
John Jobe (Stillwater, Okla.)

Abstract, A well-known unsolved problem is to determine whether or not a com-
pact plane continuum which. does not separate the plane has the fixed point property
for continuous functions. In this paper a wide tree-like space is defined, and it is shown
that the class of all wide tree-like spaces has the fixed point property for continuous
functions. A characterization of a wide tree-like space is revealed. This class of tree-like
spaces containg many compact plane continua, all of which do not separate the plane.
The same can be said about the class of tree-like spaces, but it is not known whether
or not this class has the fixed point property for continuous functions.

1. Introduction. A bounded plane continuum which does not separate
the plane can be represented as the intersection of the elements of
a monotonic decreasing sequence of open 2-cells. A well-known problem
is to determine whether or not each such continuum has the fixed point
property for continuous functions. This question has been answered in
the affirmative for many special plane continua, e.g. [3]. The question
of whether a tree-like space has the fixed point property for continuous
functions was raised in a conversation with O. H. Hamilton. It is the
purpose of this paper to answer this question for wide tree-like spaces.
The clags of wide tree-like spaces containg many plane continua, all of
which do not separate the plane. Likewise, the class of tree-like spaces
contains many plane eontinua, all of which do not separate the plane.

‘We shall use Burgess’s definition |2] of a linear chain and a definition
similar to his of a tree-like chain, namely: a #ree-like chain C is a finite
coherent collection of open sets such that (1) each two nonintersecting
elements of ¢ arve a positive distance apart; (2) no subeollection of ¢
congisting of more than two elements is a circular chain; and. (3) no three
clements have a point in common. If C is a tree-like chain and be C,
then b is a branch link of € if and only if there exists more than two other
links of ¢ that intersect b. Also, if 7 i3 a member of a tree-like chain C,
then 7 is called an end link of ¢ if and only if there exists only one other
link of ¢ that intersects I. All spaces considered in this paper are metric

. spaces and (M, d) denotes the metric space with set M and metric d.
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If A is a finite collection of sets, then ||4| = max {diamecter A, Aye A}
and A* = U {4 4; e A}, Similaxly, if 4 is a set, then |4 | = diameter of 4.

2. Definitions and basic theorems. The following definitions and
theorems in this section are fundamental and elementary for the remainder
of the results in this paper. The proofs of these theorems are not hard;
and, therefore, no proofs are presented.

~ DerNtrioN 1. If € is a tree-like chain and b a branch link of O,
then 4 is an arm of b in O if and only if A is & maximal coherent sub-
collection of C— {b}.

DEPINTTION 2. A compact connected space (M, d) is tree-like it and
only if:

1) M=N 0y

+ n=1

(2) Op is a tre‘e-like chain for each n;

(3) O, C 0O for each m;

(4) lim ||Cy)| == 0; and

(6) if 1€ 0y, then there exists 1, e 0y such that 1C1,.

The sequence {On} i called a realization for (M, d) with respect to
the metric d. If no ambiguity is possible, then {C,} iz simply called a reali-
zation for (M, d).

DEFINITION 3. A tree-like space (M, d) is called wide tree-like if and
only if there exists a realization {0,} for (M ,d) with the property that
given & > 0, there exists N and 6 > 0 such that if k > N and d(=, b) > ¢,
then d(w, A™) = 8 where b i3 any branch link of (5 and 4 is any arm of b
that does not contain ®. Such a realization ig called a wide realization
Sfor (M, d). .

THEOREM 1. If € is a tree-like chain, b a branch link of C, and A 4s
an arm of b, then there exists a unique link 1 of O such that:

WY Inb#0 and

(2) if =

{L: LCC, L is a linear chain with 1 as one end link and
b¢ L},

then A = ) L.

Ledt

TarorEM 2. If (M, d) is tree-like and K is a subcontinuum of M )
then (K, d) is tree-like.

TeworEM 3. If (M, d) is wide tree-like and K is a subcontinuwm of M,
then (K, d) is wide tree-like.

THEOREM 4. If (M, d) is wide tree-like and {Cn} is o wide realization
for (M, d), then any subsequence of {Cy} is a wide realization for (M, d).

Remark. The existence of wide tree-like spaces is easily established
sinee every chainable continuum is wide tree-like.
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3. The wide condition. The added condition of being wide assures that
tree-like spaces have the desired fixed point property. This is revealed in
Theorem 5 with the aid of Lemma 1 and Lemma 2.

LemMA 1. Let (M, d) be a tree-like space, f a continuous function from M
onto M and & >0 such that for each @ e M, d(w, f()) >e. Then there do
not exist o realization {Cn} for M, natural number N, and |Cyll < &/10
with linear chain CyC Oy such that Cy= {b,, 1y, ..., I, bz} or O = {by, by}
with the property that:

(L) by, and by are distinet branch links of On;

(2) f(by) 48 comtained in the arm of by that contains by

(3) f(bs) ts contained in the arm of b, that contains by; and

4) Ty is not a branch link for each i.

Proof. Suppose the contrary and assume the notation in the state-
ment of this theorem. Within this proof it will be understood that & point
xeCy will “move up” if and only if:

web or
if ®el;, then there exists j such that ¢ < j and that f(x)el; v b, or
if @ ely, then f(x) is in the arm of b, containing b, but f(m )¢ C;.

If A denotes the arm of b, that containg by, then choose g > 0 such
that &< d(4*, B*) where B denotes any arm of b, distinet from 4 and
e << min{d(l, 1)} 1,V ¢ Ox}. Pick &>0 such that &< jmin{fl[: 1< Ox}
and e<< &. Since f is uniformly continuous, there exists 6 such that
e>0>0 and if d(z,y)< 6, then d(f(m),f(y))< s. Let O, be a linear

chain of open sets such that

C,={¢, ey m}, leaj<<dé for each ¢=1,2,..,m,
b #=d, mnab#£0,
m k m
UeaCUL)wby, and (Ue)nbd=0.
122 f=1 ti=2

The linear chain (, exists since M is connected. The supposition implies
that thero axiﬂts p ey ~ b, such that p “moves up”. Suppose that f(p) <y
for some 1 =< § = k such that j > i for any ¢ such that p el;. The largest ¢
can be ig 1 Thomfom, hecause of the supposition and the choices of ¢
and &, jz-10. Lot mee. Since pee and because |of < 6, then the
lfwgesb i can bo such that @ ey is i = 1. The facts d(f(z),f(p)) < ¢ and
f(p)ely, j =10, imply that there exists j, =9 such that f(x)el;. The
definition of “mov(w up” says that o “moves up”. That is, each point
of ¢ “moves up”.

On the other hand, suppose f(p) is a point in the arm of b, but f(p)
¢ 0¥, Theorem 1 implies the existence of a linear chain

Op= {by, Uy oy Uy bay Uy ooy b} OT - Oy = {by, bgy Urs ooy Lo}
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such that f(p) €, and no subscript smaller than s denotes a link of this
linear chain that contains f(p). Let 2 € ¢, and observe that if there exists
4<% such that wel;, then =1 as before, s> k-1, and s—q 3= 10.
Because d(f(2), f(p)< e and f(p)els, then f(») is contained in a link
l; « Oy that intersects l;. This is emough to assure either f(x) e by, f(@)
€liq 0 lgy 08 O = {by, Ty ooy Ty By, Dy wovy Loy B} (00 O = {by, By, Uy o
ey lsy 1t}) 18 @ linear chain with f(x) e 1y, ‘

The above two paragraphs say that in any case, each point in ¢
“moves up”. Let 7 be the maximum natural number such that each point
in ¢, “moves up”. Note that r s m since ¢m ~ b, @ and no point of b,
“moves up”. By an argument similar to the one above, since ¢,,, ~ ¢, = @,
we can prove that each point of ¢,,, “moves up” which is a contradiction
" to the definition of . Thus, the lemma is proved.

Lemma 2. Lei (M, d) be tree-like and f a continuous function from M
onto M. If there exists & >0 such that for each @ ¢ M, d(w, f(2)) > e, then
there does mot ewist a realization {On} for (M, d), natural number N, and
1Oxll < &/10 such that Cy has at least one branch link and for each branch
link b of Ow, f(B) is contained in only one arm of b in Cy.

Proof. We begin by supposing the contrary and adopting the no-
tations introdnced in the statement of this lemma. Let b, be a branch
link of Oy and 4, the arm of Oy such that f(5,) C 4*. If A, contains no
branch link of Oy then A4, is a linear chain, denoted A, = {1, ..., L}, by is
an end link of Oy, and 1, » b, = @. Theorem 1 implies that {byy by eeny Un}
is & linear chain and the present. supposition forces f(B,) C AY. In a way

similar to that in the proof of Lemma 1, a point we Cy, where O, .

= {b1, li; ..., b}, Will be defined to “move up” if and only if:

@ eb, or.

if @ ly, then there exists j such that ¢ < j and that f(@) ey,
Here, a proof analogous to that used in the second paragraph of the
proof of Lemma 1 will imply a contradiction.

Ii 4, contains a branch link of Cx, then using Theorem 1 again,

pick a branch link b, having the property that there exists a linear chain
of the form {b;, &y, ..., ly,, bs} Or of the form {by, by} such that

{hay ooy bgyy 023 C 4, o {1, 0} C 4,

and for each j, l,; is not 2 branch link. In the remainder of this proof the
degenerate cases of type {b,, b,} will not be discussed but from the argu-
ments presented for the cases of types {3, I, vy bigyy Do} it s clear that
these can be resolved similarly. Lemma 1 assures us that F(By) is not
contained in the arm of b, in Cy that contains b, . Thus, there exists an
arm A, of by"such that f(b,) C 4} and 4,C 4. Assume that for natural
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number %, a linear chain

. {bl? le’ ey Z174:1’ b27 b
has been defined such that:
by, 1 <4< n+1 is a branch link of Cu;
iy is not a branch link, 1<i<n, 1 <j <k
f(B,) iz not contained in the arm of b; that contains
b, for each 2 <i<<n+41, and
f(bs) is contained in the arm of b; that contains b, for 1 < i< n.

H bn’ lnl’ "'7‘lnkm bn+1}

Again, Lemma 1 says that f(b,,,) is not contained in the arm of b,

" that contains b,. Denote B ag the arm of Oy containing f(5,,,). If B has

no branch link of Cy, then B is a linear chain in Oy, denoted, B = {i,, ..., Iz}
where by, n 1l %@ and l; is an end link of Cy. Theorem 1 implies that
{Dpsyrs by vy L} I8 & linear chain and our supposition says that f(5,.,) C B*.
Again, arguing similarly as was done in Lemma 1 and as was referred
to in the first paragraph of this proof, a contradiction is reached.
Therefore, we must conclude that B contains a branch link of Cy.
This induction argument implies that Cy has an infinite number of branch
links which is a contradiction to the definition of a tree-like chain.

THROREM b. If (M, d) is wide tree-like, then (M, &) has the fized point
property for continuous functions.

Proof. Suppose that there does exist a continuous function f from M
onto M that has no fixed point. It is known that if ¢ is a continuous
function from a compact connected metric space M, into M, then there
exists a subcontinuum K, of M, such that ¢(XK,) = K,. This fact, coupled
with Theorem 3, agsures us that no generality is lost by assuming in the
proof of this theorem that f,is onto M. Since f has no fixed point, there
exists & > 0 such that for each x ¢ M, d(w, f(m)) > ¢ . Let {Cn} be a real-
ization for M satisfying Definition 3. Let N, and ¢ be the two numbers
assured by Definition 3 such that if n > Ny, b is a branch link of O,
d(x, ) > &2, and 4 is any arm of b in € not containing z, then d(x, A¥)
> 8. Tf o realization of the type just described exists such that for each n,
Oy hag no branch links, then [3] proves the desired result of this theorem.
Otherwise, referring to Theorem 4, wo can assume that for each n, Oy has
at least one branch link.

Pick & >0 such that s = min{é/4, ,/4} and N, such that if n = N,,
then ||Oy)| < &/10. Since f is uniformly continuous, there exists 4, such
that 0 < 8, < ¢ and if d(w, y) < d;, then d(f(m),f(y))< e. Pick N, such
that if n > Ny, then ||Cull < é,. Let N = max{¥,, ¥, N;} and b is any
branch link of Cy. Suppose that there exists @ b such that a(f(x), b)
=r<ef2 Since b is compact, then there will exist geb such that
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A(f(@), ) = a(f(a), ¢) = r. Thus,

A, 1(@) < A, )+ lg, F@) < o7 < sfdot 82 < gy

This contradicts the fact that d(w, f(#)) > &, and, therefore, d(f(5), b)
> &(2. Oonsider a particular p ¢ b and an arbitrary o eb. Since N 3= N,
and N = Ny, then d(f(p), f(#)) < e < 6/4. This says that |f(5)| < ¢/2 and,
thus, f(b) is contained in only one arm of b. Since N 3 N,, then ||Cyl

< /10, which is a contradiction to Lemma 2, and the theorem is proved.

‘ Remark. Theorem 6 and its corollaries establish a sufficient supply
of tree-like spaces that are not wide twee-like. Theorems 6 and 7 and
their corollaries involve the idea of the width of a tree-like space defined
similarily to the width of a continuum defined in [1].

DeriNrrioN. If @ is any tree-like chain, then a number W(&) is
agsociated with @ as follows. For each chain ¢ in ¢ and each element
X ¢ ¢, there is a distance d(X, ¢*) from X to O*. Let

W(@) = min [max d(X, ¢*)],
CinG Xe@

where each maximum is obtained with ¢ fixed. A number W is called’

the width of o trec-like space (M, d) if and only if for any realization, {Cy},
for M, the sequence {W(C,)} converges to ‘W. S

Using ‘this definition for the width of a tree-like space (M, d) it can
be shown, as in [1], that each tree-like space has a width.

THEOREM 6. Let (M, d) be tree-like with width zero. If for each veali-
zation {Cn} for (M, d) there emists a subsequence {0,} of {Cn} and & >0
such that‘ for each natwral nwmber i, there exists a branch link b,, € C,, with
atb least three distinct arms Az, j =1, 2, 3, and points pi; € Af,-, j= 17’:2, 3,
such that d(Pi, by) >e, j=1,2,3, then (M,d) is not wide tree-like.

Proof. Suppose that (M, d) is wide tree-like. This supposition and
the hypothesis assures us that there exists a wide realization {C,} for
(M, d) and ¢, >0 such that for each natural number n, there exists
a branch link by ¢ 0, with at least three distinet arms Ay, j=1,2,3
and points pau; e A;’:,, j=1,2,8, such that d(pns,bs) >¢, j = 1: 27 3f
The wide property of {C.} yields a natural number N, and 6 > 0 m:’teh
that for each n > N, and branch link b'e Oy if d(x, b) > &, then d(z, 4%)
= 0 where 4 is any arm of b such that » ¢ 4* Since the width of (Jl’l d)
is zero, then there exists a sequence of linear chains, {By}, B, C Cy W’ith
the property that {B.} converges to M. This allows a natural number N,

“such that for each n > N,, W(Ba) < min{e, 8} = r. Let N = N,+ N,.
The definition of W(By) implies that for each x ¢ M, d(z, By) < r. Since
By is 'a linear chain and the branch link by has at least three distinet
arms, then either Ay "By=0 or Ay, ~By=@ or Ay, By=0).

e ©
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Without loss of generality suppose that Ay, ~ By = @. Because a{ P, o)
> ¢, then d(pw;, By) > 0= which is a contradiction.

CoROLLARY 1. If (M, d) is tree-like with width zero and M contains
o triod, then (M, d) is not wide tree-like.

COROLLARY 2. If (M, d) is tree-like and K is a subcontinuum of M
with zero width satisfying the hypothesis of Theorem 6, then (M, d) is mot
wide tree-like.

CoROTLARY 3. If (M, d) is tree-like and K is a subcontinuum of M
with zero width and K contains a triod, then (M, d) is not wide tree-like.

BxAmprE 1. This picture indicates a tree-like subcontinuum of the
plane with width zero. Corollary 1 implies that this subcontinuum is not
wide tree-like.

Exampre 2. This picture indicates a tree-like subcontinuum of the
plane with positive width. Corollary 3 implies that this subcontinuum is
not wide tree-like.

TagoreM 7. If (M, d) is tree-like but not wide tree-like, then for each
realization {Cn} for (M, d) there exists a subsequence {Cn} of {Cn} and
&, > 0 such that for each natural number 1, there exists a branch lfmk'bm e Oy
with at least two distinct arms Ay, j = 1,2, and points Pi; Ay, i=1,2,
such that d(p”,gm) >81,j= 1,2. ‘ ! .

Proof. By supposing the contrary, there exists a realization {Cn}
for (M, d) with no subsequence satisfying all the properties mentioned
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in the conclusion of the statement of the theorem. For the natural number j
there exists a natural number #; such that for each branch link be(

. and b has no more than one arm 4 with a point peA* such that
d{p,b) > 1.

Let ¢ >0 and pick natural number 2N such that 1/NV < ¢ and
d=1/2N. It 42N, b is a branch link of 0,, and p <M such that
d(p,b) > &, then let A be any arm of b such that p ¢ 4* Suppose that
there exists @ e A* such that d(p, o)< 1/2N. Since d(p,d) >e > 1N
>1/2N, then the arm of b containing p is the only arm of b containing
any point farther away from b than 1/2N, Thus, d(w,’) < 1/2¥ and
since b is compact pick ¥ €& such that d(», b) = d(w, y) < 1/2N. There-
fore, d(p,y) < d(p,2)+d(z,y)<12N-41/2N = 1/N which is a contra-
diction. This says that for each ¢ = 2N if b iy a branch link of 0,,, p € M,
a(p, b) > ¢, then for each arm A of b not containing p, d(p, 4*) = 1/2¥.
That is, (M, d) is wide tree-like and the hypothesis is contradicted.

4. The metric condition. If (M, d) is tree-like and {0,} is a realization
for (M, d) such that for each n, 0, has at least one branch link, then
a metric d* can be defined for M.

Let B = {b: b is a branch link for Oy for some n}. For each beB
define a metric d» for M in the fellowing way.

. () If w,y e M, be Oy, and » and y belong to distinet arms of b,
then do(x, y) = int{d(s, p)-+d(p,y): p € E}

(ii) Otherwise, if #,y ¢ M, then du(x,y) = d(@yy)- :

The metric ¢* is defined for M to be the sup. metric for the class
of metrics, {dp: b € B}. That is, if @,y ¢ M, then ‘

@ (@, y) = sup{ds(x, y): beB}.

The compactness of (M , d) makes it possible for d* to be well defined
and the above definitions are such that for each #,y < M and be B,

(@, y) = do(@, y) = d(s, ) .

If ¢ >0, then a d-sphere about a point # with radius & will be de-
noted S,(z) and a d*-sphere about a point # with radius & will be denoted
8;(#). Assuming the metric condition, (M, d) = (M, @*), then a result
ig Theorem 8.

TurorREM 8. Let (M, d) be tree-like, {On} a realization for (M, d) with
respect to d and & as defined above. If (M,d) = (M, d*), then {Cn} is
a wide realization for (M, d) with respect to d*,

Proof. Since (M, d) = (M, d*), then {04} is a realization for (M, d)
with respect to d*. As above, B = {b: b is a branch link of 0, for some n}.
Let L = {w: for each-open set U containing » there exists b ¢ B such that
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FC U} and &>0. Since (M,d) = (M, d"), then for each peL there
exists dp >0 such that '

- 8,,(p) C 8as,(D) C S:‘M(‘p) C8;(p) .

Because L is closed and (M, d) is compact, then L is compact. Therefore,
there exists a finite subset {py, ..., Pny 0f L such that

m me m ) m
LC U 84, (p0) € U Bag,, (24) C U Shum0) € U 87(p0)
fos) faal 4= =1

The way that I is defined yields that there exists N such thab for each
m

n > N, if b is a branch link of Oy, then bcy 84, (i) and the d-diameter
! 4=1

of b is loss than = min{d,,, .., oy}

Consider a natural number n> N, we¢ M, and be B~ Oy such that
d*(z, B) > e. The compactness of b allows a point ¢ b such that d*(w-, b)
= d*(@, ¢). From the previous paragraph we know that Tjhere ‘exmts
a natural number 1 <54 < m such that ge S"m( pi). The point x is not

in. ‘S'zam(ﬂt), for if so, then
(@, q) < (@, p1)+ A7 (pe, @) < glh+el4 < e

which contradicts d*(w, ¢) > e Now, consider any point ¢ oont?i.ned .in
an arm, A, of b in Oy that does not contain . The definition of d" implies

(1) d*(w7 y) = do(, Y).
‘The definition of dp implies
(2) (@, y) = A(®, Pav)+ E(Day; Y)

where pgy denotes a point of b such that ,
do(w, y) = nt{d(z, p)+d(p,y): P € b} = A(@, Pay)+ A Par ¥) -
All of this is so since b is compact. Since the d -diameter of b is lt?ss than
e 8, ), and @ ¢ S, (pi), then d(z, Pay) = 30p. This fach
5000 4 € By {P1)s wg (Pt § > 20, s I
coupled with (1) and (2) implies that d*(a, y) = §dp, wh_mh in t?JlI'D. implies,
that d*(x, A*) 3= }0p, Thus, the positive number 4 = $min {0 4 =1,..., m}
and the natural number N fulfills the definition for {Ca} to be a wide
: . *

realization for (M, d) with regpect to d". ' : ‘

TemormM 9. Let (M, @) be tree-like, {On} @ 'mal/izamgn for (M, d) with
respect to d, and d* as defined above. If (M, d_) = (M, d"), then (M, d) has
the fiwed point property for continuous functions.

Proof. Theorem 8 implies that (M, d*) is wide tree-like. Theorgm B
says that (M, d*) has the fixed point property for continuous functions.
Since having the fixed point property is a topological property and gM , @)
= (M, d*), then (M,d) has the fixed point property for continuous
functions.
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Theorem. 10 iy proven as an aid in determining a characterization
of when a tree-like space is wide.

TuzoreM 10. If (M, d) is wide tree-like with wide realization {Cp}
with respect to d, then (M, d) = (M, &*) where d* is as defined above.

Proof. Let w e M, ¢ >0, and Si(#) denote a d*-sphere with radius e
about ». Since {0y} is a wide reallzam]on of (M, d) with respect to d, there
-exists N; and 0 < &; < ¢/4 with the property that for n = Ny, if b e B ~ 0,
and d(z, b) > &/4, then d(x, A*) = 6, where B is as in the proof of Theo-
rem & and A is an arm of b in ¢y such that o ¢ A*. Pick IV, such that for
each n = N,, ||Onl| < &, and then let N = N,--N,. Let 1 ¢ Oy such that
@ el and assert that @ «1C 8¥(w). Let y e 1.

Ifn> N and be By Oy such that d(z, b) > ¢/4, then » and y belong
to the same arm of b in 0, sinee {x, y} C 1 and |I| < &,. Therefore, du(z, y)
= d(#,y) < 6, < ¢f4. If b is such that d(x, b) < ¢/4, then pick 2z eb such
that d(z,?) < ¢/4. The definition of dp infers that

(@, y) < d(w, 2)+d(2,9) < d(z, 2)+d(2, 0)+d(2, y)
< gld4-gld 6, < Bl . ‘
For all cases when =
Ao, y) < 3g/4.

If n< N and beB ~ 0y, then the definition of the realization {Cn}
yields a link I, e Cp such that {x,y} C1Cl,. By definition of dp, then
(2, y) = d(w,y). Since y ¢l and || < &/4, then dy(z, y) = d(x, ¥) < &/4.
Thus, this paragraph and the above paragraph convinces:us that for
each b ¢ B, do(z,y) < 3¢/4 which assures that d*(z, y) < & The conclusion
is, # € 1C S¥(2). o ‘

If we M and >0, then we8)(2)C 8,(») since d*(z,y) = d(x, y).
From this fact and the above arguments we can now conclude thab
(M, @)= (M, d¥).

Theorem 8 and Theorem 10 imply a characterization for the wide,
tree-like spaces. This characterization is revealed in Theorem 11.

TeEOREM 11. If (M, d) is a tree-like space and d* is as defined in
this section, then (M, d) = (M, d*) if and only if (M, d) is wide.

>N and beB ~ (0, we can now conclude that
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On the fundamental dimension of approximatively
1-connected compacta

by

Slawomir Nowak (Warszawa)

Abstract. The aim of the present paper is to give a homological characterization
of the fundamental dimension for approximatively 1-connected compacta and to give
some applications of this characterization. ’

The main result is the theorem which states that for every approximatively 1-con-
nectod compactum X # & with Fd(X) < oo the fundamental dimension of X is equal
to the smallest integer number # > 0 such that X is acyelic (in the sense of Jech co-
bomology) in all dimensions =n.

We prove also that for every movable approximatively 1-connected con-
tinwum X with infinite fandamental dimension and for every natural number » there
exists & natural number m > n such that m-dimensional Jech cohomology group of X
with coefficients in the group of integer numbers is not trivial.

TFrom. these theorems we deduce in particular that for every m = 3 there exxsts

a sequence {(2)n, of polyhedra such ‘that Aim@) = FA@Q}) = » and Fd(QF x Q)
= max(m, n) for all relatively prime natural numbers p and gq.

Introduction. By I we denote the Hilbert cube. The fundamental
dimension of a compactum X (denoted by Fd(X)) is the minimfum of the
dimensions of compacta ¥ with Sh(X) < Sh(Y) (see [4] p. 31). We say
that a pointed compactum (X, ) C (K, %) is appromimatively n-con-
nected (see [3], p. 266) if for every mneighborhood V of X there exists
a neighborhood ¥, of X such that every map of the pointed n-sphere
(8™, a) into (V,, ay) is null homotopic in (V, 2). It is known that the
approximative n-connectivity of a pointed compactum (X, #) C (K, m)
depends only on the pointed shape of (X, ) (see [8], p. 267). Thus
a poinfed compacturm (Y, y,) (not necessarily lying in I) is said to be
approwimatively m-connected if there is a pointed compactum (X, @)
C (K, ) which is approximatively n-connected and homeomorphic to
(¥, ). We say algo that a compactum Y is approzimatively n-connected
if (¥, vy, is approximatively n-connected for every ¥,e¢ ¥ (see [3],
P. 266).

Tet Hu(X, A; &) (or AMX, A; @) denote for every pair (X, 4) of
compacta and every Abelian group & the n-dimensional Cech homology
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