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On spaces which have the shape of C.W. complexes

by
Luc Demers (Ottawa)

Abstract. It is shown that a space which is a shape retract of a C.W. complex
has the shape of a C.W. complex. We also give certain conditions ensuring that a finite
dimensional metrie space has the shape of a C.W. complex.

The aim of this note is to give certain conditions under which a space
hag the shape of a C.W. complex. After a preliminary section covering
definitions and general results on the category of shapes, we will study
the case of absolute neighborhood shape retracts, or in other words,
spaces which are shape retracts of some C.W. complex. The last section
will discuss the case of finite dlme;nsmnal compact spaces with finitely
generated Gech cohomology, mcludmg a sufficient condition for a space
to have the shape of |SX/|, the geometrit realization of its singular complex.

§ 1. The category of shapes. The theory of shapes used here is cssen-
tially that given by Mardekié in [8], though our presentation is super-
ficially different. Let © denote the category of topological spaces and
homotopy classes of continuous maps, and let § be the full subeategory
of G whose objects are spaces which have the homotopy type of a C.W.
complex.

Given a space X in G, let X denote the covariant functor from T to
the category & of sets defined by X(P) == [X, P]. (As usual, square brackets
denote homotopy classes of continuous maps). Define a category § as
follows: the objects of 8§ are the same as those of B; given two such objects
X and ¥, §(X,Y) is the set of natural transformations from ¥ to X (for
the proof that this is a set, see the remark below), and composition of
morphisms is given by the composition of natural transformations, i.e. if
& X—Y and y: ¥—Z are morphisms of 8, y o, £ is the natural transfor-
mation &0y from Z to X.

There is a functor S: B8 defined as §(X) = X for any space X and
if f1 XY is a homotopy class, S(f) = f#¥=[f, 71: Y-X.

Remark 1. The category of shapes as defined above is identical
with the category of shapes in the sense of Mardeiié. Indeed, they have
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2 L. Demeors

the same objects, and a shaping & from X to Y is defined by Mardefié
as follows: it is a function which assigns to every fe[Y, @], @ an object
of &, 2 homotopy class &(f) in [X, Q7, in such a way that for each @ in 7,
1" e[Y,Q7 and g €[@’,Q], the equality g o f" = f implies g o £(f) = &(f).
Tn other words, the following diagram is commutative:

[X, Q] ——[X,Q]

(7.0 [X,Q1
(v, (i)/]wgﬁ [—X7 Q']

Tt is thus seen that & is nothing but a natural transformation from
¥ to X, From this identification will follow in particular that there is
only a set of natural transformations from ¥ to X ([8], Remark 1).

We can also use directly the following result: )

TamorEM L1 ([8], Theorem 1). If P is an object of § and X is any

space, 8: [X, P1>8(X, P) is a bijection.
" This theorem will allow us in particular to identify ¢ with the full
subcategory §(F) of §. Thus if f: X— P is a homotopy class of continuous
maps, the same symbol f will be used to denote the shape morphism
S(f): X—P.

Remark 2. Let.J& be the category of covariant functors from T to &.
Then by definition, §°P° is isomorphic to the full subcategory of & whose
objects are functors of the form X for X in . :

This remark will help us to prove two theorems, the first of which

is technical, but is important in the next section, and the second of
which provides a mice characterization of the category §.
7 pEmorEM 1.2. The funclor S preserves coproducts, i.e. given a family
{Xs: eI} of spaces in G, the disjoint union Z = U {Xi: 4 eI} together
with the morphisms 8(ji), where ji: Xi—Z is the inclusion, is a coproduct
of the family {Xs: ielI} in 8.

Proof. T we identify §°°® with a full-subeategory of J§, we just
have to show that Z, together with the natural transformations iz X
is the product of the family {X:: i eI} in 78 But this is easy to cheek
because for any @ in 7,

[2,Q] = [U {X: i1}, Q)= [ [ (X1, Q]

and j¥: [Z,Q]—~[X:, Q] is just the projection om: 1;‘1 (X4, Q1—[X:, Q1

Q.E.D.

The next theorem characterizes § as the “smallest category in which
each object of B is a limit of a diagram in 97, In order to do this, we must
introduce some notation and terminology.
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- Given an o.bject X of B, we denote by X/¢ the category of objects
of upder A&, i.e. an object of X/¢ is a homotopy class f: X-—»P with
range in §, and a morphism from f: X—>P to ¢g: X-—>0Q is a homotopy
class h: P-+@ such that h o f==g. Moreover, we denote by ox: X/ﬂ’»fl’
the functor gx(f: X—>P) = P, ox(h: f—g) = h: P—(Q. ‘

"l‘%IEomam 1.3. For each object X of 8, X, together with the Jamily of
n’?,mph/z,smsq {ft X=P = 800x(f): feOb(X/I) is the limit of the functor
8o gz X3 v>S.. Moreover, given a category 8' and a funcior §': -8’ such
ﬂm; fm]‘c each object X of '6, 8" X together with the morphisms {S'f: X8’ s ox(f)
= P: feObj(X/9)} is a limit of S o ox, then there is a ung .

R: §—8" such that R« 8= §". ’ e Juncto

Proof. Lgt 9 be the full subcategory of & consisting of functors of
the form [P, 7] for P in F. As we did above for X/[F, we can define the
category P/X of objects of § over X, where the objects are the natural
transformations of the form )

& P—X
and we define a functor dy: F/X->98 as y(£) = P.
Because of Theorem 1.1, the correspondence

fi: Pt psx

i3 a contravariant isomorphism between X/9 and 9/X. Mor T 3
we identify §°P? with a full subcategory of €F/8 as don_(i beforoe1 egl\;;léuﬁz’;
85 ox: X[T—8 is replaced by 6y: §/X—>8°P? C 78, ’

- Thus the first part of the theorem reduces to showing that X, together
with the family of morphisms {f#: P= 6y(f#)—X} is a colimit of Syt
§/X—>6. But this is proved in [5], p. 21, 1.1. " *

For the second part of the theorem, we prove uniqueness first:
Assume that R, R': §—8’ are two functors such that R o 8§ = R’ o § — S’.
Then for each object X of §, R(X)= R'(X)= §'X. It remains to ‘showi
that B and R' coincide on morphisms. First, let X be an object of §
and P an object of 9. Then, since §: [X, P]—8(X ,P)is a bij'eetion by,
Theorem 1.1, B and R’ must coincide on § (X, P).

N9W let X and ¥ be two ambifmry objects of 8, and consider the
collection {f: Y—P: fe Ob(X/T)}. Let & X—Y be a morphism in §
anq let & X—P be & = fo£. Since ¥ is the limit of S o ov, £ is th(;
unique morphism such that fo &= for all feObj (X/%). Similarly
since 8'Y is the limit of '« py, B(£) is the unique morphism such thai’;
B(f)o R(£) = R(&) for all fe Ob(Y/T). Since R and R’ coincide on
morphisms of range in 7, it follows that R’(£) also satisfies the equations
R(f) o B'(§) = R(§) for all f in X/9. Thus R = R’ ’

As for existence, if f: X—»P is a morphism with range in  define
R(f)=8'(f). If & XY is a morphism between two arbitrary objects
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of 8, let RB(&) be the unique morphism S§’X-8'Y such that 8'(f) o B(£)
= §'(&) for all feOb(Y/T).

Tt is easy to check that R is a functor and that R o §= 8. Q.BE.D.

§ 2. Spaces which are shape retracts of C.W. complexes. In analogy with
ANR’s, a class of spaces called absolute neighborhood shape retracts
(ANSR’s) has been defined. They can be characterized as t'hose. spaces
which are shape rvetracts of some ANR ([1], [7]). In this direction, we
prove the following result:

THEOREM 2.1. A connected topological space is a shape velract of some
O W. complex if and only if ¢ has the shape of a C.W. complex.

Proof. Let X be a topological space, § a C.W. complex, and
fi X—Q, ¢9: Q—X shape morphisms such that g¢of=id(X). l?efine
a functor H: §°P*-—§ ag H(P)= §(P, X) (Recall that ¢ is considered
as.a full subcategory of 8). We will show below that H is a represelltaple
functor, i.e. there exists a C.W. complex X and a natural transformation
T: (7, X]—=8(%, X) which is an equivalence of functors on .

Granted this result, let us show that X has the shape of X. L(?h
h= T(X) (id(X)): X—X. Then, if P is an object of T and ¢: P—X is
a morphism of 8, let p: P—X be the unique homotopy class of maps
such that T(P)(p) = ¢. Then we have a commnutative diagram

[X, X129 §(X, x)
[9, X1 | \lbs@,;n
[P, X] 7 (P, X)

ie. T(ro[p, XIid(X) = 8@, X) o T(X)(id(X)) which means that p
=hop. _ B

Let then g: Q—X be T(Q)*(g), and let j: X—X be j = 7 o f. Then,
as above, hoyg=g, 850 that hoj=hogof=1id(X). On the other h::mfl,

hojoh="hogsfeh="n=hoeid(X).
Thus 7(X)(j ¢ k) = T(X)(id (X)) which implies that j o % = id(X). Hence
h is a shape isomorphisim.

To show that H is representable, we use the criterion of 1. TL. Brown
[8]. First H has to transform a coproduct into a product. This is true
by Theorem 1.1.

Next, let fi: 4—+Yy, ¢=1,2 be two continuous maps between C.W.
complexes, let Z be the double mapping cylinder of (f,,f,), and let
gi: ¥4=Z, i =1,2 be the two inclusions. We have to show that if w;
e H(Y), i =1, 2, satisty H(f;)(u) = H(f;)}{u,), then there exists a v ¢ H(Z)
such that H(g:)(v) == usy 1=1,2.
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Since  H(Yy)=8(¥4, X), H(fi)(m)= H(f,)(u,) means u,o[f;]
= Uy o [f,], where the square brackets denote the homotopy class of
a map. Then

. Jeumolfil=Fouo[f] €8(4,Q)=1[4,9],

and moreover, fouse[¥;,Q). By the properties of the double
mapping cylinder, there is w e [Z, Q] such that

wolg]=Ffou,
Let then v = g o w. We obtain

welgl=fou,.

H(gl)('u)=779[g1]=g°w°[91]=g°f°'“1:""17
Hi{g)w)=wvolgpl=gowolg]l=gofocuy=u,.

Now to be able to apply Theorem 2.8 of [3], it remains to be proved
that H({0}) is a singleton. Let &, be the full subcategory of § consisting
of the connected spaces in ¢, let X/, be the corresponding subcategory
of X/F, and let o,: X/F,—0|X/d;.

Levma 2.2. If X 4s a connected space, X = LimQ o 01-

Proof. This follows easily from Theorem 1.3, using the fact that
X3, is cofinal in X/§. Indeed, given any object f: X—»P of X9, let P, be
the component of P containing f(X), and let i,;: P,—>P he the homotopy
class of the inclusion. Then f== i, o f,, where fi: H—P, is an object of
X/P,. Q.E.D.

With the help of this lemma, we complete the proof of 2.1:
H({0}) = §({0}, imP,) = lim[{0}, P,]= * Q.E.D.

§ 3. Finite dimensional spaces with local properties. In this section, we
will use the pointed shape category §. It is obtained from the pointed
homotopy category G in a similar way as § is obtained from .

THEOREM 3.1. A compact connected pointed metric space X which is
locally pathwise connected, simply connected, finite dimensional, with findtely
generated Oech cohomology, has the pointed shape of a finite C.W. complea.

Proof. Let 9] be the category of pointed pathwise connected spaces
which have the homotopy type of C.W. complexes, and let §, be the
full subcategory of &, whose objects have only a finite number of non
trivial homotopy groups, and for which w, operates trivially on 7y, n = 1.

Let m: §,—F be the functor =(P)=[X , Pl Then = satisfies
axioms %, ¢* and ¢* of [4], so that there exists an object X of P;, unique
up to homotopy type, and a natural transformation

T: [X, 7 |5,—~[X, 2115
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which is an equivalence of functors. We will show that 7' extends to an
equivalence of funetors on 7.
Levva 3.2. X is simply connected.

Proof. X is pathwise connected since X is an object of 5. Moreover,
it follows from its construction that m,(X) is abelian. Indeed X is con-
structed by a sequence of approximations as follows: for each positive
integer n, let {g;‘} be a set (finite) of generators of [X, K (Z, n)], and let
X, = [[K(Z,n),

Since [X K(Z 1] =0, because X is simply conneeted and locally
pathwise connected, X, is sunply connected.

Since [X,X,]=[X,[[K(Z,n))=[[[X,EK(Z,n),], let w: X—X,
be the homotopy class whose projections are the ¢&'s.

Let T'(u) = ul: [X;, K(Z,2)]-[X, K(Z,2)]. Let {fg} be a set of
generators of Ker(u,), and let ¥, = [] K(Z,2);. Let f: X;— ¥, be the
homotopy class whose projections are the f;, and let py: X,—X; be the
fibre of this map.

Then we have an exact sequence

= 70 Xy )= 700( Vo) > 70y (X)) —> 0, ( X)) = O .

Hence m(X,) is a quotient of an abelian group. Moreover, when
we repeat this procedure, to construct Xy Xsy..r, we do not change the

fundamental group, so that m,(X) remains an abelian group.
Hence K(m,(X),1) is an object in ¢, and thus in particular

[X, K(zl( 1)] ~ Hom(m(X), (X))

on the one hand, and on the other, |X, K (m(X), )] ~ | X, K(m(X), 1)),
and this last set has a unique element, since X is locally pathwise con-
nected and simply connected. Hence m,(X) = {1}. Q.E.D.

Leymma 3.3. X has the homotopy type of a finite C.W. complex.

Proof. By the preceding lemma, X is simply connected. Moreover,
gince H*(X)= H*(X) is finitely generated by assumption, H¥X) =
for ¢ large enough. Thus X admits a finite homology decomposition
(161, ».53) _

X, CX,C...CX,~X.

Here X, is a Moore space of type K'(Hy(X), 2}, and X, is the mapping
cone of a map K'(Hy,,(X), k)—Xi. Since the groups Hy(X) are all finitely
generated, it suffices to show that if 4 is a finitely generated abelian
group, K'(4,%k) has the homotopy type of a finite C.W. complex.
Moreover, K'(A@® B, k)~ K'(4, k)vVK'(B, k), so that it suffices to con-
sider the cases A =7 or A= Z[pZ.

But K'(Z, k)~ 8%, and K'(Z/pZ, k) is the mapping cone of a map
8% 8% of degree p. Q.E.D.
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Lemva 3.4. Let Y25 Ynﬂ >Yp—> ... >, be a Moove-Postnikov
Sactorization of a C.W. complex ¥. Then [X,¥] ~[X,¥Y].

Proof. We will deal with the case of X first.
It is well-known that the natural map

[X,Y]—=lim[X, Y]
is a surjection. Moreover, we have fibrations

Yoi—> Yn—>K(7tn+1(Y) , 2) .

Hence, when # is large enough,

. [X +1] = [X 111],
since X has the homotopy type of a finite C.W. complex. Thus

lim [X,Y,] =[X,Y,] for large n.

Now the fibration ¢,: Y-+ Y, has a fibre F, which is (n—1)-con-
nected, so that by standard obstruction arguments,

[X,Y] == [X,Ys] for n large enough.

For the case of X, we can show, as above, that

li}n[X y ¥l = [X,Y,] for large n.

Take then n large, for instance = » 2dim(X), and consider the
fibration Fy— ¥ > ¥ n-

Let {Ws}, i =1, 2,... be a sequence of coverings of ¥ whose nerves N;
are finite complexes of dim < 2dim (X)-1.

Then by [10] ((2.1) and (2.2), p. 340), there is a map y;: N;— ¥, for
some 4, such that y; o s ~f, where g2 X—N; is the canonical map.

Since dim Ny << n—1 for » large, and F, is (n—1)-connected, v;
has a lift g2 Ny~ Y. Let ¢ = g;oy;. Then g, og~f, and hence [X,¥]
—[X,¥,] is onto.

Similarly, assume f,g: X—Y are maps such that g, of ~guog.
Again by [10] ((2.1) and (2.2)), there is an 4 and maps y;: Ny— ¥, pj: Ny—T
such that y; o p;i~g and p; o gy ~7.

Then guotpiopimgn of ~guogr~gnoy;op,. Hence gyow; and
qn »y; are two bridge mappings for the same map g o f~gqu o g. Then
by [10] ((2.4), Bridge homotopy theorem), there is a &k >4 and a bridge
map or: Np— Y, for g, of, such that

Qn © Pk~ Qk ~Gn © Y,

where i ==y o vkr, ), = ;o v and v Np— N is the nerve projection.
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Since dimNy<< n—1, this implies that we and y; are homotopic,
and hence f and g are homotopic. Thus [X,Y] = [X,Y,] for n large
enough. Q.E.D.

Tnd of the proof of 3.1. Let ¥ be an object of 7, and let p: .

¥V be 2 universal covering of ¥. Since X and X are simply connected
and locally pathwise connected, p,: [X, ¥1-[X,¥] and p,: (X, 1
->[X, Y] are bijections.
We define T(Y): [X,Y]-[X,Y] as follows: let
¥ Y= oo =¥,
be a Moore-Postnikoy Factorization of ¥, and consider the following
sequence of maps:

(X, 712 (X, 7] 2518, v 28 X, v & 1X, Y] 5 X, 7).

All arrows are bijections, if » is large so that we can define

T(Y)=p, (@) o T(¥n) © gus © (D).

It is easy to check that T becomes a natural equivalence of funectors
on ). But since X and X are connected, T is also an equivalence of
functors on ¢, so that X and X have the same pointed shape. Q.E.D.

THEOREM 3.4. If in addition to the hypotheses of 3.1, X is also homologi-
cally simply connected, it has the shape of |8X|, the geometric realization of
its singular complex.

Proof. Let & X—X be the map T(X)(id(X)). Then for any
f: X%, T(X)(f)=f¢& Let o: |SX|—>X be the canonical map. Then
o induces isomorphisms H{(X)—HY(|8X|) = HYX) for all i, by [9], p. 340.

But & also induces isomorphisms HYX)—HYX) for all 4. Hence
£ow: |SX|—~X induces isomorphisms HYX)—HY|8X|) for all 4. Since
|X| and [SX| ave simply connected, this implies that & o w is a homotopy
equivalence. Q.E.D.
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