

Semi-local lattices

by

Johnny A. Johnson (Houston, Tex.)

Abstract. Let \overline{R} be the completion of a semi-local ring R. In this note it is shown that the lattice of ideals of \overline{R} can be obtained by purely lattice-theoretical methods from the lattice of ideals of R.

- 1. Introduction. In this note we apply the theory of Noether lattices to the special case of the ideal-lattice of a semi-local ring R and its completion \overline{R} . We show that the lattice of ideals of \overline{R} can be obtained by purely lattice-theoretical methods from the lattice of ideals of R. This is accomplished by using the concept of the completion of a Noether lattice introduced previously in [3].
- **2.** Completions. Before proceeding we will require some terminology. For a Noether lattice $\mathfrak L$, let $\mathfrak F(\mathfrak L)$ denote the greatest lower bound of the collection of maximal elements of $\mathfrak L$ and set
 - $\partial \mathfrak{F}(\mathfrak{L}) = \{ A \text{ in } \mathfrak{L} | A \geqslant \mathfrak{F}(\mathfrak{L})^n \text{ for some natural number } n \}$

so that $\partial \mathfrak{F}(\mathfrak{L})$ is a sub-multiplicative lattice of \mathfrak{L} . A metric (called the $\mathfrak{F}(\mathfrak{L})$ -adic metric) can be defined on \mathfrak{L} as follows (cf. [3], Theorem 3.10, p. 352): for A and B in \mathfrak{L} , set $d(A,B)=2^{-S(A,B)}$, where $S(A,B)=\bigvee\{n\colon A\vee \mathfrak{F}(\mathfrak{L})^n=B\vee \mathfrak{F}(\mathfrak{L})^n\}$. This metric gives rise to the $\mathfrak{F}(\mathfrak{L})$ -adic completion \mathfrak{L}^* of \mathfrak{L} which is itself a Noether lattice (cf. [2], Theorem 5.9, p. 198). A Cauchy sequence $\langle B_i \rangle$ of elements \mathfrak{L} is called completely regular in case $B_i=B_{i+1}\vee \mathfrak{F}(\mathfrak{L})^i$, for all integer $i\geqslant 1$. We adopt the lattice terminology of [3] and the ring terminology of [4]. In particular, all rings are commutative with identity.

In order to avoid repetition we fix our basic notation as follows. $(R, m_1, ..., m_n)$ is a semi-local ring, Γ denotes the lattice of ideals of R, $m = \bigcap_{i=1}^{n} m_i$, the m-adic (ring) completion of R will be denoted by \overline{R} and $\overline{\Gamma}$ denotes the lattice of ideals of \overline{R} . Then Γ and $\overline{\Gamma}$ are semi-local Noether lattices. We will denote the Γ (Γ)-adic (Noether lattice) completion of Γ

by \mathfrak{L}^* . We shall show that $\overline{\mathfrak{L}}$ and \mathfrak{L}^* are isomorphic as multiplicative lattices. It follows that the lattice of ideals of the completion \overline{R} of a semi-local ring R can be obtained lattice theoretically from the lattice of ideals of R.

We will require the following lemma in the sequel.

Lemma 1. Let a be an element of $\partial \mathcal{E}(\Sigma^*)$ and let $\langle a_i \rangle$ be the completely regular representative of a (considered as an element of Σ^*). Then there exists a natural number k such that

(i)
$$a_i \bar{R} \geqslant (m\bar{R})^k$$
 for all i.

(ii)
$$\bigcap_{j=1}^{\infty} a_j \bar{R} = a_i \bar{R} \text{ for all } i \geqslant k.$$

Proof. If a is an element of $\partial \mathcal{F}(\mathfrak{L}^*)$, then there exists a natural number n such that $a \geq (m\mathfrak{L}^*)^n = m^n\mathfrak{L}^*$. It follows that $a_i \geq m^n + m^i \geq m^n$, for all integers $i \geq 1$ (cf. [3], Remark 5.2, p. 356, and Proposition 5.9, p. 358), so that $a_i \overline{R} \geq m^n \overline{R} = (m\overline{R})^n$, for all i. Also, since $\overline{R}/(m\overline{R})^n$ is Artinian and $\langle a_i \overline{R} \rangle$ is decreasing, there exists a natural number w such that $\bigcap_{i=1}^{\infty} a_i \overline{R} = a_i \overline{R} = a_w \overline{R}$, for all $i \geq w$. Set $k = \max\{n, w\}$ which completes the proof.

For an element b in $\partial \mathcal{J}(\mathbb{C}^*)$, the completely regular representative $\langle b_i \rangle$ of b (in \mathbb{C}^*) is uniquely determined ([3], Theorem 4.14, p. 356) and we set $\partial \varphi(b) = \bigcap_{i=1}^{\infty} b_i \overline{R}$, so that $\partial \varphi \colon \partial \mathcal{J}(\mathbb{C}^*) \to \partial \mathcal{J}(\overline{\mathbb{C}})$ by Lemma 1.

THEOREM 2. The map $\partial \varphi \colon \partial \mathcal{F}(\underline{\Gamma}^*) \to \partial \mathcal{F}(\overline{\Gamma})$ defined above is a multiplicative lattice homomorphism from $\partial \mathcal{F}(\underline{\Gamma}^*)$ into $\partial \mathcal{F}(\overline{\Gamma})$.

Proof. Let a and b be elements of \mathfrak{L}^* with completely regular representatives $\langle a_i \rangle$ and $\langle b_i \rangle$, respectively.

By Lemma 1, there exist integers k_1 , k_2 , and k_3 such that

$$\label{eq:continuous_equation} \begin{split} & \bigcap_{j=1}^{\infty} a_j \bar{R} = a_i \bar{R} = a_{k_1} \bar{R} \quad \text{ for all } i \geqslant k_1, \\ & \bigcap_{j=1}^{\infty} b_j \bar{R} = b_i \bar{R} = b_{k_3} \bar{R} \quad \text{ for all } i \geqslant k_2 \,, \\ & \bigcap_{j=1}^{\infty} (a_j + b_j) \bar{R} = (a_i + b_i) \bar{R} = (a_{k_3} + b_{k_3}) \bar{R} \quad \text{ for all } i \geqslant k_3 \,. \end{split}$$

If $w = \max\{k_1, k_2, k_3\}$, we have

$$\partial \varphi(a) + \partial \varphi(b) = (a_w + b_w) \overline{R} = \partial \varphi(a \vee b)$$

since the completely regular representative of $a \lor b$ is $\langle a_i \lor b_i \rangle$ ([3], Proposition 5.7, p. 358), and thus $\partial \varphi$ is a join-homomorphism.

Again, by Lemma 1, there exists an integer k_4 such that, for all integers $i \geqslant k_4$,

$$\bigcap_{j=1}^{\infty} [(a_j b_j + m^j) \overline{R}] = (a_i b_i + m^i) \overline{R}$$
$$= (a_i \overline{R})(b_i \overline{R}) + (m \overline{R})^i.$$

Thus, since the completely regular representative of ab is $\langle a_ib_i+m^i\rangle$ ([3], Corollary 5.15, p. 360), for $i=\max\{k_1,k_2,k_4\}$ we obtain

$$\partial \varphi(a)\partial \varphi(b) = (a_i \bar{R})(b_i \bar{R}) + (m\bar{R})^i = \partial \varphi(ab)$$

and so $\partial \varphi$ preserves multiplication.

To see that $\partial \varphi$ is a meet-homomorphism choose k_5 (Lemma 1) such that, for all $i \geqslant k_5$,

$$\bigcap_{i=1}^{\infty} \left(\left(\bigcap_{j=1}^{\infty} \left[(a_j \cap b_j) + m^i \right] \right) \overline{R} \right) = \left(\bigcap_{j=1}^{\infty} \left[(a_j \cap b_j) + m^{k_b} \right] \right) \overline{R}$$
$$= \left(\bigcap_{j=1}^{\infty} \left[(a_j \cap b_j) + m^i \right] \right) \overline{R}.$$

Set $w = \max\{k_1, k_2, k_5\}$ (so that in particular $a_i \bar{R} \cap b_i \bar{R} \geqslant (m\bar{R})^w$). Since R/m^w is artinian and $\langle (a_i \cap b_i) + m^w \rangle$, i = 1, 2, ..., is decreasing in R/m^w , there exists a natural number k_6 such that, for all integers $i \geqslant k_6$,

$$\bigcap_{j=1}^{\infty} \left[(a_j \cap b_j) + m^w \right] = (a_i \cap b_i) + m^w.$$

Setting $n = \max\{k_1, k_2, k_6\}$ we obtain

$$\bigcap_{j=1}^{\infty} [(a_j \cap b_j) + m^w]) = [(a_n \cap b_n) + m^w] \overline{R}$$

$$= (a_n \overline{R} \cap b_n \overline{R}) + (m^w \overline{R}).$$

Since the completely regular representative of $a \wedge b$ is

$$\langle \bigcap_{j=1}^{\infty} ((a_j \cap b_j) + m^i) \rangle$$
, $i = 1, 2, ...,$

by combining the above we obtain

$$\partial \varphi(a) \cap \partial \varphi(b) = (a_n \overline{R}) \cap (b_n \overline{R})$$
$$= (a_n \overline{R} \cap b_n \overline{R}) + (m^w) \overline{R}$$
$$= \partial \varphi(a \wedge b)$$

which completes the proof.

LEMMA 3. If a is an element of $\partial \sigma(\bar{\mathfrak{L}})$, then $(a \cap R)\bar{R} = a$,

Proof. If a is in $\partial \tilde{g}(\bar{\mathfrak{c}})$, then there is an integer n such that $(m\bar{R})^n \leq a = \sum_{i=1}^k \bar{r}_i \bar{R}$, where \bar{r}_i are in \bar{R} , and $a \cap R$ is dense in a. Thus, there exist r_i in $a \cap R$ such that $r_i \equiv \bar{r}_i \pmod{(m\bar{R})^{n+1}}$. It follows that

$$a \leq (a \cap R)\bar{R} + (m\bar{R})^{n+1} \leq (a \cap R)\bar{R} + (m\bar{R})a$$

and so $a = (a \cap R)\overline{R}$ by the Krull-Azumaya theorem.

THEOREM 4. The map $\partial \varphi \colon \partial \mathcal{F}(\mathcal{L}^*) \to \partial \mathcal{F}(\overline{\mathcal{L}})$ is a bijection.

Proof. Let a be an element of $\partial \mathcal{F}(\bar{\mathcal{L}})$. Then there exists an integer n such that $(m\bar{R})^n \leqslant a$. Thus

$$m^n \equiv (m\bar{R})^n \cap R \leqslant a \cap R$$

and so

$$(m^n) \mathcal{L}^* = (m \mathcal{L}^*)^n \leqslant (a \cap R) \mathcal{L}^*$$

which shows that $(a \cap R)^{\mathfrak{L}^*}$ is in $\partial \mathfrak{T}(\mathfrak{L}^*)$. For each $i, 1 \leq i < \infty$, set

$$b_i = (a \cap R) + m^i$$

so that $\langle b_i \rangle$ is the completely regular representative of $(a \cap R)^{c*}$ ([3], Remark 5.2, p. 356). Then by Lemma 3

$$\partial \varphi((a \cap R)\mathfrak{L}^*) = \bigcap_{i} ((a \cap R) + m^i)\overline{R}$$
$$= (a \cap R)\overline{R} = a$$

and hence $\partial \varphi$ surjective.

Let a and b be elements of $\partial \mathcal{F}(\mathfrak{L}^*)$, with completely regular representatives $\langle a_i \rangle$ and $\langle b_i \rangle$ respectively, and suppose that $\partial \varphi(a) = \partial \varphi(b)$. Then (Lemma 1) there exists an integer k such that, for all $i \geq k$,

$$a_i \bar{R} = \bigcap_j a_j \bar{R} = \bigcap_j b_j \bar{R} = b_i \bar{R}$$
,

and thus, for all $i \ge k$, we have

$$a_i = (a_i \overline{R}) \cap R = (b_i \overline{R}) \cap R = b_i$$

which implies a=b ([3], Proposition 5.10, p. 359). Hence $\partial \varphi$ is injective. We can now prove our main result.

THEOREM 5. Let $(R, m_1, ..., m_n)$ be a semi-local ring, let $m = \bigcap_{i=1}^n m_i$, let \overline{R} be the m-adic ring completion of R, let Γ and $\overline{\Gamma}$ be the lattice of ideals of R and \overline{R} , respectively, and let Γ be the $\Gamma(\Gamma)$ -adic Noether lattice completion of Γ . Then Γ and $\overline{\Gamma}$ are isomorphic as multiplicative lattices.

Proof. Use Theorems 2 and 4 together with Theorem 2.4, p. 662, of [1] to extend $\partial \varphi \colon \partial \mathcal{J}(\hat{\Gamma}) \to \partial \mathcal{J}(\bar{\Gamma})$ to a multiplicative lattice isomorphism $\varphi \colon \hat{\Gamma}^* \to \bar{\Gamma}$.

If $\mathfrak L$ is complete in the $\mathfrak F(\mathfrak L)$ -adic metric, then $\mathfrak L=\mathfrak L^*$, and in the terminology of Theorem 5 we obtain the following

COROLLARY 6. If Σ is complete in the $\mathfrak{F}(\Sigma)$ -adic metric, then Σ and $\overline{\Sigma}$ are isomorphic as multiplicative lattices.

A semi-local ring $(R, m_1, ..., m_n)$ is called *quasi-complete* if, whenever given a decreasing sequence $\langle a_i \rangle$ of ideals of R and a natural number n, then there exists a natural number S(n) such that $a_i \leqslant (\bigcap_{j=1}^{\infty} a_j) + m^n$, for all integers $i \gg S(n)$.

It is easy to see by example that there exist semi-local rings which are quasi-complete but not topologically complete. The following corollary shows that for ideal theoretical considerations, a quasi-complete semi-local ring may be assumed to be complete in its natural topology.

COROLLARY 7. If R is quasi-complete, then $\mathfrak L$ and $\overline{\mathfrak L}$ are isomorphic as multiplicative lattices.

Proof. It is easily verified that the lattices of ideals of a quasi-complete semi-local ring is complete in the $\mathfrak{F}(\mathfrak{L})$ -adic metric and we omit the details.

Corollary 8. A quasi-complete semi-local domain is analytically irreducible.

References

- E. W. Johnson and J. A. Johnson, A structural approach to Noether lattices, Canad. J. Math. 22 (1970), pp. 657-665.
- [2] Lattice modules over semi-local Noether lattices, Fund. Math. 68 (1970), pp. 187-201.
- [3] J. A. Johnson, A-adic completions of Noetherian lattice modules, Fund. Math. 66 (1970), pp. 347-373.
- [4] M. Nagata, Local Rings, New York 1962.

UNIVERSITY OF HOUSTON, DEPARTMENT OF MATHEMATICS Houston, Texas

Accepté par la Rédaction le 5, 1, 1974