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Abstract. A real-valued function % on an interval I is wniformly inferior, if it

satisfies the Beurling-Ahifors functional inequality

L ove—ulryy?) L

e u((z+y)2)—uly)
for some constant ¢ > 1. The uniformly interior functions form a subclass of the strictly
interior functions defined by A. Csészdr. Slightly sharper measurability results than
those known for strictly interior functions are obtained for uniformly interior funetions.
Further any uniformly interior function u: R—R is shown to have a factorization u
= %o @, where ¢ is a Hamel function and %: R—R is quasisymmetric, i.e. a strictly
incereasing and continuous solution of the Bewrling-Ahlfors funetional inequality.

We denote the closed interval [min(a,b), max(a,bd)] of the real
line R by [a,b], similarly the open interval Jmin(a, d), max(a, b)[ is
denoted by Ja, b[.

1. Let ICR be an interval. A continuous, strictly increasing fune-
tion #: I— R which for some constant ¢ > 1 satisfies the Beurling—Ahlfors
Sfructional inequality
(1) 1_ ) —ul@ty)?)
o u((@+u)/2)—uly)

for all x,yel, 2 52y, is called a p-quasisymmetric function; the quasi-
symmetric functions have an important role in the theory of quasi-
conformal mappings in the plane (Beurling—Ahlfors [1], c¢f. also Lehto-
Virtanen [7], IL7). If we write 1, = 1/(o-+1), 4, = g/(p-+1) for a fixed
g == 1, the inequality (1) is equivalent to the condition:

@) w((@+9)/2) € Dy (@) + 2au(y), dgw(@)+ ()]

for all @,y < I. Slightly generalizing the definition we shall call in the
following any continuous, monotone function u: I — R satistying (2) a ¢ - quasi-
symmetric function.
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However, if the function « is not required to be either continuous
or monotone, the functional inequality (2) can admit highly discontinu-
ous functions as solutions. Any Hamel function, i.e. a golution u: R—R
of the Cauchy functional equation

3) w(@—+y) = u(@)+uy),

obviously satisfies (2) for g = 1. In [2] A. Csészér defined the class of
strictly enterior functions w: I—R on an interval I C R by requiring that «
satistios

@ wlety)f) e, u@l  or  ulty)2) = u(@) = u(y)

for all %, y e I (cf. also Csészar [3], Marcus [8], [9], Dodk [4]). Thus func-
tions u: IR satistying (2) for a fixed o > L might be called uniformly
interior functions on the interval I C R.

2. The real line R is a vector space over the field of rational numbers Q.
We call & Q-affine subspace M of R, dim,M > 0, a rational manifold;
a rational manifold L is a rational line if dim,L = 1. Bvery rational
manifold inherits a metric and an order from R. If I is a non-degencraie
interval of the real line R and M is a rational manifold, the intersection
H =1~ M is called a rational interval, respectively ¢ = I ~ L is a rational
line interval if L is a rational line.

Let H be a rational interval. A function u: H—R is called a p-function
if there is a fixed ¢ > 1 such that « satisfies (2) for all @,y ¢ H. It iy easy
to see that the following estimate holds for any p-function u: H—R:

() Alule+1)—u@)] < [ul@+27")—wu(@)| < Zlu(z+1)—u(@),
where z, x-~t e H, neN.

_ ProrosrrioN 1. A o-function w: H—R is striclly monotone on any
rational line interval G C H, or constant on @.

Proof. We may suppose that ¢ =1 ~ @ C H for some non-degener-
ate interval I C R. Using (2) repeatedly we see that u is either strictly
monotone on I ~pZC ¢, or constant on I ~pZ for any p belonging to
the multiplicative group Q* of the rational field Q. But for any p, ¢ ¢ O*
the union pZ v ¢Z is contained in #Z for some r ¢ Q%; thus we sce that «
must either be strictly monotone on the whole 14141:10]1"1;1 line mtmv‘vl
G=1n @, or constant on G.

PROPOSITION 2. If a o-function w: H-—R is monotone on the rationat
interval H, 4t has a unique g-quasisymmetric extension 4: H—R to the
closed interval H CR.

‘Proof. As % is monotone, it is bounded on H ~ J for every compact
interval J contained in the interior of the closure H, so that by (2) « must
be bounded on every intersection H ~ X of H with a compact interval L.
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Now it follows from (5) that « is locally uniformly continuous on H.
Thus « has a unique continuous extension #: H—R, which also must
be monotone and satisfy (2) on the interval H. )

THEOREM 1. A wniformly interior function u: I—R which is bounded
from above (below) on a non-degenerate subinterval J C I is quasisymmetric.

Proof. As a uniformly interior function w is a p-function for some
¢=1. If now u is bounded from above on a non-degenerate compact
subinterval K C I, it follows from (2) that » must be bounded also from
below on K. From (5) it follows then further that

‘ M = supu(x), m= infu(x)

zeJ zed

are finite for any interval J = [z, mzj, oy, %y € L. Let us choose a point
@ eJ such that u(x) > M— 4 e, &> 0. Then either y = 2z— x, o y = Z0— BN
belongs to the interval J, and «(y) < M. Thus by (2) either u(2,) > M—¢
or 4(®,)> M—e. As £>0 was arbitrary, we have shown that M
= max (u(#,), % (2,)). Similarly m = min (% (2,), %(x)), so that u is a mono-
tone -function on the interval I. The conclusion follows now from Pro-
position 2. k

COROLLARY 1.1. A wniformly interior function w: I—R which is bounded
Jrom above (below) on a Lebesgue measurable subset B C I of positive measure
is. quasisymmetric.

Proof. If < I on a measurable set ECI, m(E) > 0, it follows
from (2) that on #C I,

= (B+B)2 = {(z+9)/2] 5,y c B},

we have u < M, too. But by the theorem of Steinhaus F contains a non-
void open interval. -

Cororrany 1.2. Any Lebesgue measurable wuniformly interior function
u: I—R is quasisymmetric.

Corollary 1.2 follows from the corresponding measurability result
for interior functions, too. Actually, the above properties of uniformly
interior functions are quite similar to the respective properties of Hamel
funections, cf. Kestelman [6].

3. Suppose that we are given a fived non-constant uniformly interior
function v: R—R such that v(O) = 0. We define a set P by

(6) = {zcR| v(z)> 0}.

As 0(0) = 0, it follows from (2) that for every z e R either v(z) =0 or
v(—a) = 0, so that

2%


Artur


20 T. Kuusalo

and if o(x)> 0, we must have v(—ax)<< 0. Further (2) implies that
(@+y)2eP if w,yeP, and as v(0) = 0, it follows that also z-+-y e P,
- and thus

(8) P4+PCP.

As P C R has the properties (7) and (8), we can define a group preorder <
on the additive group of R with P as the set of positive elements by setting
4=y if y—uxeP. The intersection =P n—P = {zeR| v(x)= 0} is
a Q-linear subspace of R, and, =< defines an order on the quotm;t spa(m R[S,
i.e. for two clements &, % ¢ R/S the simultancous inequalities & <% and
97 < & imply & =19 We denote the quotient mapping by =, and write
E<pit gy and £y, £, neR/S.

PROPOSITION 3. The order < defined by =(P) on the quotient spuce
R[S is archimedean. Furthermore, the function v can be factorized through R[S,
=y om, V= RIS—R.

Proof. If £ and 7 are two strictly positive elements of R/S, 0 <&,
0 < 7, there exist @, 4 ¢ R such that &€ = = (2), = = (y), 0 < v(@), 0 < V(Y).
Because v(0) = 0, we have v(—y)<< 0. It follows further from (5) that
there exigts a positivc integer nye N such that — Aw(—y)<< Aw(ny®).
But then 0<<v(n,z—vy) by (2), and as aw(nee) = n,&, we have 5 < nyé.
Hence the order < on R/S is archimedean.

As S is a Q-linear subspace of R, it follows from (2) that |v(w--2%)|
< Ap|v(22)] for all ze R, te 8, keZ Now (5) implies that

(@4 1)—v(@)] < 28(jv(@)|+ Ao (22)))

for all 2 e R, t € 8, n ¢ N. Thus we have v(z+1) = o(x) ferall v e R, te8,
8o that the function v can be factorized through the quotient mapping z,
V= 0y om.

THEOREM 2. Bvery non-constant wuniformly interior function w: R—R
has a representation as
(9) U= % o @y

where 14: R—R is a strictly increasing quasisymmetric function and @: R—R
a Hamel function. The representation ds essentially unigque, @' o @ == 40
if and only if

w(r) = w'(ax), ¢ = ap
for a strictly positive a € R.

Proof. We may apply the preccdmg proposition. to the uniformly
interior function v» = u—u%(0). As the order < on R/S is archimedean,
the ordered group (R/S,=<) is isomorphic to a subgroup of the ordered
group (R, <) by the theorem of Holder, so that we have an order preserving
Q-linear monomorphism ¢,;: R[S—R. Let us denote ¢ = ¢, o n. By as-
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sumption the function v is not constant, thus R/S = 0 and p,(R/S) = ¢ (R)
CR is a rational manifold. Using the factorization v == v, % we define
a o-function v, on @(R) by v = v, 0% As @, is order preserving, we
have for @ e ¢(R) that 0 < v, (x) if and only if 0 < =, s0 thm by P10p051-
tion 1 the function »; is strictly increasing on every rational line I C ¢ (R)
and thus on the whole rational manifold ¢(R). Proposition 2 implies now
the existence of a unique, strictly increasing g- quasisymunetric extension
2: R—R of v. If we write 4% = d-u(0), then u = 4 o is the required
representation.

Let w=4' o be another representation of the same type. As
¢'(8) =0, we have a factorization ¢’ = ¢ o . The Q-linear mapping
P = o g5 = go(R/S) —qo(RjS) is strictly increasing on gu(RjS), so that
is has a continuous, strictly increasing extension ¢: R—R by Proposition 2,
Thus % must be of the form 9 (x) = az for some a> 0, @ ¢ R.

The last two results are not valid for arbitrary strictly interior
functions, as can easily be shown by a counterexample.

4. ‘We have not used the axiom of choice in the above considerations.
On the other hand, Hamel’s construction of digcontinuous solutions of
the Cauchy functional equation (3) is essentially based on the axiom of
choice (cf. Hamel [5]). That this is really necessary follows from the recent
results of Robert M. Solovay. In [10] he shows that if the axiom of choice
is not included in the Zermelo—Fraenkel axioms of set theory, we can
instead assume without any further contradiction that all subsets of
the real line R are Lebesgue measurable. Together with Corollary 1.2
this would imply the continuity of all solutions of the Canchy functional
equation (3), as well as the continuity of all uniformly interior functions.
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Concerning unicoherence of continua
by

Ivan Guintchev (Rousse)

Abstract. In this paper we investigate the unicoherence of a continuvn 3, knowing
that the elements of a certain decomposition § of M are unicoherent. We confine our-
selves to considering only upper semi-continuous monotone decompositions. In this
case, if the decomposition space M/S is a dendroid and for each subcontinuum K of M
each element G of § the intersection K n @ is a continuum, then A is unicoherent.

If M is a hereditarily decomposable continuum which is irreducible about a finite
set and G is an admissible decomposition of 3, the suppositions may reduce to the single
one that the elements of G are unicoherent.

‘We obtain analogous assertions concerning the hereditary unicoherence of continua
if the elements of § are such.

In this paper a continuum means a compact connected metric space.

Let M be a continuum. A family § of closed disjoint subsets of M co-
vering I is said to be a decomposition of M.

The decomposition § of M is said to be monotone if its elements are
continua. )

The decomposition § of M is said to be upper semi-continuous if for
each open subset U of M containing some element & of § there exists an
open subset ¥ of M such that ¢ CV C U and V is the union of the elements
of G intersecting it. For equivalent definitions of this concept see [3],
pp. 183-183, or [8], p. 122.

Let I be a continuum irreducible from ¢ to b. Suppose that one can
define a mnon-trivial upper semi-continuous rmonotone decomposition §
of I such that each element of § not containing & and b separates I. It is
shown in [7] that in this case there exists a unique decomposition which
is minimal with respect to the above properties. Its elements are called
layers of I.

The upper semi-continuous monotone decomposition § of the con-
tinuum M is said to be admissible if, for each irreducible continunm I C I
and for each layer T of I, there exists an element & of § containing T
(compare [2], p. 115).

A dendroid means an arcwise connected and hereditarily unicoherent
continuum.
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