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Boolean algebras, splitting theorems, and A3 sets
by
Michael D. Morley (Ithaca, N. Y.) and Robert I. Soare (Chicago, IIL) *

Abstract. For a set S Cew define 8, the lattice (under inclusion) of the recursively
enumerable (r.e.) sets restricted to S, to be {Wr S: W r.e.}. Our principal result is
a general splitting theorem for noncomplemented elements of 85, Sin 43, which simul-
taneously extends the well-known splitting theorems of Friedberg, Sacks, and Owings,

although its proof is not difficult. A corollary is that if Sis infinite and in 43 (or even
in X}) then § is hyperhyperimmune if and only if &5 is a Boolean algebra. This im-

mediately yields Lachlan’s remarkable characterization of hh-simple sets as those
coinfinite r.e. sets whose lattice of supersets forms a Booléan algebra. It follows that
a (Turing) degree 2 < 0" is high (a” = 0"’} if and only if §5 forms a Boolean algebra for
some infinite set 9 ea.

Introduction. Standard notation and terminology may be found
in Rogers [11]. Let {p,: ¢ e w} be an acceptable numbering of partial
recursive functions and let W, = domain g,. Given § C w, and r.e. set W
let Ws denote the set W~ S in &5. A member As of &5 is complemented
in Esif there exists an r.e. set B such that Ag Bg=8 and A5~ Bs= 0,
and A is noncomplemented in &s otherwise. (Of course, §s is a Boolean
algebra just if every member is complemented.) A set S C w is Boolean
just if § is infinite and &5 is & Boolean algebra. A set 4 is in 43 if 4 can
be put in hoth two number quantifier forms or equivalently [11, p. 314]
if 4 is recursive in @' (denoted A <p a°).

Our principal result (Theorem 2.1) asserts that for § in 45 (or even
in Z{) any noncomplemented member Ag of &s can be uniformly de-
composed as the disjoint union of noncomplemented members Bs and Cg
where B and (¢ are Turing incomparable. This yields the splitting theorems
of Sacks [12] and Friedberg [3] for § = w, and the splitting theorem of
Owings [8] for § co-r.e. A corollary is that a 43 (or even £2) set § is Boolean
it and only if it is hyperhyperimmune (hh-immune), which answers
a question of Jockush and Soare. For § co-r.e., this is Lachlan’s charac-
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terization [5] of kh-simple sets. The original proofs of these results were
all different, although Owings showed [8] how Lachlan’s result follows.
from his. We shall extend the method in the splitting theorem. of Sacks
to give one simple proof for all these results.

We shall then use results of Cooper and Jockush to prove that for
any degree a < 07, a is high if and only if § is Boolean for some infinite
set S e a. In contrast, the second author has shown [14] that if a degree a
is low (" = 0") then &g = & for every infinite Sea (where & denotes &,).

1. Review of splitting theorems. We begin with an. expository swnmary
of related results. Post’s famous problem [9] was to find a nonrecursive r.e,
set A which is incomplete (A <, @'). Specitically Post searched for a simple
property on the complement A of an r.e, set A which would guarantee
A <p @', and he made the following definition. A set 8 is hyperhyperim-
maune (bh-immune) if S is infinite and there is no recursive function f such
that for all @ and y,

(11) W,y is finite;
(1.2) @ #y = Wyy~ Wy, =0; and
(1.3) Wy~ 8 0.

(An infinite set S for which there is no recursive function satisfying (1.2}
and (1.3) is called strongly hyperhyperimmune. It is well-known that these
properties coincide for S co-r.e. [15] or even A3 [1].) An r.c. set A is hyper-
hypersimple (hh-simple) if A is ph-immune. Unfortunately, neither
hh-simplicity [17] nor any property invariant under automorphisms.
of € can guarantee incompleteness [15], and Post’s question wasg eventually
answered by an entirely different method [2]. :

TaEoREM 2.1 (Friedberg—-Muchnik). There ewist r.e. sets A and B .

which are Turing incomparable. .

Friedberg then proved [3] several important results about r.e. sets,
including the following. ‘ ‘

TagoreM 1.2 (Friedberg Splitting Theorem). If A is any non-
recursive r.e. set then there cwist r.e. sets B and C such that

i)y A=Buw( and B~ (= 0; and

ii). B and C are each r.e. but nonrecursive.

Using the fact that an r.e. set A is recursive if and only if A is r.e.,
Friedberg’s theorem asserts that any noncomplemented set 4 ¢ § “splits”
as the disjoint union of two sets noncomplemented in &. Later Sacks [12}
simultaneously extended both of Fricdberg’s theorems.

TueorEM 1.3 (Sacks Splitting Theorem). If A is any nonrecursive v.e.
set then there exist r.e. sets B and C such that )

iyA=Bv(l and B~ 0= 0; and

ii) B and C are Twring-incomparable.
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Even though hh-simple sets did not solve Post’s problem, they
played an important role in the development of the theory of r.e. sets
and numerous interesting characterizations of them arose [16, Theorem 6]
and [10, Theorems 2 and 4]. The most dramatic and important of these
was discovered by Lachlan [3, Theorem 3]. For any A « &, Lachlan defines.
L(4d)={W: WD A &W re), which forms a lattice under inclusion.
(Note that £(4) =~ &5 for A r.e)

THROREM 1.4 (Lachlan). For any coinfinite r.e. set A, A is hh-simple
if and only if L(A) (or equivalently &) forms a Boolean algebra.

One balf of this theovem can be done much more generally in the
following lemma, although its proof is the same as in Lachlan [5, p. 13].

Leywa 1.5. If 8 is infinite (not necessarily in A3) and &s is ¢ Boolean
algebra then 8 is strongly hh-immune (and hence hh-immune).

Proof. If 8 is not strongly hh-immune as witnessed by {Wipm: 1 € o)
for some recursive function f, then Ag is noncomplemented in &s where
A=U{Wen Wy necw}. B

The other direction of Lachlan’s theorem was strengthened by
Owings [8], with the help of R. W. Robinson.

THEOREM 1.6 (Owings Splitting Theorem). Let 4 and D be r.e. sets
such that A— D is not co-r.e. Then there exist r.e. sets B and C, whose indices
may be obtained uniformly from that of A, such that

) A=Bul and B~ 0= 0; and

ii) neither B—D nor C—D 4s co-r.e.

(Theorem 1.2 is, of course, the special case D = @.) The other di-
rection of Lachlan’s theorem now easily follows because if D is a co-
infinite r.e. set such that £(D) is not a Boolean algebra then there exists
r.e. 4 DD such that A—D is not co-r.e. Using Theorem 1.6 repeatedly,
4 may be split to produce a weak array {Bn},., Which satisfies (1.2)
and (1.3) for 8§ = D and therefore witnesses that D is not hh-immune.
Namely, split A into B, v 0, then split ¢, into B, v 0y, and 3o forth.
The sequence {B,},., is r.e. by the uniformity of Theorem 1.6.

2. Splitting r.e. sets restricted to A2 sets. We now give a single frame-
work and proof for all the theorems mentioned in Section 1. Owings’ theo-
rem asserts for § co-r.e. (namely § = D) that every noncomplemented 4
of &g splits into the disjoint union of two noncomplemented members By
and Cy of 85. We now obtain the same conclusion for the weaker hy-
pothesis “S in A9.” Curiously, the proof becomes easier by adding the
additional conclusion of the Sacks Splitting Theorem.

TusoreM 2.1. For any set 8 in A% and any r.e. set A, if Ag is a non-
complemented member of s then there exist r.e. sets B and O, whose indices
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‘may be found uniformly from that of A, such that:

iy 4 =Bwv and B (0 =0;

ii) Bs and Cs are noncomplemented in &s; and

iiiy B and C are Turing incomparable. )

This theorem simultanecously generalizes the splitting theorems of
Sacks (let S = ) and Owings (let § = D) and leads to the following
generalization of Lachlan’s theorem.

THEOREM 2.2. For any infinite set S in A3, 8 is hh-immune if and
only if &s is a Boolean algebra (i.e. S is Boolean).

Proof. If & contains a noncomplemented element As where A is
r.e., then as in Theorem 1.6 we can repeatedly apply Theorem 2.1 to
-decompose 4 into an arvay {Bn: n ¢ o} which witnesses that S is not
Dh-immune. The converse follows from Lemma 1.5. @

To prove Theorem 2.1 it will suffice to decompose 4. into disjoint r.e,
sets B and € which satisfy the following “requirements” [7] for all ¢ € o

RE: WEnS8#£Adn8, RS WénS#4dn8,
s we now verify for B. The case of ¢ ig similar,

LeMmA L. If B satisfies requivements {RZ: ¢ < o}, then Cg is non-
complemented in 8.

Proof. If (~AS= W,~ 8 for some ecw, then WF= W, B
«contradicts RE.

LemmA 2. If B satisfies requirements {RZ: e e w}, then C is mot re-
-cursive im B.

Proof. If C is recursive in B then ¢ = WZ for some ¢ ¢ w, and hence
WE = WP ~ B contradicts RP.

Following Sacks [12] we shall satisfy requirement Rﬁ by attempting
“to preserve agreement of WZ ~ 8 with A ~ 8 rather than disagreement
as one might suppose.

Proof of Theorem 2.1. Given § in 4} there exists [13, p. 29]
=& recursive sequence {8,: s ¢ w} of finite sets such that for all w, lim,Sy()
-exists and equals S(x). Let f be a 1:1 recursive function with range A
-and define 4, = {f(0), f(1), ..., f(s)}. Let B; and C, denote the integers
-enumerated in B and 0 respectively by the end of stage s in the con-
.struetion below. Define the recursive functions,

(s, ¢) = max|o: s <s&(Vy <o)y e S = [y e W =y ¢ 4,]]),
mB(s, ¢) = max {I%(¢, e): t < s},
5(s, 6) = max {z: (Fu)[w < mP(s,e) & WE, &2 is used in the
latter computation]} ,
:and similarly s, ¢), m%s, e), 7s, ¢) with ¢ in place of B.
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Stage s == 0. Enumerate f(0) in B.

Stage s+1. Leb e(B) = ue[f(s+1) <75(s, ¢)] and e(C) = uelf(s+1)
< 7%(s, e)]. Enumerate f(s+1) in B if either ¢(B) is undefined or if both
¢(B) and ¢(C) arc defined and ¢(B)> (). Enumerate f(s+1) in €@
otherwise. This completes the construction.

We say that a requirement R iy injured at stage s+i if some y
< rB(s, €) is enumerated in B at stage s--1.

Lmmya 3. For each ¢ e w, if RE is injured at most Sfinitely often, then
}VGBA S 4~8,

Proof. Fix ¢ and assume that RE is never injured after some stage sg.
Now if Wgn8=A4n~§g, then liml3(s, ¢) = limym®(s, ¢) = co. Define
the v.e. set,

Wi={z: (s = s)[@ « WE2 &z << mB(s, e)]} .

We claim W= W? contrary to our assumption that Ag is noncomple-
mented in &. Clearly W;D W2 because limsm®(s,e) = co. However,
W,C W2 by the choice of s,, the definition of #5(s, ¢) and the fact that
As[m®(s, )] is nondecreaging.

LemmA 4. Hach requirement is injured at most finitely often.

Proof. Fix ¢ and assume by induction that for all 4 < e, requirements
R? and RY are injured at most finitely often. Then by Lemma 3 and its
analogue for ¢ in place of B, the conditions of RZ, R are satistied for
all 4<< e. Thus, {mC(s,1): i< 6 & s ¢ @} is bounded, say by mg, because
As[m(s, 4)] is nondecreasing as a function of s. But if f(s) > m, for all
$> some 5, then RP cannot be injured after stage s,. The case of RC is
similar. m

Theorem 2.1 now follows from the lemmas.

CoROLLARY 2.3. If degree a << (', then

a’ = 0" < (3 infinite set A ca) [64 s o Boolean algebra] .

Proof. If @ < 0" and 4" = 0" then by Jockusch [4, p. 491] a containg
a cohesive (and hence hh-immune) set ¢. But &, is isomorphic to the
Boolean algebra of finite and cofinite sets.

Conversely, if a containg an infinite set 4 such that &4 is a Boolean
algebra, then by Theorem. 2.2, 4 is hh-immune. But then by Cooper [1}
o =07,

3. Further remarks and questions. Note that some hypothesis such
as “8 in A" was necegsary for Theorvem 2.2, because there exists a set §
{even. =y @'') guch that S is hh-immune but not Boolean. (Use the method
of [11, Exercise 12-51] to construet § <z @ which is hh-immune, but

4 — Fundamenta Mathematicae XC
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not strongly hh-immune, and thus cannot be Boolean by Lemma 1.5.)
The same method easily yields more. .

THEOREM 3.1. If A is any nonrecursive t.e. set there exists a hh-immune
set 8 <p @' such that Ag is noncomplemented in 8g.

Proof. Since 4 is nonrecursive the set Vo= (4 n W) v (d ~ Wy
is infinite for each e. A routine non-constructive diagonalization (re-
cursive in @) produces a set S which intersects each V¥, but is disjoint
from at least one set in every recursively enumerable sequence of disjoint
nonempty finite sets. ®

Carl Jockusch has obgerved that there is also a strongly hh-immune
set § which is not Boolean, and indeed S = .D v D' i3 such a set, wheve I
and D’ are as in [11, Theorem XVIL on p. 242]. This is because . w D’
is infinite, quasi-cohesive, and indecomposable (defined in [11, p. 240])
but not cohesive. However, the definitions trivially imply that if § is
Boolean and indecomposable then § is cohesive. Now D« D’ being both
quasi-cohesive and indecomposable possesses all the “almost-finitenecss”
properties in Rogers’ diagram [11, p. 243] which are strictly weaker than
cohesiveness.

One might hope to obtain the full relativization of the Sacks’ splitting
theorem (for the universe § in place of w) by replacing conclusion iii)
of Theorem 2.1 by “Bg and g are Turing incomparable.” Carl Jockusel
has observed that this is impossible even for § co-r.e. Let 8§ be o complete
co-r.e. set which is introreducible (recursive in cach of its infinite sub-
sets) but not hh-immune. (For example, let § be the deficiency set [L1,
p. 1407 of a complete r.c. set.) For such a set § note that dg =2 § when-
ever Ags is infinite.

It is natural to ask exactly which Boolean algebras are realized by &g
as S ranges through all sets in 43. John Noxstad has observed that for S
in A3, a simple Tarski-Kuratowski algorithm shows that &%, the lattice &g
modulo the ideal & of finite sets, is always an FVI-lattice as defined
by Lachlan [5, p. 21]. Therefore, no new Boolean algebras arve obtained
by &g if Lachlan’s condition “§ co-r.e.” [5, Theorem 6] i replaced by
“S in 43.” We close with the following open questions.

QuesTioN 1. Does there exist a characterization, analogous to
Corollary 2.3 for those degrees a =2 0" which ave high,, i.e., which satisty
a” = 0% Lachlan [6, Theorem 3] ‘has shown, that for such degrees a which
are r.c., there exists an infinite co-r.e. Sea such that & containg no
maximal clements (coatoms).

In [14] it is shown for a < 0,

4 = 0" < (V infinite set A ea)[8% =" 8",

where = denotes an effective automorphism in the obvious sense.
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QUESTION 2. Does there exist a similar characterization for degrees
a < 0" which are low,, i.e., which satisty o”” = 0"’7 Lachlan [6, Theorem 4]
has shown that for every mﬁmte co-T.e. set § in such a degree, 8S contains

maximal elements. In particular, is & = § for all infinite sets § in such
degrees?

Added May 27, 1974. Carl Jockusch has noted that Theorems 2.1
and 2.2 can easily be strengthened by replacing “S in 43” by “S in X0*,
and Theorem 3.1 can be &hﬂlpened by adding “§ in II” to the nonclu.:lon
To prove Theorem 2.1 for § in X?, note that for anyr.e. 4 such that 4s is
noncomplemented in &s there is a A3 set S, C 8 such that 4 is noncomple-
nmented in &,. (Use a O’ oracle to enumerate S, in increasing order so
that &, intersects each set of the form (W, 4 4) ~ §. These sets are all
infinite because 4 is noncomplemented in 8g.) The requirements RZ, RS
hold for 8y and thus a fortiori for S. Furthermore, S, i8 obtamed uni-
formlty from S, so that Theorem 2.1 extended to “S e X9 is still uniformn.
Theorem 2.2 extended to “§ ¢ 29" follows because a 29 set is hh-immune
if and only if it is strongly hh-immune.
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Remarks on invariant descriptive set theory *
by

John Burgess and Douglas Miller ** (Madison, Wisc.)

Abstract. Let X be a separable, completely metrizable space and E an analytic
equivalence relation on X. 4 C X is E-invariant if y ¢ 4 whenever w e 4 and E (%, y).
We prove that the classes of E-invariant coanalytic sets and of B-invariant PCA sets
each- satisfy the Reduction Principle, and give E-invariant versions of other classical
theorems. Qur results generalize work of Vaught and others.

Let X be a Polish (separable, completely metrizable) space with
ECXxX an equivalence relation on X. B C X is snvariant (with respect
to E) provided y ¢ B whenever w ¢ B and z H y.

It is known (ef. [1]) that it B is a countably sepavated X% (analytic)
equivalence, then X/F is Borel isomorphic to an analytic space (a metriz-
able continuous image of w®) and, hence, that most theorems of descriptive
set theory hold in invariant form.

Invariant version of several classical theorems have been proved
under much weaker assumptions that countable separatedness. It has
long been known (ef. our remarks after 1.2 below) that the invariant
first separation principle, Disjoint invariant Z¥ sets can be separated by
an invariant Borel set, could be derived quite simply from the classical
(non-invariant) theorem assuming only that E be 2},

As 1.1 and 1.3 below we prove the invariant reduction prineiples:

If B is a X} equivalence then both the classes of invariant ITF (coanalytic)
subsets of X and of invariant X3 (POA) subsets of X have the reduction
property.

These vesults extend recent work of Y. N. Moschovakis ([18] and
[19]) and R. L. Vaught ([23] and [24]). Vaught had proved the invariant
reduction prineiples on the assumption that B be a “Polish action” equiva-

* Theorems 1.1, 1.7, 2.5 and all the new results in § 3 are due to Burgess. 1.3, 1.4,
4.2, the proliminary version of 1.6 and all of § 2 except 2.5 are due to Miller. ALl other
resultys wore proved jointly. i
** The first author was an NSF Trainee during the time when this paper was
written. Preparation of the manuseript was supported by NSF grant GP-24352.
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