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Absiract. In the definition of the Taylor functional caleulus ([4], § 4), the more
elaborate space # may be replaced by the usual O®-space. ‘

Introduction. Lately, the spectral theory in several variables has
made great progress. A remarkable contribution to this theory is that of
J. L. Taylor, which has obtained the natural definition of the spectrum
[8] and has defined the corresponding functional analytic calculus [4].
His functional caleulus has the advantage not only of being more abun-
dant as the anterior (being defined for analytic functions in the neigh-
bourhoods of a smaller spectrum) but also its definition is more accessible
(for ingtance, he does not use the geometric integration theory).

However, because his construction needs a certain result on exactness
and it is not known. if this result is valid for the usnal C*-space, Taylor
is obliged to develop a supplementary apparatus; he defines & special func-
tion space (the space of all continuous functions, ¢-differentiable in the
distribution sense, with respect only to 2, ..., Z,) and proves an exactness
theorem. for this space ([4], §2).

It is the object of this paper to simplify more Taylor’s construction
showing that his more elaborate space may be replaced by the usual
0®-gpace. We shall in fact remark that, if one does not extrapolate, the
gingle result on exactness for the O”-spifee which would be necessary,
is our Theorem 1. With this result at hand we can continue, without
modification, the Taylor construction ([4], §1 and § 3).

Our Theorem ig a by-product of the exactness theorem for analytic
functions ([3], Theorem. 2.2) and of the Dolbeault — Grothendieck lemma
([2], Theorem 2.3.3 and Theorem 2.7.8).

1. We shall here use the notations from [3] and [4]. Let X be a com-
plex Banach space and let ¥ be an arbitrary open set in C" (the space of
7 complex variables). We shall denote by #(V, X) the space of all X-valued
analytic functions on ¥, and by C*(V,X) the space of all’ X-valued
0™- differentiable functions on V. If o = (81,...,8,) i3 n-tuple of in-
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determinates and Y is one of the spaces %(V, X) or O°(V, X), we shall
denote by A?[¢, Y] the exterior forms of p degree in s having coefficients
in Y. For an n-tuple & = (a,, ..., a,) of linear continuous operators on X,
we denote by sp(e, X) its spectrum and by r(a, X), its resolvent set
(that is, (@, X) = C™\sp(a, X)). Finally, by «(2) we shall denote the
operator defined on the formis in s as the left exterior multiplication by
(71— 1) 8+ oo+ (2, — @) 8-

2. We can now state: ,

TuroreM 1. If X is a complen Banach space and a == (G, ..., &,)
denotes an n-tuple of (linear contimuous) operators on X, then for every open
set G < r(a, X) ond any 4, 0 < i< 2n, we have H'(C®(@, X), ¢ BJ) = 0,

In order to prove this theorem we need a few auxiliary results.

LEMMA 1. Let Vi and V', be two open sets in C" so that V, NV, # @.
Then for any feC®(Vy 0 V,, X), there exists f;eC*(V;, X) (j == 1, 2), such
that f =fi—f, on ViV, )

The proof uses the partition of unity and is identical to that from
[1], Lemma 1.1 and Remark 1.1, so it will be omited.

Lmvma 2. Assume that H(C®(U, X), 0 @3) = 0 (¢:=1) for any
open set U < r{a, X). If Vi and V, are two open sets in r(a, X) and we Ao U
v dz, 0% (Vy v Vy, X)] verifies y = (a @ D)py on Vy and p = (a © J)ps
on Vs, then there ewists a form ¢ such that p == (a @d)p on V, U V,.

Proof. The case VNV, =@ is obvious. Otherwige, we have
(e @) [pr—ps] =0 on V, NV, hence by assumption, there exists
a form y such that ¢, —¢, = (a @ d)x on ¥V, N V,. According to Lemma 1
we can write y in the form y = y,—y, where y, is defined on V,. Therefore
P1—¢s = (a @) [x2— 1], from which ¢+ (¢ ®F) gy == ¢a+(a D)z, on
Vi N V,; this allows us to define ¢ by

P +(a @)y -on Vi, N

@ = -
oek(a @8)ys on V,

and. the proof iy complete.

The following proposition is just our theorem for polydises and its
proof iy similar to that from [1], Proposition 2.1.

ProrosiTioN 1. For every open polydise D < r(a, X), we have
H(0°(D,X), e @®3) =0, 0< i< 2.

Proof. Let us first remark that according to Theorem 2.2 from
[3] (see also Definition 1.1), we have H'(#%(D, X), o) =0, 0 <i<n,
for any open polydisc D = #(a, X). Let now wed?[o u dz, 0%°(D, X)]
such that (a @5)1/; =0. If ¢ =0 then » is a simple function and the
equality (a @9)y = 0 implies ay = 0 and Jy = 0; so that p is an ana-
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Iytic funetion which satisties ap = 0, hence y = 0 (since H® (%(D, X), a)
=0). If 0<<g<n, we can write v in the form

Y = PoqF Vg1t T P11 Y0,

where the first index denotes the degree with respect to s and the second,
the degree with respect to dz. Then the equality (¢ @d)y = 0 gives us
Tpo,e = 0y @y +0Pgr =0, .00y apy_y 1 +0y,, = 0 and ay,, = 0. Since
Jpo,q = 0, by Theorem 2.3.3 and Theorem 2.7.8 from [2], there exists
a form gy, o such that v, , = Jp, ,_,; replacing then y, , by 9y, .1 in ayy 4+
+0py,4.1 = 0, we obtain odyg, , +0y, ., = 0, therefore v, — apy 1]
= (; this allows us to apply again the quoted theorems and we obtain
another form ¢, , , verifying v, ,_\ — agy g1 = 8¢y ,_,. Arguing in the same
manner, at the penultimate step we shall obtain a form g¢j_;, so that
B0 aPy_1,] = 0; but the form w,,—apy ,, is only in s, hence this
equality just means that it has analytic coefficients; on the other hand
we have aly,,—ogh.,,]=0, therefore using that HY(%(D, X), o) = 0,
there exists a form ¢ having analytic coefficients such that p, , — a(l’ﬁ_l,o = ap
Denoting ¢y_10+¢ bY 7410, We conclude that :

p = (a @ ) [Po,q—1 F Prgme T T Pp21 + @410

Finally, if n < ¢ < 2n, there appears a difference only in-writing: 9 = gy, +
A Vpenr e e Yt gmng1 T Yagno and we can continue as before.

OororvAry. If HE0P(U, X), a @3) = 0 (¢ 1), for any open set
U < r(a, X), then for every compact set K < r(a, X) and any form v of
q degree verifying (o @ D)y =0 in o neighbourhood of K, there ewiss
a form g of ¢—1 degree verifying v = (o @)@ in a neighbourhood of K,

The proof of Theorem 1. Let us start with ¢ = 0. It i3 easy fo
observe that if feC®(@, X) and (o @9)f = 0, then f =0 on any open
polydise contained in &, hence f = 0. We shall now assume that HIH 0= (T,
X),a @) =0 for any open get U < r(a, X) and we shall prove that
HYC™ (G X), @ @ d) = 0. Let{H,}j., be an increasing sequence of com-

pact sets such that | K, = G. i yped?[o U 32, 0¥(6G, X)] and (« @d)y =0

11 ) A
we shall show that it is possible to define a sequence of forms {¢;}5Z.,
@re AT o U A3, 0%(G, X)] fo thit ¢y, = gy in a neighbourhood of K, and

C oy e (a @D)py in o neighbourhoeod of I;. A simple application of the

preceding corollary gives us g,. Let us suppose that g, ..., ¢ have .alrea’cﬁly
boen defined and let us define ¢,,. Again by Corollary, there exists ¢y,
it to be defined on G. Of course, iti can oceur that it is nob sv:{itable; then
we shall modity it according to the following: wehave (a © Npra—gl =0
in neighborhood of K;, consequently, by assumption, there exists y such
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that ¢, —¢, = (e @)y in a neighbourhood of K; (moreover, one may
suppose that y is defined on @). Now we can define ¢;,; = @iy — (@ D B) 1.
Thig completes our inductive argument.

With this sequence at hand, it is clear that ¢ = limg; exists and that
p = (a @)y, 8o that Theorem 1 is proved. Jrroo
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A multiplier theorem for Jacobi expansions

by
WILLIAM C. CONNETT and ALAN L. SCHWARTZ* (St. Louis, Mo.)

Abstract. Multiplier operators on Jacobi expansions of functions in L?, 1 < p < oo,
are studied by realizing these operators as a sequence of kernels of singular integral
type. It then follows from the Calderén—Zygmund Theory that such operators must
be of strong type (p, p) for 1 < p < « and weak type (1, 1).

1. Introduction. In this paper we utilize a theory developed in an
earlier paper [4] to prove new and interesting multiplier theorems for
Jacobi expansions. The basic idea is to represent the multiplier trans-
formation M as a limit of convolution operators with kernels that have .
the properties of singular integral kernels. It then follows from the Cal-
derén—Zygmund Theory that the operator M must be of strong type
(p, p) and weak type (1,1). This is a particular application of the idea
of “gpaces of homogeneous type” devised by Professors Coifman and
Weiss in [3]. An exact statement of the theorem is given in § 3.

The key to the representation of M is finding an approximate identity
with the desired properties. Here, as in the earlier paper, we use the
Poisson kernel. There are many technical difficulties in these calculations,
and many of the lemmas look quite different. One reason for this is the
lack of symmetry in the polynomial P{? () which introduces more cases
that must be handled. Another reason is the complicated expression for
the Poisson kernel.

Tt is well known that any multiplier theorem for Jacobi polynomials
will have important consequences in group theory. Whena = g = (n—1) 12,
we obtain a multiplier theorem for the zonal spherical harmonics on
the unit sphere X,. When o =(n—1)/2, § = 0, a multiplier theorem
follows for the zonal spherical functions on the complex n-dimensional
projective space. There are theorems of this sort for all of the compact
rank —1 symmetric spaces. See Muckenhoupt and Stein [6], p. 22, Bonami
and Clere [2], §7. .

We mention here two other applications of our multiplier theorem,
both of which will be developed elsewhere.
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