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Localization techniques in I® spaces
by
A, PEECZYNSKI (Warszawa), H. P. ROSENTHAL (Berkeley and Columbus)* .

Abstract. Localization refers to obtaining quantitative finite-dimensional formu- -
lations of infinite-dimensional results or of unquantified finite-dimensional results. It is
proved that for every ¢ > 0 and 1 < p < oo, every finite-dimensional subspace E of L?
is contained in a subspace F of I? of dimension n which is (1+&)-complemented
a (14 s)-isomorph of 12, where'n depends only on ¢ and the dimension of . Forp> 2,
the infinite-dimensional result of Kadec and the first named author that every in-
finite-dimensional subspace of L® is either isomorphic to /* and complemented, or
contains a complemented isomorph of I#, is localized as follows: there is a positive
function g, so that every subspace F of I? with 1 = d(B, Uyimp) < o 18 gp(4)-com-
plemented ; given n and e, there is a k so that if 4 > k, then B contains a (14 &)-com-
plemented (1 &) isomorph of If. One of the consequences of theses results is that
for such p, all amost Euclidean subspaces of L? of the same dimension are in the same
position in the space. Other consequences and localization techniques are also obtained.

1. Introduction. In the present paper we are mainly concerned with
the question of how finite-dimensional spaces are situated in I7. In partic-
ular we are interested in the positions of “almost” Euclidean subspaces,
(= A-isomorphs of I for i small with respeet to x). To state our results,
in addition to the standard definition we introduce the following: Let X, ¥,
Z be Banach spaces with ¥ a subspace of X, let 1> 1. ¥ is A-complemented
in X if there exists a projection from X onto X of norm less than or equal
to 4. Y is a A-isomorph of Z if there exists an invertible operator T from
Y onto Z with |T]| 7| < 4. The g. 1. b. of those A that Y is a A-isomorph
of Z is denoted by d(Y, Z).

The main result of Section 2 is

THmoREM A. Given a positive integer k amd & > 0, there ewists a po-
sitive integer M = M (k, &) so that if 1< p< oo and B is a subspace of
IP with d&imB =k, there ewists a subspace F of I* with F > H, so that
AP < M and F is a (1 -+ s)-complemented (1 -+ &)-isomorph of L.

Roughly speaking, this result says that L7 has a very strong form
of a uniform approximation property. This concept and ity relatives are

“digoussed in the begining of Section 2 and in the remark after the proof of

Corollary 2.1. Theorem A yields easily thab the analogous result holds for
* The second named author was supported in part by NSF Grant GP-30798X1T.
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&,., spaces as defined in [24]. The method of the proof of Theorem A
is used to construct in L*¥ very many unconditional bases (with uniformly
bounded unconditional constants) in the senge that every finite dimensional
subspace of L? hag a “large” subspace gpanned by disjoint blocks with
respect to such a basis.

The main result of Section 3 “localizes” the following fact established
in [22]. Every subspace of I? (2 < p < oo) is either isomorphic to a Hibert
space and complemented in L* or containy a eomplemented isomorph
of IP. Our result is '

THEOREM B. Let 2 < p < co. Then there ewists a now decreasing pos-
itive function g,(A) and & positive function k,(N,s) of a positive real var-
iable A, amd positive integer variable N and o positive real variable & re-
spectively, so that if I is a subspace of L and A = d(H, I3, ) < co, then
B is g,(A)-complemented, while if 4> &, (N, ) then there amfst& a (1 -+ e)-
complemented (1 --¢)-isomornh of WX contwined in .

In the course of proving Theorem B, we also obtain that d(#, B, »)
can be functionally related to the ratio of the LP-norm and a oe;ﬂ;néhih
weighted [*-norm on H; our technique and results of [37] also yield some
applications to subspaces of L for p < 2. Theorem A and. Theorom B
together imply that the function g, of Theorem B depends essentially
on p (or more precigely, on the largeness of p). '

A simple eonsequence of Theorem B ig that in L? (p > 2) all “almost”
Euclidean subspaces of the same dimension are in the same position in
the space. Another corollary says that as p->co or p—1 all Huelidean
subspaces of L” of large dimension are badly com‘plemonted. Finally
we s‘m.ldy complemented almost Buelidean subspaces of L? for 1 << p < 2.
We give a rather simple proof of a result announced by Milman [80] that
it H Is a subspace of L? (1< p < 2) which is isomorphic to ZZ,“ then H
contains an infinite dimensional subspace which is complemented in L¥
We also prove a “local” analogue of this result. o

We recall some standard definitions and notation. “Operator” stands
for & bounded linear operator. If (8,7, u) is a measure space and 1 L
<C oo then L#(u) denotes the space of all u-equivalence classes of p-mbg(‘)';

lutely integrable u-measurable scalir valued functions on § with the
norm

Il = ([ 1feau)”.
8
If u is the Lebesgue measure on the unit interval [0; 1] we write L? in-

stead of I”(u). % G i y i
o no(; " (k). By I we denote the space of all k-tuples of sealars with

It ‘
J=1
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and by I” the cotresponding space of infinite sequences. If (#;);j< (b finite
or infinite) is a sequence of elements of a Banach space X then [#;]i<jcx
denotes the closed linear span of the @’s. The wunconditional constant
of a basis (e,) is the g.lb. of those K such that for all scalars ¢, ..., ¢,
and all signs &, ..., s, and for » =1,2,... the inequality

<K1'20i6i¥

n
“ E £0,6;
=1
holds.

2. The uniform approximation property of &, spaces.

DErINITION. Let b > 1. A Banach space X is said to have the b-uni-
form approwimation property if given a positive integer k there exists
an N = N (k) such that for every k-dimensional subspace B of X there
exists an operator T: XX such that Te = ¢ for ecB, dmT(X)< N
and 7| < b. For later reference we shall call the funetion k— N (k) the
umiformity function for X. Tt moreover T can be chosen to be a projection .
then X is said to have the b-uniform projection property.

As ‘was observed by W.B. Johnson there are Banach spaces with
hages henee with the bounded approximation property (ef. [20] for the
definition) which fail to have the b-uniform approximation property
for any b > 1. We present his example.

Take any separable Banach space, say Z, which fails to have the
bounded approximation property (ef. [10], [7] and [13]). LetZ, <« Z,c ...
be any increasing sequence of finite dimensional subspaces of Z such thatb

o0

the union |J Z; is dense in Z. Let ¥ = (ZyxZyxX o). 16 18 easily seen
=1

that if thad the b-uniform approximation property for some b>1,
then Z would have thé bounded approximation property with a bound b.
So Y fails to have the b-uniform approximation property for any b > 1
and the same is clearly true for any Banach space containing an isomorph
of ¥ as a complemented subspace. Clearly Y has the bounded approxi-
mation property being an I*-product of finite dimensional subspaces.
Thus (ef. [20], [34]) theve exists a Banach space, say X, with a basis
which contains a complemented isomorph of ¥. Clearly X provides the
desired example.

Tn this section we shall show that for 1< p < oo all spaces Ly, (u)
and more generally all &, ,; spaces (1< A< oo) have the b-uniform pro-
jection property for every b> 1. Moreover the function k—N(k) can
be chosen so that it depends only on b and A but not on p and the part-
icular &, ;space. This is an obvions consequence of Theorem A stated
in the introduction and Corollary 2.1 below.

Wao procesd now to the proof of Theorem A. Since for all I and
1« p << co any subspace of LY isometric to 14 is the range of & contractive

*
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projection (cf. e. g. [1] and [23]), Theorem A follows immediately from
the next result and a standard perturbation argument (see e.g. [20];
Lemma 24).

THEOREM 2.1. Qiven k and 1 > &> 0, there ewists an N = N(k, &)
so that for amy measure space (T, u), 1< p< oo and subspace E of
IP(u) with AimE = k, there emists a subspace F' of LP(u) isometric to Z"
with N’ < N so that for all e B with ||¢]l = 1 there is an mel’ with v —e| <

Proof. We first need the following

Fact: Let ¥ be a k-dimensional subspace of a Banach space B,
By a result of Auerbach (cf. Taylor [39]), there exist elements y,, y,, ...
<y ¥ in Y so that for all 4, |y = 1 and || ¥ e,
@y Ggy ooy . Lot 7 >0 and suppose @y, ,,..., 4B are such that
lo;—will < for all 4. Then, given y = 3 a;9;¢¥ with |jy|| = 1, there
is an wel®y, @,y ..., %] With |l0—yl < kn, for example » = 3 a;u;.

The proof of Theorem 2.1 for the cage p = oo follows eagily from
this Fact, Choose ey, 5, ..., ¢ in ¥ all of norm one 8o that | 3 aye; || = i
for all ¢ and scalars @,. It is evident that for each j, we may choose

2k ... . y
m = [T] disjoint measurable sets &, G4,..., 6, so that ¢, may be

approximated to within s/% by a linear combination of the characteristic
functions y o’ "a” ’xaf . If we let A be the algebra of sets generated

by {¢i: 1 k 1< i m}, then it is evident that the linear span
of the chamctenstm i‘unctlons of elements of U is isometric to 13, where
&

NN = [_210_] ‘

&

Now we assume 1< p< o0, p = 2 (the p = 2 case is trivial). We
shall prove Theorem 2.1 by induction on %. The first step is to show that
N(2, ¢) exists for all ¢ > 0. In fact, we shall prove that N (2, ¢) may be

taken equal to 2[ ]—{-4

Let ® be 2-dimensional and choose fy9¢B so that [|f]] == lg| =1
and |laf +bg|| > max (|al, [b]) for all sealars & and b. By the Fact it sulficies
to show that there exists an F < I”(u) which iy isometric to &, with

. 4 . .
N' <2 E +4, 8o that there are elements f;, and ¢, in B -with

max (|lf —fill, g —gall) < ¢/2.

‘We accomplish the construction of F, essentially, by approximating
* f by linear combinations of chamotemsmc functions of the meagure
g-du.

4
Put 5 = [-8—2]—]«1. Let @ ={t: |f(t)§<—i~|g(t)|}. Let G = T\G.

| = lay| for any sealars
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Define @; for —n<j<n by
Go = {i: f(t) =0},
2(j—1 j X .
Gj={t: (% ) gty <fit) < }y(t)} for j=1,2,...,n

G,z{t:i IH<Fi) < 20+ )(t)} for j=—1,—2,...,wn.‘

Evidently, ¢ = U @;. We shall show that 7 may be chosen equal
Jem—m

to the span of fyg~ and {ng j=0,41,..., +x}. Evidently,

dimF < 2n+2 —~2|: ]—l—4

Let

n kid
2j
fi=r 2+ Zn 9 xa, % = g1a = Zy'xa,.~
Je=—n =—n

Clearly for all j
f]—~g(t s <2 fly(t)l’“dﬂ(t)

Thus, rememberlng that llgll, =1, we get, by the definition of =,

Y-ty - ( Sl

J=—nG;
J#0

. W e
<m’( Gjrg(tnwm) <4

t)~—y l u(t)

‘While
1/, 1p
ooty =( [ IsI(t)l”dﬂ(t)) <3l f Forau) <3,

because ||ffl, = 1 and lg(t)l <= \f(t )| for te@”. This completes the proof

of the existence of N(2, 2) for all &> 0.
Now suppose that N (%, e) has been proved to exist for all &> 0.

‘We shall show that

€ &
N(k+1, o) =1+N(k, )N(z, )
(k+1) e
”““’N(k ’ (k+1))

has the desired property. Let & > 0 and ¥ & (k-1)-dimensional subspace
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of I (u) be given, and choose ¢,, ..., ¢, in B of norm one so that for all
§ and scalars a,, dyy .oy @pry || 2 @] > oyl

By the Fact, it suffices to construet an I isometric to ¥, where m
depends only on k+1 and s, so.that each e, 6, ..., €1 CAD be approxi-
mated to within k{T by elements of F. We accomplish the construetion
of P as follows: we first choose a ¥ = L”(u) isometric to an If, so that
the unit ball of [e,, €, ..., 6] can be very closely approximated by ele-
ments of Y. Letting (g1, ..., ¢u) be the natural basis for ¥, the supports
§;’s of the g;’s may be taken to be disjoint (ef. [1], [23]). ‘We then apply
the & = 2 part of the theorem to each of the (ati most) two-dimensional
spaces [, é4118;] contained in L7 (u]8)). ‘We thus choose X, isomorphic
10 a suitable %, X; = I*(u|8)); the final space I iy taken to be the linear
span of | X; and e,,°x  , - We pass to the details.

i=1 TN S

Let 6 be defined by 35(k-+1) = &; choose ¥ < L¥(u) isometric to
B with n < N(k, 6), so that if wele,, €y, ..., ¢,] and |#] = 1, then there
it a ye Y with [ly — | < 6. Since ¥ is isometric to I, there are gy, gy, ...
...y §n of norm one so that ¥ equals the span of g;,..., g, and so that
putting 8, = {w: g¢,(@) # 0}, then §; N §; = @ for 4 5 j. Now for each
1< j<n,choose X; = L7 (u| §;) with X; isometric to 1, where N;< N (2, é/n)
so that each element of the span of ¢,,,|S; and ¢;, of norm one, can be
approximated to within é/n by an element of X;. Now lot I' denote the

n
* linear span of 1U X, and e;,.,° xm K Evidently F is isometric to an
= \.ul 5 N

i
% where N < n-N(2,d/n)+1< N(k+1, &)

For each 1< j < n, there it a gjeX; with [jg;— g, < 6/n. Hence, by
the Fact, any element in ¥ of norm one can be approximated to within

5 .

"= 6 by some element of F. Thus, by the assumption on ¥, each
of €, €, ..., ¢ i at a distance of at most 24 - & from an element of I
Moreover for each 1< j<n, there is an @;¢X;, so that

8
57 — €poa) Sj”p < " ll€e..s Sj”p .

Hence
| ‘§'1 Oy &P U g
2 %t w ) Q(Z"”Hﬂ’..lﬁ' 5] <-—<0.
= ™Y i s &~ wal Sillp | < n o

':Dhgs by the Fact, since all ¢, 6, ..., €., can be :a,pproxinmtod
to within 26 4 6* by elements of F, every clement in & of norm one can
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be approximated to within (26 6*)(k+1) < 38(k+1) = ¢ by elements
of F. QI.D.
After this paper had been submitted. for publication, S. Kwapien
communicated to the authors the following elegant proof of Theorem 2.1.
Let & > 0. Let B be a subspace of L? with dim B = k. Let 44, ¥a, ...

«.vy ¥ bo @ normalized basis for F such that

k
jl:i-?l a;y;]| = lag fori =1, 2, ...

vy kooand for all sealars ay, as, ..., a;. Let

L k
f=Nwl+aa where A =[te[0;1]: X' iy, (1) = 0}.

Jeal Je=1

Then there exists an order preserving isometric isomorphism 1': L7——+L"

such that T'(f) = 1-|fl, (cf. 8. Banach, Théorie des Opérations Linéaires,
13
p. 178, chap. XI, §3). Clearly if y = 3 a;9,¢B, with Iyll, =1, then
=1
E
o)< X lally (< f(5)  for

.
Je=1

te[0;1].

Hence

()OI S T(HE = Ifl, <h+1  for all 1e[051].

Now the proof of Theorem 2.1 for p = co yields the existence of an algebra
9 of measurable subsets of [0; 1] consisting of at most N = [2k (% +1) e
sebts and such that given 2eT(Y) with Jell, < k+1, there exists a we W
such that |jg—wl|, < [l¢ —wll,<< ¢ where W denotes the linear space con-
sisting of all linear combinations of the characteristic functions of mem-
bers of %. Clearly dim W < N and W regarded as a subspace of L7 is
isometrically isomorphic to &, . Let F = T~ (W). Then F is the desired
subspace of L7, Q.B.D.

‘We recall that a Banach space X is called an &, , space if for each

" finite-dimensional subspace B of X, there exists an N and a J-isomorph

F oof 1 with Bc F e X. We call X an &, space if X is an &, , 5pace
for some Ae[l, oo).

Mhe next result extends Theorem A to the case of general %, spaces.

CoroLLARY 2.1. Let A1 be given. Then there exists a f = $(1), so
that if k is a positive integer, there exists an N = N (k) so that f1<p < oo,
X is an infinite dimensional £, , space, and B is o k-dimensional subspace
of X, there ewists an N'-dimensional subspace F of X contasning B, so
that F' is a p-complemented B-isomorph of 1R and N'< N. )

Proof. The proof for p == 2 ig trivial since every %, ; space is a A-iso-
morph of a Hilbert space, so assume p 7 2. By the results of [24] there
exist an L% (u) space and a A-complemented subspace ¥ of I?(u) with
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Y a A-isomorph of X**. Now simply let N = N (k, 2) as defined in Theo-
rem A. We may then chooge an N’ < N and a 2-complemented 2-isomorph
of 1%, containing B, contained in L”(u). The inspection of an argument
in [26] (ef. the proofs of Theorems 2.2, 3.2 and 3.3 of [26]) yields that
there is a K depending only on. 1, so that F is contained in a K-complemen-
ted K isomorph of 1%, contained in ¥ itself. Thus the result is proved
for X**, with § = AK. But then the result follows for X in virtue of the
local reflexivity principle (see e.g. Theorem 3.3 of [20]). Q.E.D.

Remark. The uniform approximation property may be used to obtain
the localization of the concept of approximation property to finite dimen-
sional spaces. The idea is to require that the identity operator can be ap-
proximated by low-rank operators. Precisely let # be a family of Banach spa-
ces, B a given Banach space, and b and 4 positive real numbers. We say that
F gatisfies the b-uniform appreximation property if there exists a function
k—N (%) with domain and range in the positive integers, so that for each
X eZ, X satisfies the b-uniform approximation property with Ny (k)< N (k),
for all %, where Ny denotes the uniformity function for X. Put another
way, the family satisties the b-uniform approximation property with
a uniform uniformity function. Now suppose that all the members of
& are finite dimensional. Say that # A-paves B if every finite dimensional
subspace B of B is contained in a A-isomorph of a member of &, i.e. there
exists & ¥ < B and Fe# such that F = ¥ and d(Y, F) < A. A compactness
argument may then be used to prove the following

ProrositioN. If & satisfies the b-umiform appromimation property
and F A-paves B, then B satisfies the b-uniform appromimation property.

We do not know if a converse to this Proposition is true; that is,
it B satisfies the uniform approximation property, is B paved by a family
& of finite dimensional spaces such that & satisfies the uniform approx-

imation property? The answer iy easily seen to be yes if B in addition

satisfies the (not necessarily uniform) bounded projection approximation
property. Now our proof of Theorem A shows that if F = {I2: 1 < p < oo,
n=1,2,..} then & satisties the b-uniform approximation property for
all b> 1. By definition, if X iy an &, ,-space, then X is A-paved by #.
Hence the above Proposition may be applied to show that X satisties
the A s-uniform approximation property for all & > 0. We note finally
that this particular family only paves £,-spaces, i.e. if X is paved by #
a8 above, then X is already an .Z,-space for some 1< p < oo.

Our next result shows that for all %, there exists a Banach space
X all .of whose k-dimensional subspaces are such “arbitrarily’close”
to I; and are the ranges of almost comtractive projections, yet X

is not isomorphic to a Hilbert space. It is a very sunple consequence
of Theorem A.
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COROLLARY 2.2. Let ¢ >0 and % be a positive integer. Then there is
@ 6> 0, so that if |p—2|<< d, then every k-dimensional subspaoe of L? is
(1 + &)-complemented amd a (1+ &)-isomorph of Ty.

Proof. Choose # > 0, so that (1+9)2<<1-4¢/2. Let n = M (% ,17) as
defined in Theorem A, and choose 8 > 0, so that |p —2| <¢ ¢ implies that

& 1
(1+*2~) n® T <1-e.

If B is a k-dimensional subspace of L? (for [p —2| < d), we may choose,
by Theorem A, a subspace F of L? with F > B, so that F is (1 +#)-com-
1 1

plemented (1 --)-isomorph of 1. Since d(iZ, B)<n 277 it follows that

1

1
AF,B)< A+n)n? 2 <1—l—s,
1 1

hence F ig a (1 ¢)-isomorph of . Moreover E is (1+n)n » 2 _gomple-
mented in I and F is (1+n)-complemented in L”, henee B is (1-&)-
complemented.

A gimilar argument yields

COROLLARY 2.83. Given am increasing sequence (k,) with by >1 and
liak, = oo, there emists o Bamach space X mon-isomorphic to a Hilbert

n .

space such that every n-dimensional subspace of X is a ky-complemented
kn-isomorph of 1. Precisely there are sequemces p,—2 and m,—>o0 a3
n—oo such that the space X = (It X172 X...)p has the desired property.

It ig interesting to compare Corollary 2.3 with a result of Linde1}~
strauss—Tzafriri [27] which says that if X is a Banach space non-isomorphic
to a Hilbert space then A, (X)—>co and p,(X)~>co a8 n—co where

ho(X) = sup{d(B,): E < X, dimF = n},

po(X) = sup {int{||P|: P projection of X onto B}: H < X, dim¥ = n}.

Our next result, Theorem 2.2, i§ a localization in L? of a well-known
fact [2] that if B is an infinite dimensional subspace of a Banach space
with an unconditional basis then there exists a sequence of elements of
T which is equivalent to a block basic sequence of the basis. We begin
with a lemma on “controlled extension” of some basic sequences in LP.
To state the lemma we recall some facts aboub martingale-type  basic
gequences.

DuriNrrioN. - Let p == 2. A martingale-type basic sequence in  LP
is a monotone basic sequence (b;)cjcpiz, Where n is either finite or
infinite, such that the subspace [b;]icjcns1 18 the range of a contractive
projection from IL7.
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Tt follows from the definition that for each % =1,2,...,n the
subspace [b;],<j<x is @ range of a contractive projection from IL* which
annihilates all b; for j > k. Every finite dimensional contractive projec-
tion in Z? for co >p 2 > 1 is of the form

() @ = D7 v)g where

J=1

1= HTPJJ r == gl = (g5 ) = f Oy b

and if ¢ # j, then g9, = g;'wy =0 for 4,/ =1,2,...,n

As demonstrated in [40] this allows to show that every martingale-
type basic sequence in L” can be by an appropriate positive isometry
of I” onto itself transformed into the sequence of martingale differences.
Now the deep result of Burkholder and Gundi [6] (cf. also [6] and [40])
yields that if 1< p< oo then any sequence of martingale differences
is an unconditional basic sequence with an unconditional constant K,
where K, depends only on p. Hence the same is true for any martingale-
type basic sequence in L?. In particular (as pointed out in [40]) we have

ProposrrioN 2.1. Every monotone basis in L? and more generally every
monotone Schauder desomposition of L¥ is unconditional.

Now we pass to the lemma on extension of martingale-type basic
sequences.

LemmA 2.1, Let 1<p#2< 00, >0 and n a poszm,e integer. Then
there exists a positive integer M = M(p,n, &) such thal given & martingale-
type basic sequence (b;)<;<y, and an ecL? with llell = 1, there exists o martin-
gale-type basic sequence (a,),,<ar Such that there ewist an fela,]) e
and an isometric embedding

U: [0 hajen=10 )i coentr
such that

le—fl<e, Uby=a; forj=1,2,...,m;
10h—hl < slbll for helblicjen.

Moreover if @ and Qy denole the contractive projections ‘onto [D;) cjen ond
[Ub;)i<s<n Te8DECtivEly then |Q —Q4) < e

Proof. Let 4; = {t: g;(¢) # 0} where the functions g;,¢s, +.-, dn
are defined by ( ) for the contractive projection @ from L* onto [b],.cjcn -
Clearly if ¢ # j then 4; N A; = @. Now fix # > 0 sufficiently small. How
small  should be we shall determine later. Let us put m == 2[4/52] 43
Then an inspection of the proof of Theorem 2.1 yields the existence of
mutually disjoint sets (B;.)cuem and numbers ¢, for &k =1,2,...,m;
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j=1,2,...,n such that B;, < 4; for all ¥ and j and if

n
Ay = ]U ]JIH O = 6°%4;5 Bn+1,o =10, 1NU Ay
fom=s1 J=1
mn
b = 6'%1{1,0‘{“201,7391%73]-,k§ g; = “gj'%.é}n_l'gjlx@y
k=1
then .
lo,—gll<n  and lg—fl<y forj=1,2,....,n
Define U: [(]j]l%f%n"%ﬁj]l#;:l-zm by

n n
U(Ecjgj\) = onﬁj for all scalaTs ¢, Cay ..., Gy-
=1 =1 .

Clearly U is an isometry and for each he[g;licjcn = [bj]1<,<”~we have

| Uk~ hl < nylh| (because (g;) is .an Auerbach basis). Since [g;licjcn IS

isometric to 12, there exists a contractive projection, say €,, from L” onto
»

[0, 1<jen (. [1], [28]). Hence there exist 9y, $a, ..., Py in I?% g0 that

H"}"j”__y__z(gjﬂﬁl‘)j) =1 forj =1,2,...,n
D1
and

K

Quh = D) (hy9)g; for all heL?.

J=1
Thus for each heL” we have
(@—Q)h = Z(h wf—«p,))gﬁz By ¥ (05— )
J=1

where ¢ (j = 1,2, ..., n) are defined for @ by (+). It follows from the
) »

uniform convexity of L7 T (ef. [18]) that there is a positive constant
Cp such that |ig;—gll, < # implies ‘

=Bl p < Cpn?  forj=1,2,...,n

n—-1
where a, = min(§, 1—-1/p). Hence
(@ — 1) (Bl < HZ By (95 —y)) ng +|i2 » ) ( gj)“
]
< ) Wl Ty =l + ) 1l Iy =Gyl
J -1 J
< n(Opn“ﬂ +1) [l
Thus [ —Qull < (0™ +7):
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Next we shall construct the basic sequence (a,)lg,,sM. To this end
let us set

Fy = [51]1<1<n5
F, = span(F\_y, ;°25,,) for r = (j—1)(m—1)+k

(G=21,2,..,m; bk =1,2,...,m—1);
Fn(m—1)+l Spa‘n(F«n(m~1)76 x'n-ll]g )'
0
g1t

Tt is easily seen that F, is isometric to ¥, and F, , = F,(r = 0,1, ...

., n(m—1)-+1). Hence each F, is the range of a contractive projection,
say Qy.1, from L. Now we put a; = Ub; for j =1,2,...,n and let a,,,
be any element of norm one belonging to the intersection F, N ker@,
(r=1,2,...,n(m—1)+1). It can easily be checked (cf. e.g. [29]) that
the sequence (a,),c,cnm+z 18 @ monotone basic sequence and therefore
a martingale basic sequence (because [@,)icignm+1 = Fnpm-1)+1 18 the range
of the contractive projection @,y .ys)-

Next define felF,,, 1., by

n
f == 0 ¥nt1 +chjlcgj XBjk gé}'

AL o
Then we have

le—7ll = |igej~j§e“,\;<2|le,~e",li<nn

Now to guarantee that the sequence (a,);<,cum4: Das the pi‘opertles
required in Lemma 2.1 it suffices to choose 5 > 0, so that n(n-+0pn ’?) <s
and pub

M =Mp,k, e = (2 [7:—}]—{—3) n+l. Q.I.D.

Lewa 2.2. Let k be a positive integer, 1 > &> 0, and 1 < p 5 2 < oo,
Then there emist functions d = a(p, k, &) and n = n(p, k, &) such that for
every subspace B = L? with dimB > d there ewists @ martingale-type basio
sequence (b;)icien amd elements of norm ome ey, ey, ..., ék in B, and 2,
Zay ooy B W [bligien Which are disjoint blocks with respect to the basic
sequence (bj)lﬁdsn and ”zi”“e'i“ <e _f07' i """".17 25 veey k.

Proof. Let us seb

n(p,l,e) =dp,1,¢) =1

n(p, k+1,¢) =

a(p, k+1,¢)

for b =1,2,..

for all &;
M(p,nip, k1, ¢[3), 5/3),

= max (n(p, &, ¢/3), d(p, &, ¢/3) +1
.y Where M(-,", -) is that of Lemma 2.1.
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Clearly n(p, 1, &) and d(p, 1, &) have for all ¢ the desired properties.
Aggume that for some k>1and all 1> & > 0 the integers n(p, k, ¢) and
d(p, k, ¢) have the desired properties. Let E be a subspace of L“’ with
dim B > d(p, k+1, &). In particular dim ¥ > d(p, k, £/3). Hence, by the
inductive hypothesis, there exist a martingale-type basic sequence
(bj)mm,,w,,, o) 80d elements of norm one ey, 6y, ..., &, in H and 2,2, .., %
in [b,]mj@(p,n,,/s) which are dlsJomt bloecks Wlth respect to the bagic se-
quence (b)1zien(n,r,on 904 lG— el < 2f3 for ¢ = 1,2, ..., & Let @’ denote
the contractive projection from .L* onto [b}]lgjgn(p,,,,ﬂ,s,. Since dimF
> n(p, b, £/3), there exists an e, in . such that |65l = 1 and @' (ey,)
= 0. Now, by Lemma 2.1, there exists a martingale-type basic sequence
(B rcranp 1o 30d a0 isometry U [b;licicatn,p, o L0 ]1<v<‘n(p k41,009 80A
an fe[b,]icientn ir1,ys STUCR That lleg —f||< ¢f3; b; = Ub; for j =1, 2,.

(P, k, 8/3); |Uh—h| < &/3[h|| for hﬁ[bj]lsjsn(p k,e13) 204 e’ Q]|< s/3
Where Q denotes the contractive projection from I onto [B;licicn(n, b3

Let us set 2, = Uz, for 4 =1,2,..., % and #,,, =f—@f.. Clearly
Byy Bgy +eny Bpyy ATO disjoint blocks with respect to the basic sequence
(bj L<in(p,o+1,6f3) DECAURO 2y, ...5% ave disjoint blocks with respect to
(Bhrian sy o0 Q2 =2 for t=1,2,...,k and @z, =0. Next
remembering that llgl =1 and e< 1 we have

lle; —2ill < lle,— 241l + lle; — Ul < &3 +eleill[3 = e(2+¢[3)[3 < &
and for ¢ =1,2,...,k
legss — Zpgall = g —F +€ (f—prr) H(Q@—Q") (o)< 2 IIf — egaall +/3<e.
This completes the induction and the proof of Lemma 2.2.

Tt follows immediately from Lemma 2.1 that every finite martingale-
type basic sequence in L* extends to a martingale-type basis for I7.
Hence, by Lemma 2.2, we get

TunorEM 2.2. Let k be a posztwe integer, e >0 and 1< p#2<<co. Then
there ewists & posmve nteger i = d(p, %, &) such that if B is a subspace of
L? with dim B > d then there ewist b elemenis each of morm ome, say 2,
gy +eey By Which ave digjoint blocks with respect to a martingale-type basis
for L"’ and there ewists a linear operator U: [#],cicn—-B such thai

le— Uzl < ellell  for each ze[]icicr

3. Almost Euclidean subspaces of I”(u) spaces. To prove Theorem
B, we wish to obtain a suitable localized version of the result of [22] that
every FHilbert space isomorph contained in L* (p > 2) has equivalent
7% and L* norms. Evidently in an appropriate finite dimensional analogue,
the I? norm must somehow be modified, for there are obviously one-
dimensional subspaces of L? with the I and L* norms in arbitrarily
large ratio. We acconiplish this by considering ‘weighted L*-norms.

¢ — Studla Mathematica LIL3
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DEFINITION. Let 2 < p < oo and let H be a (possibly finite-dimen-
sional) subspace of L?. Put
p=2
¢g = inf sup fp * 157 1 fllps
¢ feBB

the infimum is taken over all functions ¢, such that

1
(1) ¢ is measurable, @=0, [p()dt=1, and
0
[0,1] = {@: p(w) 5= 0}.

Obviously d(#, Binz) < 0z and moreover, by the results of [22],
¢g i8 finite if B is isomorphic to a Hilbert space.
‘We shall see below that there is a function

hy: Rt —R", g hp(d(E7 Bimm))-

For the-time being, we observe the simple
LeMMa 3.1. If ¢y ds finite, B is eg-complemented.
Proof. Fix £ > 0 and pick ¢ satistying (1), so that

so that

-2
sup Ifllp~ Ife * 15 < eg+e.

Let v(4) = [@dr for all measurable .4 = [0,1], and define T by
A

Ty = gp# for all geL”. Then T is an isometry of L? onto L?(») and more-
over

1Tg)lz20) = (flg“rp"”p(pdm)m = “qrp%—FZ Hz for all g.
0

It follows immediately that the orthogonal projection from L2(») onto
T(B) yields a projection P from L%(v) onto T(H) of norm at most

p=2
sup I, 707 ||, < o+e.

Clearly P, = T7'PT is a projection from I? onto B of norm at most
oy+e. Letting ¢ tend to zero, an easy compactness argument using the
reflexivity of L, now yields a projection onto . of norm at most ;. Q.1.D.

Before proceeding to the main part of the argument of Theorem
B, we have need of two additional lemmas. The proof of the first follows
from the arguments of [22] and will be omitted.

Levma 3.2. Let N, &> 0, and 1 < p < oo be given. Then there ewists
a d = O(N, &, p) such that if (2, u) is & probability space and Jiy vy foy are
Junctions in LP(u) of norm one, and A,, <oy Ay are measurable subsets

icm
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of 2, so that for all 1<j<<N and all 1<i< ],

[ifirdu>1-6 and  [Ifi?du< é,
A

-A'j 7

d([flv -~'7fN]: lgjv) <1l+4e

and there is a projection from I* onto [fi, ..., ] of norm at most 1+e.

Luvma 3.3. Let e n, and 2 < p < oo be given. Then there ewists a C
=0(s,n, p), $0 that if (2, u) is a probability space and feL”(u) is such that
i 1fls WA > (, then there exists a measurable set A with u(4)<Ce¢, so
that .

[ 1P dp > @ —nIfi3.
A

then

-2
Proof. Let C = (s2* 7*)~'. Suppose |fl, =1, Ifl;*>C. Let 4
= {x: |f(x)] > ¢""}. Then evidently u(4)<<e, and

=2

[ f@rap@ < [ 1f@Pdu@s ®
a\4 a4 .

p-2 52

<Iflge 7 < (0?7 ) =m.
Q.E.D.

Our next result and standard facts easily yield the proof of Theorem B.
This result may be loosely stated as follows. If a subspace of L? has the
ratio of its IP norm to all of its weighted L? norms quite large, then it
has a subspace close to 1% for large N which is the range of an almost
contractive projection. Precisely:

Prorosrrion 3.1. Let N, &> 0, and 2 < p < oo be given. Then there
emists o % = k(N, &, p), so that if B is a subspace of L” with ¢x>k, then
there is o subspace T = B, such that F is & (14 &)-isomorph of & and F is
(1 -+ ¢)-complemented in L.

Proof. Let & = 6(N, e p) be defined as in Lemma 3.2. Let &
=((8/2N, 6, p) be defined as in Lemma 3.3; and let ¥ be a subspace of
I? with ¢ 3> k. We shall construct elements fi, fy, ..., fy of & and meas-
urable sets A, 4y, ..., 4y in [0, 1] satistying the hypothesis of Lemma 3.2,

Tet f, be an arbitrary element of F of norm one and let Ay = {&:
ful@) 5 0. Let 1< j < N, and suppose that fy, fa, .-y f; have been chosen
in B all of norm one, and A, ..., A; measurable subsets of [0, 1] have
been chosen, satisfying together with the f’s the hypotheses of Temma
3.2. Let 8 = {w: |ful? (@) ...+ 1" (x) # 0} and put

_LIAPE B 1 ,
) j 2(1—m(8)) 1"

q?
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if m(8) # 1, otherwise let
Ll 4+ I
="
J
(m denotes Lebesgue measure). By the definition of ¢y there exists an
fir1¢E of norm one, such that
=2
Wi @™ 15" = k.

Letting du = @ds and applying Lémma 3.3 to the function f = f;,, =17,
there exists a measurable set 4;,, with

[ fltde = [ fFdp=1—05
41 4t
If ¢ < j+1, then

ad [ pdo = p(d;,) < 5/2N.

Af41

[ fraw<2i [ pa,

4411 Ajp1
whence
.- L
» L .
f|fi| <2<
4541

This completes the comstruction of fi, ..., fy and 4,,..., 4y by
induction, and- hence in virtue. of Lemma 3.2, the proof of Proposition
3.1. QED.

Now we are ready to complete the proof of Theorem B,

Let p, B, and 2 be as in the statement of Theorem B. Let N be such
that N4~ > 2], Now it is known that d(l, %) = NP > 91 (see
e.g. [17]). Thus if F is an N-dimensional subspace of H, d(F,1%) > 2,
for otherwise since (¥, iy) < 4, d(fy, &) = N3~ < 2). Thus by Prop-
ogition 3.1, ¢y << k(N, 2, p). Thus since N depends only on A and p,
we obtain a function h,: R*—+R7, so that oy< h,(4). The existence of
g, follows immediately from. the existence of h, and Lemma 3.1, while
the existence of k, (¥, ¢) of Theorem B follows immediately from Prop-
osition 3.1 and from the fact that ¢z > A.

Remark 1. For 1 <p< 2 and ¥ a subspace of L? define

¢ = infsup||fl,-|f-¢* @1 |7,
¢ fel

the infimum is taken over all measurable ¢ satisfying (1). It follows easily
from the results of [22] that if ¢ = oo, then for all & > 0, there is a (1 &)
isomorph of ¥ contained in B which is (1 z)-complemented in L?. On
the other hand if ¢z< oo, the results of [37] (see also [11] for a more
elementary treatment) show that B contains no isomorph of I*.
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Now the proof of Proposition 3.1 yields that those results can be
localized. An inspection of the proof shows that the statement of Prop-
ogifion 3.1 holds for 1 < p < 2 with the above definition of ¢z. Moreover
the results of [37] yield that: :

Given 1<<p <2 and ¢, k>0, there is an N so that for all n > N,
iof W< L is a c-isomorph of I8, then ¢z = k.

Consequently fixing ¢ and N, then ¢-isomorphs of I which are con-
tained in L7, for sufficiently large %, contain almost isomefric copies of
% (For further complemoents and details see [37].)

Remark 2. Recently B, Maurey [28], [41] proved that if co>p > 2,
then every operator from a subspace of I” into a Hilbert space admits
an extension to an operator from I”. This implies the existence of the
funetion g,,. In fact his method shows that for B = 17, ¢ < K, d(B, B, 5)
and hence g,(4) < K,A with K, = 0(Vp). Maurey’s result suggests also
the following

ProrriM. Let X be a Banach space with the property that there
exists a function gx(2) such that if < X is a A-isomorph of B, 5z, then
B is gx(4) complemented in X. Is it true that every operator from every
subspace of X into a Hilbert space admits an extension to the whole
gpace? .

Noxt we observe that Proposition 3.1 together with an argument of
Figiel yields the following variation of a result due to him (ef. [12], Prop-
osition 8). Here and in the sequel we denote by o(X) the projection
constant of a Banach gpace X (cf. [38] for the definition).

CoroLLARY 3.1. For all N, 2<p< oo, and &>0 there is a ~k
= 71'(1\7 , & D), s0 that for all n and subspaces B of 1 with (ImE)n " > &,
there is a (1. &)-isomorph of 1% contwined in B which is (1-¢)-complemented
in 15, .

Proof. Of course we may regard 2 as a subspace of L. Let k
=dimMB, A = d(H, ). Following the argument of Figiel, we observe that
there are absolute constants Cy and C, with

o)< Oyn  and  o(B) > C,n*®  for all m.

Thus letting ¢ be the funetion of Theorem B, since B is g, (1)-complemented
in 7, )
() < Orgp(A)n®.

On. the other hand,

Oa kl/z .

o) > ——-
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Thus )
2) gp(D)A > Cokn?,

where O, is an absolute constant.
Let % be the positive increasing function defined by h(z) = sup ¢,(4)2
0< A

for all & >0; let (N, e p) be the function defined in Proposition 3.1,
and put k=k(N, ¢, p). Now it ¢,k*n Y7 = h(k), then ¢,z 2>F by (2),
and hence the conclusion follows by Proposition 3.1. Ience we may set
%= (h(ﬁ)gca)'g. .

Roughly speaking, the mnext two corollaries say that in L? (p > 2)
all Hilbert subspaces of the same dimension are in the same position.

COROLLARY 3.2. Let p > 2, 1> 0. Then there cwists a b = b(p, A)
such that for any positive integer n there ewists a positive integer k = T(p, n)
such that given &' > k& and n-dimensional subspaces Hy and H, of ¥, which
are A-isomorphs of 1., there.exists am isomorphism T:15,—1%, such that
T(Hy) = Hy and | T 177 < b(p, 4)-

Proof. Choose my = m,(p, n), so that Ij contains a 2-isomorph of 7.
Next, by Corollary 3.1, we choose &k = k(p,n), so that if &' > & then
every subspace of I, of dimension > &' —2n contains. a 2-complemented
2-isomorph of I . We shall show that % bas the desired property.
Let % >k and let H,c, be Adsomorphs of ¥ (i=1,2). By
Theorem B, there exist projections P; from If, onto H; with (P, < g, (A)
(¢ =1,2). Let FE =kerP, nkerP,. Olearly dimPF = k" —2n. Hence
there i3 a projection Q:If—lf, with |Q<2 and d(F,%)<2, where
F =Q() = B. Let H be a yubspace of F which. is a 2-isomorph of . By
Theorem B, there is a projection B: FWMY with |B| < g,(4)-2. Cearly
for ¢ = 1, 2 there ig an isomorphism A4, from %, onto the product

Z; = Hyx (1p—P) (Lg — @) (%) x (Ly— R) (F) x H

such that the norms |l4,| and |47 depend only on A and the norms of
projections P;, @, B which depend only on p and A (here by 1y we denote
the identity on X; Z; is normed by [(2,, @, g, %,)|] = max |ly]|). Since
1ie
max d(H,, H) < d(H, B)maxd(H;, 1) < 22,
i=1,2 Geal,2

there exist for ¢ =1, 2 isomorphisms .
U Hy~H with |U) =1 and U7 < 44.

Let B;: Z;~Z, be defined by B,(é,,y,e) = (Ui'e, u, yU,é"). Cloarly
BB < 44. Finally we put T; = A7 B, 4, for i =1,2 and T = Io,.
One can easily check that T'(H,) = H, and the morms |T|| and ||~
depend on p and 1 only via the norms of 4,, 4;7% B;. Q. E. D,

The above corollary immediately yields
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COROLLARY 3.3. Let p > 2 and let A > 0. Then there exists a function
b(p, ) such that if Hy and H, are subspaces of L with max (d(H,, 1)) < A
for some n =1,2,..., 00, then there ewists o surjective isomorphism
T: ILP—LP such that T(H,) = H, and |T)||T~Y < b(p, A).

Our next corollary may be roughly stated as asserting that as p—1
or p~»oo, all almost Huclidean subspaces of L* are badly complemented.
It follows that the function g, necessarily depends on p (near infinity),
and also gives some information concerning the following definition and
question raised by Retherford and Stegall [36]: A space X is called sujffi-
ciently Buclidean if there exists a constant C satisfying
(8) for all positive integers, there exists a C-complemented C-isomorph

of 1 contained in X.

Let us call the sufficiently-Eudlidean constant of X, the infimum of
the numbers C satistying (3). The question is raised in [35] as to whether
or not every reflexive space is sufficiently Buclidean. We do not know
the angwer; however our next result shows that the sufficiently-Euecli-

_dean constants of L” tend to infinity as p—oco or p—1; thus there is

no universal ¢ which satisfies (3) for all sufficiently-Euclidean spaces.

COROLLARY 3.4. Given K and N, there emists an ¢ > 0 and k, so that
if p—l<<e of 1p< e 1< p< oo, then if B is a subspace of L* with
dimEB = k.ond d(1, 1) < K, any projection from L* onto B has norm at
least as big as N. ‘

Proof. We first consider the case. of large p. It is known that
o(B) = VEV3r for all b (ct. [38]). Now choose k, so that Vi/V2n-1/AK
= N and let n = M(k, 2) bo defined as in Theorem A. Choose &, 8o that
1/p< e implies ='”<2. Suppose that EcIL? and 1/p<e and
a(B, B) < K. By Theorem A, we may choose a subspace F of L? with
a(F, 10)< 2, with F > F. Since d(i7, 1°) < n*? < 2, it follows that there is
a subspace Jj of 12 with (B, B) < 2. Hence d(Z, i) < 2K, whence

Vi
Vor 2K
and consequently if P is any projection from F onto B, then

VE
JIe————1
‘ dlis VomdK
The proof for the case of p close to one is almost identical. By a Theo-
rom of Grothendieck [167] (cf. also [24]), it follows that there is an absolute
constant ¢, so that it B is any k-dimensional subspace of L', then if P

is a projection from L' onto B,

o(@) =
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Choose %, so that ¢’ ]/7?/4K =N and put n = M(k, 2). Next chooge & >0,
g0 that p—1 < & implies #*~# < 2. Then the same argument ag above
yields that any projeetion from I* onto H has norm at least N, if p —1 < 2
(one needs, of course, that d(1?, L) < n*~),

Remark 3. It follows from a recent result due to Gordon, Lewis
and Retherford (cf. [14], Section 5) that there exists an absolute con-
gtant ¢ > 0 independent of p, such that if @ is a projection from IP
onto & A isomorph of ¥ then

13
191l = 0x™ (ma.x (p, ;&]—)) for A>1 and 1<p< oo

It 1 < p < §, then there are uncomplemented subspaces of L?, which
are isomorphic to a Hilbert space (cf. [36]). Hence Theorem B fails for
1< p<g and probably for all 1< p< 2. However the next two results
show that for all 1< p < co there are in L? very many nicely complemented
almost BEuclidean subspaces. A slightly weaker result that omr Theorem
3.1 was announced by Milman [30].

TEBOREM 3.1. Let 1< p < oco. There ewists an absolute constant XK,,
so that if B < L® is isomorphic to 1* then T contains o K. p-complemented 1 m
L? a K,-isomorph of .

Proof. Let (,) be an unconditional basis for L?, with unconditional-
basis-constant U,. It follows from the result of [2] that it suffices to
prove the assertlon of Theorem 3.1 for spaces & spanned by a block basis
(¢;),0f (b,). Now first let 2 < p. Following James [19] (cf. also [11] for
a fixed & with 0<<e<1 we define an increasing sequenoe (%,) of the indices

and a sequence of scalars (#;) so that if g, = 2
Jelty g1

aflde)

a;¢; then

a(l—s) < lig,l <

H o,e,” p-] a(l‘we) (1‘%‘1 IOII”)M

and
for all o511y Opigy e
Jomltyp1 o
where

(4) « = 1igxinf{]|§’oje,”: Zw‘ It =1}.

It follows by an argument of James [19] that if we put ¢, = g,/|lg,|| for

all » then
D e e

for all scalars a,.

icm
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It is a general fact about I? (cf. [22]) that

(x) there is a constant B, depending only on p, so that if (z,) is an
unconditional normalized basic sequence in I? with unconditional
constant u, then |3 a,2)| < Byu (3 |a, 19

Hence since (y,) is a block bg.sis of (¢;) and hence of (b,),

1-te
B
o Dot

a1 B) <

and so the desired conclusion follows from Theorem B.

For 1< p<2, wo again observe that by James’ argument [19]
(veplacing in (4) “int” by “sup”), for given 0 < ¢ < 1 there exists a nor-
malized block bagis (y,) of (¢) so that

Y 1+e ¢, 2)1/2
UZ Y| ST (2'“"'
for all scalars a,.

Now it is & general fact about L for 1 <p <

2 that

(x) there exists an absolute constant B, so that if (z,) is a norn}a,_lized
uneonditional basic sequence in the space with unconditional
constant u, then (3 |a,19)' < Bu|| 3 a,2 for all scalars a, (cf. [8]).

1 .
Hence the space [y,] is a 1tz Bu-isomorph of .

Now let Bl, By, ... be digjoint finite subsets of the positive integers
such that y, = 3 b, for all » and certain sealars ¢;. For each v, let P, be
JjeB,

the projection of "L* onto [%)je5, annibilating b; for all j¢B,, and let
@, be a projection from [b,]; 5, onto the one dimensional space spanned
by the g,, with |@,|| = 1. We shall show that P = 3'@,P, yields the de-
sired projection. Let wel®. Then ZP (w) converges unconditionally and

P,(#)
moreover (3 1P, (w4 < u, B (wo apply (+) to the sequence (m)).
But since Q,P,(w) == Ay, for some scalar 4,, for all »
(380" < (3 12, @)1 < u, Bl
= Y 2,9, convetges and moreover

| 302, (@)| < upB o,
henee [¥,] is u,B-complemented. Q.H.D.

Hence »'@,P,(w)
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Remark 4. The proof for 1 < p < 2 shows that Theorem 3.1 general-
izes as follows: its conclusion holds for any Banach space X with an
unconditional basis, such that the space satisfies (sx). In partieular X
satisties (+#) if it has the Orlioz property (cI [8]), i.e.: There exists a con-

stant Oy such that
Ox ‘*:TPJ ”;1 & ”f“

) legl?)" <
for all #,, @y,..., %, in X and for n =1,2,...

‘We note that the example of I' shows that this generalization is not
localizable. Since L' hag the Otliez property (cf. [32]) and no infinite
dimensional reflexive subspace of L' is complemented in L' (cf. [15],
[33]), this yields yet another proof that L' has no unconditional basis.

We end this paper by discussing a local analogue of Theorem 3.1.
We introduce the property of a space stronger than that of its being
sufficiently-Euclidean.

DerinrrroN. Let X be an infinite dimensional Banach space. We say
that X is locally n-Buclidean if there is a A > 0 so that for all & and & > 0,
there is an N = Nx(k, &) such that every N dimensional subspace of
X contains a (1 -e)-isomorph of % which is A-complemented in X.

Let us observe that in view of Dvoremky 8 theorem on. almost spheri-
cal sections [9], [31] a Banach space X is locally m-Buclidean if there
exist a 2> 0 and a funetion %-»N(k) such that every 2-isomorph of
Bygy in X containg a #-dimensional subspace which is i-complemented

-in X,

THEOREM 3.2. If 1< p << oo then L* is locally w-Buclidean.

For co>p > 2 the above result follows immediately from Theo-
rem B. For 2 > p > 1 Theorem 3.2 can easily be deduced from Theorem
2.2 and from the final paxrt of the argument of the proof of Theorem 3.1.
However we present here yet another approach which admits some
.generalization.

Lmmwma 3.3, Let 1 < p < oo, Then there is an absolute constant Uy (== the
unconditional constant of the Haar basis) so that given 1> 6> 0 and @ pos-
vy fy im LP are

elements of morm one with H Z‘cij

=] ma.x l&g] for all scalars ¢y, 6qy ...y Oy
=

then there dre 1 <
Jor all i, then

My < My < < Mgy, K W 80 that putling e; = fon,, —~Fmy

(4)

k
(e
4wl

y G and all choices of --:

i
\

< Suj,H/}J GMH
4],

Jor all scalars ¢y, ¢,, ...

icm
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Proof. Assume to the confrary that there exist 6 > 0 and a positive
integer k such that for each m =k thers are fI,..., f* which provide
counter-examples. In the space I, of all eventua.lly ZOro sequences we

define a sequence of pseudonorms by [(e,)l, = HZ‘GJ?H for (¢;) e F, and
fmal

for # =1,2,... Then there existy a subsequence (n;) such that for all
() ey, limli(e))lly, exists. This follows by a standard compactness

argument using the observation that for every (¢) < F, for almost all n-we
have

3
dsup o < el < e
" qma],
Now let 7 be the completion of I, with respect to the norm ||-|| defined
by (el = 1i;n1|(0¢)ﬂq,- ‘

Since local isometric embeddibility in L? implies global one (cf. [3],
[247), it Lollows that B i3 isometric to a subspace of L? (because the spaces
(Fq, ||I'll,) have the same property).

Let b =(0,...,0,1,0,. )fory——lz

j-th place
< by~ byll for ¢ 4 (i,§ = 1,2, ...). Hence the facts that H is isometric
10 a subspace of L” and that L” has an unconditional basis for 1< p< o0
yield the existence of an increasing sequence of indices (m,,). ’such
that (by,, —bum,,_,) 18 a0 unconditional bagic sequence with unconditional
consta.nb « 2u, where u, i3 the unconditional constant of the Haar
bagis in L? (cf. [2] and [25]). Now pick 5 > my, so large that for all scalars

0y C
R My ke Mgk Mk
2 3 etz 3 il 1] Y ol
FJmal Jeml I=1

(Tt follows from the definition of the norm |||} and a standard eompa,ctgess
argument that such ann exists.) Thenforall ¢, 6y, ..., ¢, and for all choices
of - we have

H (’i fnu.,; me 1)“ HZ ik (f(bmm

. Clearly [yl =1 and

°? omzlr

%wﬁiwwm%wQMQMMwwm
At =

|

< B,

I -

)
N 0Ty Fi)
i=1

,ft. QED.

%
{2; Gt(bmzt - bwm_]‘) I" == 8/”’1)

which contradiets the choice of ff, ...
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Proof of Theorem 3.2 for 1< ¢q< 2. Let T be a subgpace of I¢
of dimension # = n (EQT , I, %) where » i that of Lemma 3.3. Assume

that ¥ is a 2-isomorph of 2. Hence there are in B vectors g, ¢, e G
such that for all scalars a,, a,, ..., a,

% Y/ Sl Saal<a)/ Siar
I=1 j=1 j=1

., ‘
In partioular |a;) < || 3 ayg,] for all 4. Hence, by the Hahn-Banach exten-
=1

sion principle, there are fi,fs,...,f, in LF, with p = ;Zg—l— such that

1 T .
Ml =1 and o = [gfydt for g = YageB  (j =1,2,...,n).
0

=1
Clearly if 4 s~ j, then,

1

: 2
22 Wemfil > o=l | [les =) )t > m > 5

Thus our specification of n and Lemma 3.3 yield the existence of
indiees my << my < ... < My, such that the sequence (€)1ciqn Satisties (4)
where ¢, :__me ~fmgsy 0 =1,2,..., k). Let us set F = [y hicr
Clearly F is a 2-isomorph of 7. Define the projection P: L¢—+F by

ko1
Py = > [gedt-g; for geI?.
=10
For fixed geL? pick & eF* so that |&*| =1 and & (Pg) = |Pgl|. Let
E" (gmgy) = ¢ for ©=1,2, ...,k It follows from (5) that
k
(o) < 216%) = 2.
=1

Next recall that it p > 2 then there exists an absolute constant K,
such that for all ¢y, p,,..., 9, in L? and m =1,2,..

DTN (g": Il

for some choice of sequence (&)1csem Of 8igns (cf. [21], [22]). Combining
the above two inequalities with (4) we get for an auxiliary choice of

icm®
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: 1
8igns (&)icicn

Pyl = & (Pg) =| f ( f,‘ a; ;) gdi|
0

=1

< ngnaHZkam p< 8ty g1l | Zke.vafe,-!
=1 . ! i=1

»
& 1/2
< 8E,u, gl ( 3 laal? lealid] " < 32K, u, gl
=1

Hence [P| < 32K,u,. Q.E.D.

Remarks. 1. The above proof shows in fact that every subspace
of a quotient of L (1 < ¢ < 2) is locally #-Buclidean. For this note that
the dual of a quotient of L? is a subspace of I for some p > 2.

2. Applying the Brunel-Sucheston [4] technique which uses the
Ramsey theorem, one ean prove an analogue of Lemma 3.3 for arbitrary
Banach spaces. This allows one to generalize the part 1< p< 2 of
Theorem 3.3 as follows )

Let X be an infinite dimensional Banach space whose dual X* has
the Following property: there ewists a constant Kx. such that for amy o,
Dy eey @y in X and m =1,2,...,

| S| < e S

Sfor some choice of a sequence (&) <jcm of signs. Then X dis locally n-
Buclidean.

fl
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