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for sufficiently large b. This implies that for some ¢, and 0 < fe Ly (Y)
With |fle > 0, Tyy14 > f. Corollary 2 implies that

b
1 1/
mn—fﬂuww>nmmjﬂﬂmm¢o,
btoo b H bioo b b

10
since <1, z—fl’:‘f(x)dt> =1, f> % 0 for any b > 0.
o ,

(i) =(itl) and (iv)=(v) follow from Fatoun’s lemma, and (iii)=(iv)
is obvious.

(v) =(i): It may be readily seen from Lemma 3 and [4], Theorem 5.3,
that there exists a function fe Ly (Y) with f> 0 on ¥ and 7,f> f for
any ¢ > 0. Let

b
1
= gtrong-lim-— [ T, E ) = X —s
¢ = strong 7)1‘:2175[ Jfdt  and B = X-—supp g.

It is clear I?hat Tig =g for all ¢> 0 and ¥ < Z. Since T}lye Ly, (H) for
all ¢>0, ')folE(w)dt =0 on X—H for any b > 0. This together with
the fact that s = 0 on Z implies that

1] '
1 : :
lm—fﬂhmm=0m.
bTmbO

(v) implies m(®) =0, and the proof is complete.
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Local eigenvectors for group representations
by
ELLIOT ¢. GOOTMAN (Athens, Ga.)

Abstract. We prove that every unitary representation V of a group @ has a local
eigenveetor (L.e, o common eigenvector for all V(g), ¢ ranging over a neighborhood -
of the identity) if and only if ¢, the connected component of the identity, is compact
and abolian, It follows as a simple corollary that for 6 compact and abelian, cocycle‘
reprogontations of G also have local cigenvectors. The proof uses Mackey’s little group
mothod.

Let V be a unitary or cocycle representation of a locally compact
group G on a Hilbert space . A non-zero vector x in o is a local eigen- -
vector (regpectively, local fixed point) for V if 4 is a common eigenvector

(respectively, fixed point) for all the unitary operators ¥ (g), as ¢ ranges

over some neighborhood of the identity ¢ in ¢. It is known that all unitary
representations of ¢ have local fixed points if and only if G is totally
disconnected. We extend this result by proving that all unitary repre-
gentations of G have local eigenvectors if and only if @,, the connected
component of the identity, is compact and abelian. The proof uses a pre-
liminary lemma that in fact all cocycle representations of totally discon-
nected groups have local eigenvectors, and as a simple corollary to the
main theorem we show that indeed so do all cocycle representations of
group @G with @, compact and abelian. These results have application
in determining the structure space of certain (*-algebras associated
with transformation groups ([3], Theorem 4.4).

As the proof of the main theorem involves application of Mackey’s
little group method, we assume that all groups are second countable and
all Hilbert spaces are separable. All unitary representations are continuous
and all cocyele representations are Borel. A cocycle representation with
coeycle a will be called simply an a-representation. For terminology and
basic results on cocycle representations we refer the reacer to [1], Chapter I,
Section 4. Throughout the paper we shall use without further explicit
mention the simple observations that a local eigenvector for a unitary
or cocycle representation V i3 a common eigenvector for all V(k) as &
ranges over some open subgroup eontaining G, and that if «, the cocycle
of V, is.cohomologous on an open subgroup K to & cocycle o’ of K it suffices,
in order to prove the existence of local eigenvectors, to replace V by the
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o'-representation of K given by (xV) (k) = x(k)V (k), where x iy such that

I k
o (kg Top) = lﬁ{%)i) a(ly, T).

LrmmA. Bvery cocycle representation V of o lotally disconnected group
G on a Hilbert space has a local gigenvector.

Proof. It follows from Theorem 1.1 of [2], the theorem in [7],
Chapter 2.3, and the above remarks that we need only consider an a-repre-
sentation W of a compact open subgroup K of ¢, where a is a continuous
cocycle. W decomposes as & direct sum of tinite-dimensional a-representa-
tions and. it clearly suffices to verify that one of these finite-dimensional
components has a local eigenvector. By the theorems in [2], top of page 10,
and [7], Chapter 2.3, we are reduced to considering a unitary representation
of a compact open subgroup L of K. As L is totally disconnected, ity
unitary representations have local eigenvectors.

THBOREM. Bvery unitary represewtation of G on a Hilbert space has
a local eigenvector if and only if G, is compact and abelian.

Proof. (=) It will sutfice to assume only that the left-regular repre-
sentation V of & on I*(@), and all its subrepresentations, hawve local

eigenvectors. As the closed linear span of the set of all local eigenvectors

is clearly G-invariant, it is therefore all of I*(@).

Furthermore, sin¢e two eigenvectors for a unitary operator V(g)

with distinet eigemvalues are orthogomal, it follows that I?(¢) decom-
poses as & direct sum of mutually orthogonal subspaces, each invariant
under Vg, , the restriction of ¥ to @y, and on each of which V(g) = y(g)I
for ge@, and some character y on G,. Thus V(g,g,) = V(g.) V(ga)
= V(¢) V(gy) = V{gagy) for all gy, g, G, and since V separates points of
G([4], page 130), G, is abelian. That G, is also compact follows from the
" fact that there is a common eigenvector for the restriction of V to some
open subgroup K. I*(@) = %’{@Lﬂ(ffg) and as each subgpace is invariant

under K, some I*(Kj), je G\ K, has a common eigenvector for V|g. Vg
on I*(Kg) is unitarily equivalent, however, to V|, on I}(K), so the
left-regular representation of K has a one-dimensional invariant gubspace,
XK is compact ([5], Corollary to Theorem 8.2) and so0 is G4 © K.

(<) Let ¥ be a unitary representation of G on #. The totally disecon~
nected group G/@, has a compact open subgroup whose inverse image
(under the natural map G¢—@/G,) is a compact open. subgroup K of ¢
containing ¢,. V|; decomposes as a direct sum of finite-dimensional
irreducible subrepresentations and we prove that each of these subrepresen-
tations has a local eigenvector by using Mackey’s little group method
to analyze irreducible representations of K in terms of the closed normal
type I subgroup @, and certain cocycle representations of subgroups
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of K[G,. Accordingly, let = be an irreducible representation of K. As K
is compact and the dual group (}0 of G, is discrete, orbits of K in G‘o are
finite and the isotropy subgroup H, of an element ye éo is open, with
K = H,2 6, Thus ([6], Theorem 8.1) # is induced from an irreducible
representation o of H,, for some ye éo, and ([6], Theorem 8.3) ¢ is the
tensor product of a certain cocycle representation = of H,/ @, and an
extension of y to a cocycle representation 7 of H,. As 7 is one-dimensional.
and H,~ @, is totally disconnected it follows from our lemma that o has
a local eigenvector «. The function f: K— the Hilbert space of o, defined
by f(k) = o(k)~ . for ke H,, f(k) = 0 for k¢ H,, is then a local eigen-
vector for the induced representation = (recall that H, is open in K) and
we are done. i

As a consequence of the above theorem, we have the following

COROLLARY. Let a be a cocycle on G. Every a-representation of G on’
a Hilbert space has a local eigenvector if and only if @, is compact and abelian.

Proof. (=) This part of the proof is similar to that of the theorem
and as theve, it suffices to assume only that thé left-regular a-representa-
tion V of & on I*(@) (see [2], p. 12 for a definition) and all its subrepres-
entations have local eigenvectors. As before, this implies that V (gy) V (gs)
= V(g,) V(g:) for g, g,eGy. From this fact, however, we can deduce
only that ¥ (g,g,) is a scalar multiple of V(g,g,), but the method of proof
in [4], p. 130, yields g, 9, = ¢.9, in this case also, so @, is abelian. Again
as before, the left regular o-representation of an open subgroup K on I*(K)
has a common eigenvector. But then « is a coboundary on K, the left-
regular a-representation is unitarily equivalent to the left-regular unitary
representation, and we are done.

(=) Every cocycle on a compact connected abelian group is a cobound-
ary ([9], §29, [8], Theorem 2.1 and Proposition 2.1) and the group
extension of T by @,, defined by the cocycle a, is isomorphic to the direct
product group T x @,, which is clearly compact and abelian (see [1],
Chapter I, Section 4). Let B denote the group extension of T by &, defined
by the coeyecle «. It follows from the continuity of the homomorphisms
Tl and H-@G that E, is a subgroup of the extension of T by G, so
By iy compact and abelian. In fact, H, is isomorphic to the extension
of T' by @, since this latter group is connected. By our theorem, every
unitary representation of ¥, and hence in particular every a-representation
of @, has a local eigenvector.
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On commutators of singular integrals*
by
CALIXTO P. CALDER ON* (Minneapolis, Minn.)

o
Abstract. The commutator v.p. f E%Lt;/%@/—)g(y)da =T(F", g) as well ag
oo !
ity m-dimensional generalizations are treated through this paper. The previous
known results stated that if ge I?, F’(x)e L2, with 1/p+1/g < 1, then |T'(F’, g)lir
< OpgllT"llgllgllps 1/r = 1/p-1/q. Here it is presented the following novelty: that the
restriction 1/p+1/g < 1 is not any longer necessary. We face the cases 1/p+1/g> 1,
obtaining as expected the same inequality in this situation.

0. Introduction. The purpose of this paper is to extend and generalize’
the results proved in [1] and [3].
We shall be concerned with singular integrals of the type

(0.1) pev.

~ —F
f M!](y)d?/ = T(F, g)

2 (e—y)p
and their n-dimensional generalizations. Here, F (m) stands for a function
having a derivative in the distributions sense in the class L% ¢ stands
for a measurable function belonging to a clags L”.

11 1 1
It -p——}-~é—<1, l1<p<oo, 1< ¢g< oo and 7 iy given by 7::?4—

—|~-§o'—; then I'(F', g) exists in I"™-norm and pointwise a.e., see [1] and [3].
Through this paper the condition 1/p-+1/¢< 1 is relaxed to the
following omne: '

(0.2)

1 1
7 r 7 oo,

I<gg oo, 1l<ps oo, Z9._|,Hq. =
The condition r 7 oo means that p and ¢ cannot be infinity simultaneously.

Under the condition (0.2) we show that the operator defined in (0.1)
exigts as a principal value in the metric L" (notice that r can be less than

* The author was partially supported by NSF Grant No. GP-15832.
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