icm

Literatur

- M. S. Budjanu und I. Z. Gochberg, Allgemeine Sätze über die Faktorisierung von Matrixfunktionen. I-II, Matematičeskije issledovanija, III: 2 (1968), S. 87-103 und III: 3 (1968), S. 3-18 (russ.).
- [2] V. B. Dybin, Der Ausnahmefall einer paarigen Integralgleichung vom Faltungstypus, Dokl. AN SSSR, 176, N° 2 (1967), S. 251-254 (russ.).
- [3] I. Z. Gochberg und I. A. Feldman, Faltungsgleichungen und Projektionsverfahren zu ihrer Lösung, Moskau 1971 (russ.).
- [4] I. Z. Gochberg und V. I. Levtschenko, Über die Konvergenz eines Projektionsverfahrens zur Lösung einer entarteten diskreten Wiener-Hopf-Gleichung, Matematičeskije issledovanija, VI: 4 (1971), S. 20-36 (russ.).
- [5] Über ein Projektionsverfahren für eine entartete diskrete Wiener-Hopf--Gleichung, ibidem VII: 3 (1972), 238-253 (russ.).
- [6] I. Z. Gochberg und S. Prößdorf, Ein Projektionsverfahren zur Lösung entarteter Systeme von diskreten Wiener-Hopf-Gleichungen, Math. Nachr. 65 (1975).
- [7] N. K. Karapetjanz, Die diskrete Gleichung vom Faltungstypus in einem Ausnahmefall, Sibir. math. jour., XI, No 1 (1970), S. 80-90 (russ.).
- [8] S. Prößdorf, Über eine Klasse singulärer Integralgleichungen nicht normalen Typs, Math. Ann. 183 (1969), S. 130-150.
- [9] Die singuläre Integralgleichung mit einem Symbol, das in endlich vielen Punkten verschwindet, Matematičeskije issledovanija, VII: 1 (1972), S. 116-132 (russ.).
- [10] Über Systeme singulärer Integralgleichungen mit verschwindendem Symbol, ibidem VII: 2 (1972), S. 129-142 (russ.).
- [11] Zur Lösung eines Systems singulärer Integralgleichungen mit entartetem Symbol. Elliptische Differentialgleichungen, Bd. I, S. 111–118, Berlin 1970.
- [12] Einige Klassen singulärer Gleichungen, Berlin 1974.
- [13] S. Prößdorf und B. Silbermann, Über die normale Auflösbarkeit von Systemen singulärer Integralgleichungen vom nicht normalen Typ, Math. Nachr. 56 (1973), S. 131-144.
- [14] Ein Projektionsverfahren zur Lösung singulärer Gleichungen vom nicht normalen Typ, Wiss. Zeitschrift der TH Karl-Marx-Stadt XVI: 3 (1974), S. 367-376.
- [15] Ein Projektionsverfahren zur Lösung abstrakter singulärer Gleichungen vom nicht normalen Typ und einige seiner Anwendungen, Math. Nachr. 61 (1974), S. 133-155.
- [16] G. N. Tschebotarev, Über die normale Auflösbarkeit von Wiener-Hopf-Gleichungen in einigen Sonderfällen, Izvestija vysš. učebn. zaved, Mathematika 3 (1968), S. 113-118 (russ.).
- [17] A. Zygmund, Trigonometric series, volume I, Übers. ins Russ., Moskau 1965.
- [18] D. Przeworska-Rolewicz and S. Rolewicz, Equations in linear spaces, Warszawa 1968.

Received November 11, 1973 (753)

On non-separable Banach spaces with a symmetric basis

STUDIA MATHEMATICA, T. LIII. (1975)

b:

S. L. TROYANSKI (Sofia)

Abstract. In this paper equivalent norms in non-separable Banach spaces with a symmetric basis are considered. The results obtained indicate the impossibility of a natural extension to the non-separable case of certain theorems valid for separable Banach spaces with an unconditional basis.

1. Introduction. James (cf. e. g. [6], p. 152) proved that any non-reflexive Banach space with an unconditional basis contains a subspace isomorphic either to c_0 or l_1 . Later on Bessaga and Pełczyński (cf. e. g. [6], p. 155) extended that result to non-reflexive subspaces of spaces with an unconditional basis. Lindenstrauss and Tzafriri [3] studied the Orlicz spaces l_M and proved that any l_M contains a subspace isomorphic to l_p for some $p \ge 1$. Lindenstrauss [5] showed that every separable space with an unconditional basis can be isomorphically embedded in some separable space with a symmetric basis.

In this paper we deal with the question of the existence of equivalent norms which are uniformly convex or uniformly smooth in every direction, in Banach spaces with a symmetric basis. It turns out that this question is closely related to that of the existence, in such spaces, of subspaces isomorphic to $c_0(\Gamma)$ or $l_1(\Gamma)$ for some uncountable Γ . As a corollary it results that the above-mentioned theorems of James [6], Lindenstrauss—Tzafriri [3] and Lindenstrauss [5] admit no natural extension to the non-separable case.

In particular, we shall show that a non-separable Banach space X with a symmetric basis admits an equivalent norm which is uniformly convex in every direction (resp. uniformly smooth in every direction) iff X is not isomorphic to $c_0(T)$ (resp. to $l_1(T)$) for some uncountable set T.

2. Definitions and notations. Let X be a Banach space and let Γ be an abstract set. A function $w(\gamma)$ defined on Γ with values in X is said to be unconditionally summable to $x \in X$ if for any $\varepsilon > 0$ there exists a finite set $B \subset \Gamma$ such that for every finite set $A \subset \Gamma$ with $A \supset B$ we have

$$\left\|\sum_{\gamma\in\mathcal{A}}w(\gamma)-x\right\|<\varepsilon.$$

icm©

The element x will be written as $x = \sum_{\gamma \in \Gamma} w(\gamma)$ and the series $\sum_{\gamma \in \Gamma} w(\gamma)$ will be said to converge to x unconditionally.

A function $u(\gamma)$ defined on Γ with values in X is called an *unconditional basis for* X if for any $x \in X$ there exists a unique real-valued function $\varphi_x(\gamma)$ defined on Γ and such that the series $\sum_{\gamma \in \Gamma} \varphi_x(\gamma) u(\gamma)$ converges to x unconditionally. In the sequel we shall write rather $\{u_\gamma\}_{\gamma \in \Gamma}$ instead of $u(\gamma)$. The symbol X^* denotes the *conjugate space* of X and $\{u_\gamma^*\}_{\gamma \in \Gamma}$ is the system in X^* conjugate to the basis $\{u_\gamma\}_{\gamma \in \Gamma}$, i. e. $u_\gamma^*(u_\beta) = 0$ for $\gamma \neq \beta$, $u_\gamma^*(u_\gamma) = 1$.

Bases $\{u_{\gamma}\}_{\gamma\in\Gamma}$ and $\{v_{\gamma}\}_{\gamma\in\Gamma}$ in space X, resp. Y, are called equivalent if there exists a bounded linear operator $T\colon X\to Y$ with a bounded inverse and such that $Tu_{\gamma}=v_{\gamma}$ for all $\gamma\in\Gamma$. Note that this is the case if and only if the series $\sum_{\gamma\in\Gamma}a(\gamma)u_{\gamma}$ and $\sum_{\gamma\in\Gamma}a(\gamma)v_{\gamma}$ are simultaneously convergent or divergent, for any real-valued function $a(\gamma)$ defined on Γ .

An unconditional basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is called *symmetric* if for any two sequences $\{a_i\}_{i=1}^{\infty}$ and $\{\beta_i\}_{i=1}^{\infty}$ in Γ the bases $\{u_{a_i}\}_{i=1}^{\infty}$ and $\{u_{\beta_i}\}_{i=1}^{\infty}$ are equivalent.

By $c_0(\varGamma)$ we denote the space of all real-valued functions $x(\gamma)$ defined on \varGamma and such that for any $\varepsilon>0$ the set $\{\gamma\colon |x(\gamma)|>\varepsilon\}$ is finite; $\|x\|=\max_{\gamma\in \Gamma}|x(\gamma)|$. An equivalent norm has been defined by Day [1]:

$$D(x) = \sup \left[\sum_{i=1}^{m} 2^{-i} x^{2}(a_{i}) \right]^{1/2},$$

where the supremum is taken with respect to all finite subsets $\{\alpha_i\}_{i=1}^m \subset \Gamma$. For $x \in c_0(\Gamma)$, let $\sigma(x)$ denote the sequence $\{\gamma_i\}_{i=1}^N \subset \Gamma$ (N an integer or infinity) such that $|x(\gamma_i)| \ge |x(\gamma_{i+1})| > 0$, i = 1, 2, ..., and $x(\gamma) = 0$ for $\gamma \notin \sigma(x)$. It can easily be seen that

$$D(x) = \left[\sum_{i=1}^{N} 2^{-i} x^{2} (\gamma_{i})\right]^{1/2}.$$

A continuous convex function M(t) on $[0, \infty)$ is called an *Orlicz function* if M(0) = 0 and M(t) > 0 for all t > 0. With every Orlicz function M(t) we can associate an *Orlicz space* $l_M(I)$ consisting of all real-valued functions $x(\gamma)$ such that for some t > 0 the function $M(|x(\gamma)|/t)$ is unconditionally summable in γ ;

$$||x|| = \inf \left\{ t > 0; \sum_{\gamma \in \Gamma} M\left(|x(\gamma)|/t\right) \leqslant 1 \right\}.$$

If $M(t) = t^p$, $p \ge 1$, we write $l_x(\Gamma)$ instead of $l_{\ell^p}(\Gamma)$. If Γ is countable, we write c_0 and l_p for $c_0(\Gamma)$ and $l_n(\Gamma)$.

Let $\chi_{\gamma}(\beta)$ be the function on Γ defined by $\chi_{\gamma}(\beta)=0$ for $\beta\neq\gamma$, $\chi_{\gamma}(\gamma)=1$. The function $e(\gamma)=\chi_{\gamma}$ can be regarded as a function defined in Γ with values in $c_0(\Gamma)$ or $l_M(\Gamma)$. Observe that $e(\gamma)$ is a symmetric basis in $c_0(\Gamma)$ and $l_M(\Gamma)$ if $\lim_{t\to 0}M(2t)/M(t)<\infty$. The basis $\{e_{\gamma}\}_{\gamma\in\Gamma}$ is called the natural basis for $c_0(\Gamma)$ and $l_M(\Gamma)$. $\{e_{\gamma}^*\}_{\gamma\in\Gamma}$ will denote the system conjugate to $\{e_{\gamma}\}_{\gamma\in\Gamma}$.

The norm of a Banach space X is called uniformly convex in every direction if the conditions:

 $\|x_n\|=\|y_n\|=1, \quad x_n-y_n=\lambda_n z, \quad \lim_{n\to\infty}\|x_n+y_n\|=2, \quad x_n,\, y_n,\, z\, \epsilon\, X$ imply

$$\lim_{n\to\infty}|\lambda_n|\,\|z\|\,=\,0\,.$$

The norm of X^* , the conjugate space of X, is called weakly* uniformly convex if the conditions:

$$||f_n|| = ||g_n|| = 1, \quad \lim_{n \to \infty} ||f_n + g_n|| = 2, \quad f_n, g_n \in X^*$$

imply

$$\lim_{n\to\infty} (f_n(x) - g_n(x)) = 0$$

for all $x \in X$.

The norm of a Banach space X is called [uniformly] smooth (in every direction) if for any $x, y \in X$ with ||x|| = ||y|| = 1

$$\lim_{\tau \to \infty} (\|x + \tau y\| + \|x - \tau y\| - 2) = 0$$

[uniformly in x].

For Banach spaces X, Y, $X \times Y$ will denote their product with the norm $\|(x, y)\| = (\|x\|^2 + \|y\|^2)^{1/2}$.

3. In this section we construct an equivalent norm and investigate its properties.

PROPOSITION 1. Let T be a linear operator mapping a Banach space X into $c_0(\Gamma)$ with some Γ in such a way that for any $\varepsilon > 0$ there exists an integer $k = k(\varepsilon)$ such that for all $x \in X$ $||x|| \le 1$, the set $\{\gamma \colon |e_\gamma^*(Tx)| \ge \varepsilon\}$ contains at most k elements. Then if

(1)
$$|||x_n|| = |||y_n||| = 1, \quad \lim_{n \to \infty} |||x_n + y_n||| = 2,$$

then for any $\gamma \in \Gamma$ we have

$$\lim_{n\to\infty}e_{\gamma}^*(Tx_n-Ty_n)=0,$$

where $|||x||| = (||x||^2 + D^2(Tx))^{1/2}$ and $\{e_{\gamma}^*\}_{\gamma \in \Gamma}$ is the conjugate system to the natural basis of $c_0(\Gamma)$.

The proof will be proceded by a lemma concerning the norm D(x)in $c_0(\Gamma)$.

LEMMA 1. Let $x \in C_0(\Gamma)$, $\sigma(x) = \{\gamma_i\}_{i=1}^N$ and $|x(\alpha)| > \sqrt{2} |x(\gamma_i)|$. Then

$$D^2(x) \ge D^2(x - \xi e_x) + 2^{-j} \xi^2$$
.

where $\xi = x(\alpha)$.

Proof. Let $\alpha = \gamma_m$. Clearly, m < j. Thus

$$\begin{split} D^2(x) &= \sum_{i=1}^{m-1} 2^{-i} x^2(\gamma_i) + \sum_{i=m+1}^{N} 2^{-i} \big(x^2(\gamma_m) + x^2(\gamma_i) \big) \\ &\geqslant \sum_{i=1}^{m-1} 2^{-i} x^2(\gamma_i) + \sum_{i=m+1}^{j-1} 2^{-i} \big(x^2(\gamma_m) + x^2(\gamma_i) \big) + \\ &+ \sum_{i=j}^{N} 2^{-i} \big(x^2(\gamma_m) + x^2(\gamma_i) \big) + 2^{-j} x^2(\gamma_m) \\ &\geqslant D^2(x - \xi e_{i,m}) + 2^{-j} x(\gamma_m). \quad \blacksquare \end{split}$$

Proof of Proposition 1. Observe that

$$2\left(|||x_n|||^2+|||y_n|||^2\right)-|||x_n+y_n|||^2$$

$$= \left[2\left(\|x_n\|^2 + \|y_n\|^2\right) - \|x_n + y_n\|^2\right] + \left[2\left(D^2(Tx_n) + D^2(Ty_n)\right) - D^2(Tx_n + Ty_n)\right].$$

Since the expressions in the square brackets are non-negative, thus by (1)

(2)
$$\lim_{n\to\infty} \left[2 \left(D^2(Tx_n) + D^2(Ty_n) \right) - D^2(Tx_n + Ty_n) \right] = 0.$$

Suppose that the assertion of the proposition is false. Then without loss of generality we may assume that there exist $\alpha \, \epsilon \, \Gamma$ and $\delta > 0$ such that

(3)
$$|e_a^*(Tx_n - Ty_n)| \geqslant \delta, \quad n = 1, 2, \dots$$

We shall show that

$$\overline{\lim}_{n\to\infty} |e_{\alpha}^*(Tx_n + Ty_n)| > 0.$$

Suppose the contrary, i.e.

$$\lim_{n\to\infty}e_a^*(Tx_n+Ty_n)=0.$$

Choose n_0 such that

$$|e_a^*(Tx_n+Ty_n)| < \frac{1}{2}\delta \quad \text{for} \quad n > n_0.$$

From (3) and (6) follows

$$|e_a^*(Tx_n)| > \frac{1}{4}\delta, \quad |e_a^*(Ty_n)| > \frac{1}{4}\delta \quad \text{ for } \quad n > n_0.$$

Hence, by Lemma 1,

(7)
$$D^2(Tx_n) > D^2(Tx_n - e_a^*(Tx_n)e_a) + 2^{-k-5}\delta^2$$
 for $n > n_0$,

$$(8) \qquad D^{2}(Ty_{n}) \geqslant D^{2}\left(Ty_{n} - e_{a}^{*}(Ty_{n})e_{a}\right) + 2^{-k-5}\delta^{2} \quad \text{ for } \quad n > n_{0},$$

where $k = k(\delta/4\sqrt{2})$.

It follows from the triangle inequality, the definition of D(x) and from (1) that

We have, by (7), (8), (9),

$$2 \left(D^2(Tx_n) + D^2(Ty_n) \right) - D^2(Tx_n + Ty_n)$$

$$> 2^{-k-3} \delta^2 - (2\sqrt{2} + 1) \|T\| \cdot |e_n^*(Tx_n + Ty_n)| \quad \text{for} \quad n > n_0.$$

But this together with (5) contradicts (2), so (4) is proved. Without affecting the generality we may thus assume that there exists $\varepsilon > 0$ such that for all $n = 1, 2, \ldots$

$$|e_a^*(Tx_n+Ty_n)|>\varepsilon.$$

Let $\sigma(Tx_n+Ty_n)=\{\gamma_{i,n}\}_{i=1}^{N_n}$. By the definition of D(x) we have $2(D^{3}(Tx_{n})+D^{2}(Ty_{n}))-D^{2}(Tx_{n}+Ty_{n})$

$$\geqslant \Big[D^2(Tx_n) - \sum_{i=1}^{N_n} 2^{-i} (e_{\nu_{i,n}}^*(Tx_n))^2 \Big] + \Big[D^2(Ty_n) - \sum_{i=1}^{N_n} 2^{-i} (e_{\nu_{i,n}}^*(Ty_n))^2 \Big] + \\ + \Big[\sum_{i=1}^{N_n} 2^{-i} (e_{\nu_{i,n}}^*(Tx_n - Ty_n))^2 \Big].$$

Since the expressions in the square brackets are non -negative, we have, by (2),

$$\lim_{n\to\infty} \sum_{i=1}^{N_n} 2^{-i} \left(c_{\gamma_{i,n}}^* (Tx_n - Ty_n) \right)^2 = 0.$$

On the other hand, it follows from (10) that $\alpha \in \{\gamma_{i,n}\}_{i=1}^k$, where $k = k(\varepsilon/2)$ for all $n = 1, 2, \ldots$, hence, again by (10),

$$\sum_{i=1}^{N_n} 2^{-i} \left(e_{\gamma_{i,n}}^* (Tx_n - Ty_n) \right)^2 > 2^{-k} \delta^2, \quad n = 1, 2, \dots$$

This contradiction concludes the proof of Proposition 1.

4. In this section we apply Proposition 1 to find necessary and sufficient conditions for the existence of an equivalent norm, uniformly convex (smooth) in every direction, in non-separable Banach spaces with a symmetric basis. As is shown in [2], in any separable Banach space an equivalent norm, uniformly convex in every direction, can be introduced. It is also proved in [2] that in any separable Banach space an equivalent norm can be defined such that the norm of the conjugate space will be weakly* uniformly convex. Shmulyan [7] proved that the norm of a Banach space X is uniformly smooth in every direction if and only if the norm of X^* is weakly* uniformly convex. Thus it follows from [2] and [7] that in any separable Banach space there exists an equivalent norm uniformly smooth in every direction.

It is well known that for any unconditional basis $\{u_{\gamma}\}_{\gamma \in \Gamma}$ there exists a positive constant $c = c(\{u_{\gamma}\})$ such that for any finite system $\{\gamma_i\}_{i=1}^m \subset \Gamma$ and any system $\{a_i\}_{i=1}^m$ of real numbers we have

$$\left\|\sum_{i=1}^m a_i u_{\gamma_i}\right\| \geqslant c \max_{|z_i| \leqslant 1} \left\|\sum_{i=1}^m \varepsilon_i a_i u_{\gamma_i}\right\|.$$

It can be also shown, by the definition of an unconditional basis, that there exists a positive constant $d = d(\{u_{\nu}\})$ such that for any finite systems $\{a_i\}_{i=1}^m$, $\{\beta_i\}_{i=1}^m = \Gamma$ and any system $\{a_i\}_{i=1}^m$ of real numbers we have

(12)
$$\left\| \sum_{i=1}^{m} a_{i} u_{a_{i}} \right\| \ge d \left\| \sum_{i=1}^{m} a_{i} u_{\beta_{i}} \right\|.$$

LEMMA 2. Let $\{u_r\}_{r\in\Gamma}$ be a symmetric basis in a Banach space X. Then either for any $\varepsilon > 0$ there exists an integer k such that for all $f \in X^*$ the sets $\{\gamma\colon |f(u_\gamma)| > \varepsilon\,||f||\}$ contain at most k elements, or the basis $\{u_\gamma\}_{\gamma\in\Gamma}$ is equivalent to the natural basis of $l_1(\Gamma)$.

Proof. Suppose that for some $\varepsilon > 0$ there are sequences $\{f_n\}_{n=1}^{\infty} \subset X^*$ and $\{y_i\}_{i=1}^{\infty} \subset \Gamma$ such that

(13)
$$||f_n|| = 1$$
, $|f_n(u_{n_i})| > \varepsilon$; $i = i_n + 1, i_n + 2, \dots, i_{n+1};$ $i_{n+1} - i_n = n, n = 1, 2, \dots$

Then for any finite system $\{\beta_i\}_{i=1}^n \subset \Gamma$ and any system $\{a_i\}_{i=1}^n$ of real numbers we have

(14)
$$\left\| \sum_{i=1}^{n} a_{i} u_{\beta_{i}} \right\| \geqslant d \left\| \sum_{i=i_{n}}^{i_{n+1}} a_{i+1-i_{n}} u_{\gamma_{i+1}} \right\| \geqslant \operatorname{cod} \sum_{i=1}^{n} |a_{i}|.$$

It follows from (12) and (14) that the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is equivalent to the natural basis of the space $l_1(\Gamma)$.

LEMMA 3. Let $\{u_{\epsilon}\}_{\epsilon\in\Gamma}$ be a symmetric basis in a Banach space X and let $\{u_{\epsilon}^*\}_{\epsilon\in\Gamma} \subset X^*$ be the conjugate system to $\{u_{\epsilon}\}_{\epsilon\in\Gamma}$. Then either for any $\epsilon>0$ there exists an integer k such that for all $x\in X$ the sets $\{\gamma\colon |u_{\epsilon}^*(x)|>\epsilon\,\|x\|\}$ contain at most k elements, or the basis $\{u_{\epsilon}\}_{\epsilon\in\Gamma}$ is equivalent to the natural basis of $c_0(\Gamma)$.

Proof. Since $\{u_{\nu}^*\}_{\nu \in \Gamma}$ is a symmetric basis for its closed linear envelope $\overline{\text{span}}\{u_{\nu}^*\}$, thus by Lemma 2 either there exists an integer k with the desired property, or there exists a positive constant b such that for any finite system $\{v_i\}_{i=1}^n \subset \Gamma$ and any system $\{a_i\}_{i=1}^n$ of real numbers we have

(15)
$$\left\| \sum_{i=1}^{n} a_{0} u_{\gamma_{i}}^{*} \right\| \geqslant b \sum_{i=1}^{n} |a_{i}|.$$

Now take an arbitrary finite subset $B \subset \Gamma$. We can find a finite subset $A \subset \Gamma$ and real numbers $\{a_a\}_{a \in A}$ such that

$$\left\|\sum_{a\in\mathcal{A}}a_au_a^*\right\|\leqslant 1, \left\|\sum_{a\in\mathcal{B}}u_a
ight\|\leqslant \sum_{a\in\mathcal{A}}a_au_a^*\left(\sum_{a\in\mathcal{B}}u_a
ight)+1/b.$$

Hence, by (15), we get

$$\left\|\sum_{\beta \in B} u_{\beta}\right\| \leqslant 2/b.$$

It follows from (11) and (16) that the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is equivalent to the natural basis of the space $e_{0}(\Gamma)$.

PROPOSITION 2 (cf. [2]). If Γ is uncountable then the space $c_0(\Gamma)$ admits no equivalent norm, uniformly convex in every direction.

Proposition 3 (cf. [1]). If Γ is uncountable then the space $l_1(\Gamma)$ admits no equivalent smooth norm.

THEOREM 1. Let X be a non-separable Banach space with a symmetric basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$. Then the space X admits an equivalent norm, uniformly convex in every direction, if and only if the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is not equivalent to the natural basis of the space $c_0(\Gamma)$.

Proof. The "only if" part is an immediate consequence of Proposition 2.

The "if" part. We define a bounded linear operator T from X into $c_0(\Gamma)$: for $x \in X$ we put Tx = y where $y(\gamma) = u_\gamma^*(x)$ for all $\gamma \in \Gamma$. The norm $|||\cdot|||$ is defined as in Proposition 1. Now let $|||x_n||| = |||y_n||| = 1, x_n - y_n = \lambda_n z$, $\lim_{n \to \infty} ||u_n^* + y_n||| = 2$ and let ||z|| > 0. Then there exists $a \in \Gamma$ such that $|u_n^*(z)| > 0$. Hence, by Lemma 3 and Proposition 1, $\lim_{n \to \infty} \lambda_n = 0$.

COROLLARY 1. Let X be a Banach space with a symmetric basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$. Then if X contains a subspace isomorphic to $c_0(\Delta)$ with Δ uncountable, then the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is equivalent to the natural basis of $c_0(\Gamma)$.

Proof. It follows from Proposition 2 that X admits no equivalent norm, uniformly convex in every direction; the assertion thus results in view of Theorem 1.

THEOREM 2. Let X be a non-separable Banach space with a symmetric basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$. Then the space X admits an equivalent norm, uniformly smooth in every direction, if and only if the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is not equivalent to the natural basis of the space $l_1(\Gamma)$.

Proof. The "only if" part is an immediate consequence of Proposition 3.

The "if" part. We define a bounded linear operator T from X^* into $c_0(\Gamma)$: for $f \in X^*$ we put Tf = y where $y(\gamma) = f(u_{\gamma})$ for all $\gamma \in \Gamma$. The equivalent norm $|||\cdot|||$ in X^* is define as in Proposition 1. For $x \in X$ put

$$|||x|||' = \sup\{|f(x)|: |||f||| \le 1\};$$

this is an equivalent norm in X. Since the operator T is weak* continuous, the $|||\cdot||||$ -unit ball is weak* compact and hence the space $(X^*, |||\cdot|||)$ is conjugate to $(X, |||\cdot|||')$.

We shall prove that the norm $|||\cdot|||'$ is uniformly smooth in every direction. According to Shmulyan's result [8] referred to above, it suffices to show that the norm $|||\cdot|||$ is weakly* uniformly convex.

Let $|||f_n|||=|||g_n|||=1$ and $\lim_{n\to\infty}|||f_n+g_n|||=2$. Take an $x\in X$. Fix $\varepsilon>0$. We can find a finite subset $B\subset \Gamma$ and real numbers $\{a_{\beta}\}_{\delta\in B}$ such

$$||x-\sum_{\beta\in B}a_{\beta}u_{\beta}||<\tfrac{1}{2}\varepsilon.$$

In view of Lemma 2 and Proposition 1 there exists an integer n_0 such that for $n > n_0$ we have

(18)
$$\left| f_n \left(\sum_{\beta \in B} a_\beta u_\beta \right) - g_n \left(\sum_{\beta \in B} a_\beta u_\beta \right) \right| < \frac{1}{2} \varepsilon.$$

From (17) and (18) follows

$$|f_n(x)-g_n(x)|<\varepsilon$$
 for $n>n_0$.

COROLLARY 2. Let X be a Banach space with a symmetric basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$. Then if X contains a subspace isomorphic to $l_1(\Delta)$ with Δ uncountable, then the basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is equivalent to the basis of $l_1(\Gamma)$.

Proof. It follows from Proposition 3 that X admits no equivalent smooth norm; the assertion thus results in view of Theorem 2.

COROLLARY 3. If Γ and Δ are infinite sets and $\Gamma \cup \Delta$ is uncountable, then the space $c_0(\Gamma) \times l_1(\Delta)$ cannot be isomorphically embedded in a space with a symmetric basis.

Proof. Apply Corollary 1 and Corollary 2.

PROPOSITION 4. Let M(t) be an Orlicz function such that

$$\lim_{t\to 0}\, M(t)/t\,=\,0 \qquad \text{and} \quad \lim_{t\to 0}\, tM'(t)/M(t)\,=\,1\,.$$

Then for any set Γ the Orlicz space $l_M(\Gamma)$ does not contain any subspace isomorphic to $l_1(\Lambda)$ for uncountable Λ while every infinite-dimensional subspace of $l_M(\Gamma)$ contains a subspace isomorphic to l_1 .

Proof. Since the natural basis of $l_M(\Gamma)$ is not equivalent to the natural basis of $l_1(\Gamma)$, Corollary 2 implies that $l_M(\Gamma)$ does not contain any subspace isomorphic to $l_1(\Delta)$ for uncountable Δ . It follows from [3] and [4] that every infinite subspace of $l_M(\Gamma)$ contains a subspace isomorphic to l_1 .

PROPOSITION 5. There exists a Banach space U with a symmetric basis $\{u_{\gamma}\}_{\gamma\in\Gamma}$ such that U does not contain any subspace isomorphic to $c_0(\Delta)$ for uncountable Δ while every infinite-dimensional subspace of U contains a subspace isomorphic to c_0 .

Proof. Let M(t) be an Orlicz function such that $\lim_{t\to 0} tM'(t)/M(t) = \infty$ and M(1) = 1. Let U denote the subspace of $l_M(\Gamma)$ generated by characteristic functions $u_{\gamma}(\sigma)$ of all one point subsets of Γ . Note that $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is a symmetric basis for U. Since $\{u_{\gamma}\}_{\gamma\in\Gamma}$ is non-equivalent to the unit vector basis of $c_0(\Gamma)$, it follows from Corollary 1 that U does not contain any subspace isomorphic to $c_0(\Delta)$ for uncountable Δ .

Let X be an infinite-dimensional subspace of U. By [8], there exist sequences $\{a_i\}_{i=1}^{\infty}$, $\{i_n\}_{n=1}^{\infty}$, $\{\gamma_i\}_{i=1}^{\infty}$ such that the space generated by $x_n = \sum_{i=i_n}^{i_{n+1}-1} a_i u_{\gamma_i}$, $||x_n|| = 1$, u = 1, 2, ..., is isomorphic to a subspace of X. Let us set

$$M_n(t) = \sum_{i=i_n}^{i_{n+1}-1} M(|a_i|t).$$

Let us observe that $M_n(1) = 1$. Since $tM'(t) \leq M(2t)$ for $t \geq 0$, we have $M'_n(t) \leq 2$ for $0 \leq t \leq 2^{-1}$. Hence without loss of generality (if necessary passing to a subsequence) one may assume that

$$(19) |M_{n+1}(t) - M_n(t)| \leqslant 2^{-n-1} for n = 1, 2, \dots and for 0 \leqslant t \leqslant 2^{-1}.$$

We pick a sequence $\{\tau_j\}_{j=1}^\infty$ so that $tM_n'(t)/M_n(t)>j+2$ for $0< t\leqslant \tau_j$ ($j=1,\,2,\,\ldots$). Then

(20)
$$M_n(\tau_j/2)/M_n(\tau_j) = \exp\left[-\int_{\tau_j/2}^{\tau_j} \frac{M'_n(t)}{M_n(t)} dt\right] < 2^{-j-2}$$

for j = 1, 2, ...

We shall show that there exist finite mutually disjoint sets of the indices A_i and positive numbers a_i and λ such that

(21)
$$\sum_{n \in \mathcal{A}_j} M_n(\alpha_j) \geqslant 2^{-1} \quad \text{ for } \quad j = 1, 2, \dots,$$

(22)
$$\sum_{j=1}^{k} \sum_{n \in A_j} M(a_j/\lambda) \leqslant 1 - 2^{-k} \quad \text{for} \quad k = 1, 2, \dots$$

Let us consider two cases:

(*) $\lim M_n(t) > 0$ for all $t \in (0, 2^{-1}]$. Let us put $\lambda = 2$, $A_1 = \{n_1\}$ where n_1 is an arbitrary positive integer and $a_1 = 1$. Suppose that for some k > 1 the sets $A_1, A_2, \ldots, A_{k-1}$ and positive numbers $a_1, a_2, \ldots, a_{k-1}$ have been defined to satisfy with $\lambda = 2$ the conditions (21) and (22). We pick n_k so that if $n \ge n_k$ then

$$n \notin \bigcup_{j=1}^{k-1} A_j$$

and

(23)
$$M_{n_k}(\tau_k/2) > 2^{-n_k}.$$

We put $A_k = \{n_k, n_k+1, \dots, n_k+[1/M_{n_k}(\tau_k)]\}$ and $a_k = \tau_k$. Then (19), (20) and (23) imply (21) for j = k and $\sum_{k=1}^{\infty} M_n(a_k/2) < 2^{-k}$.

(**) $\lim M_n(t_0) = 0$ for some $t_0 > 0$. Then there exists an increasing sequence $\{n_i\}_{i=1}^{\infty}$ of the indices such that

$$M_{n_i}(t_0) < 2^{-j}$$
 for $j = 1, 2 \dots$

We put $\lambda = t_0^{-1}$ $a_j = 1$ and $A_j = \{n_j\}$ for j = 1, 2, ...Finally, let

$$y_j = a_j \sum_{n \in A_j} x_n \quad (j = 1, 2, \ldots).$$

It follows from (21) and (22) that

$$\|y_j\|\geqslant 2^{-1},\quad \left\|\sum_{j=1}^k y_j\right\|\leqslant \lambda\quad ext{ for }\quad j=1,2,\ldots;\; k=1,2,\ldots$$

Hence the unconditional basis $\{y_j\}_{j=1}^{\infty}$ is equivalent to the natural basis in c_0 .

References

- [1] M. Day, Strict convexity and smoothness, Trans. Amer. Math. Soc. 78 (1955), pp. 516-528.
- [2] M. Day, R. James and S. Swaminathan, Normed linear spaces that are uniformly convex in every direction, Canad. J. Math. 23 (1971), pp. 1051-1059.

[3] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), pp. 379-390.

- On Orlicz sequence spaces II, ibidem 11 (1972), pp. 355-379.

J. Lindenstrauss, A remark on symmetric bases, ibidem 13 (1972), pp. 317-320.

V. D. Milman, Geometric theory of Banach spaces I, Usp. Mat. Nauk 25 (1970), pp. 113-174. (Russian). English translation in Russian Math. surveys.

[7] V. L. Shmulyan, On differentiability of the norm in a Banach space, Dokl. Akad. Nauk SSSR 27 (1940), pp. 643-648 (Russian).

[8] C. Bessaga and A. Pełczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), pp. 151-164.

Received November 15, 1973

(755)