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STUDIA MATHEMATICA, T. LIl (1975)

On non-separable Banach spaces with a symmetric basis

by
8. L. TRO YANSKI (Sofia)

Abstract. In this paper equivalent norms in non-separable Banach spaces with
a symmetric basig are considered. The results obtained indicate the impossibility of
a natural extension to the non-separable cage of certain theorems valid for separable
Banach spaces with an unconditional basis.

1. Introduction. James (cf.e.g. [6], p. 152) proved that any non-
reflexive Banach space with an unconditional basis contains a subspace
isomorphic either to ¢, or ;. Later on Bessaga and Petezynski (cf. e. g. [6],
p. 155) extended that result to non-reflexive subspaces of spaces with
an unconditional basis. Lindenstrauss and Tzafrivi [3] studied the Orlicz
spaces Iy and proved that any I, contains a subspace isomorphic to
l, for some p > 1. Lindenstrauss [5] showed that every separable space
with an unconditional basis can.be isomorphically embedded in some
separable space with a symmetric basis.

In this paper we deal with the question of the existence of equivalent
norms which are uniformly convex or uniformly smooth in every direction,
in Banach spaces with a symmetric basis. It turns out that this question
iy closely related to that of the existence, in such spaces, of subspaces
igomorphic to ¢o(I") or 1,(I") for some uncountable I. As a corollary it
regults that the above-mentioned theorems of James [6], Lindenstrauss—
Tzafriri [3] and Lindenstrauss [B] admit no natural extension to the
non-geparable case.

In particular, we shall show that a non-separable Banach space
X with a symmetric basis admits an equivalent norm. which is uniformly
convex in every direction (resp. uniformly smooth in every direction)
iff X is not isomorphic to ¢y(I") (resp. to I, (") for some uncountable set I

2. Definitions and mnotations. Let X be a Banach space and let I" be
an. abstract set. A function w(y) defined on I" with values in X is said to
be unconditionally summable to xe<X if for any ¢ > 0 there exists a finite
set B = I" such. that for every finite set 4 = I' with A > B we have

”gw(,’)—m]k .
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The element # will be written as & = 3 w(y)
pel'

be said to converge to x unconditionally.
A function u%(y) defined on I" with values in X is called an wncondi-
tional basis for X if for any <X there exists a unique rearl-vallued funetion
@.(y) defined on I' and such that the series Z(pw (y) converges to

and the series > w(y) will
yel'

2 unconditionally. In the sequel we shall wmte rather {u,,},,e r ingtead of

u(y). The symbol X* denotes the conjugate space of X and {uy},.p i8 the
system in- X* conjugate to the basis {U,},er, i.e. uy(ug) =0 for y # B,
Uy () = 1.

Bases {u,},.r and {v,},.r in space X, resp. Y, are called eguivalent
if there exists a bounded linear operator 7: X—Y with a bounded in-
verse and such that Tu, = o, for all yel’ Note that this is the case if
and only if the series 2 y)u, "and Z a(y)v, are simultaneously convergent

or divergent, for rmy 1ea'1 Va;luedy function a(y) defined on I

An unconditional basis {u,},.r is called symmetric if for any two
sequences {a;}j.; and {f;}32, in I" the bases {u,}iL, and {u,};2, are equiv-
alent.

By ¢5(I") we denote the space of all real-valued functions x(y) defined
on I' and such that for any ¢ >0 the set {y: |[#(y)| > ¢} iy finite; |||
= max |z(y)]. An equivalent norm has been defined by Day [1]:

. yell
= sup [22*‘(»2 ]]/2
) t=1
where the supremum is taken with respect to all finite subsets {a,}jr, < I
For zecy(I'), let o(w) denote the sequence {y;}iL, = I' (N an integer or
infinity) such that [#(y)| > @ (1)l >0, ¢ =1,2,..., and ®(y) = 0 for
yéo(x). It can easily be seen that

i 1/2
= 2
[igl 27 ('yl)] .

A continuous convex function M (¢) on [0, o) is called an Orlice
Sfunction if M (0) = 0 and M () > 0 for all t > 0. With every Orlicz function.
M (t) we can associate an Orlicz space 1y (") consisting of all real-valued
functions #(y) such that for some ¢ > 0 the function M (jz(y)|/t) is uncon-
ditionally summable in y;

loll = int {t > 05 3" M (lo(y)| /) < 1}.
yel

It M) =", p =1, we write [, (I') instead of lp(I"). If I' is countable,
we write ¢, and U f_or co(I") and l o ()

icm
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Let y,(8) be the function on I' defined by x,(8) =0 for g ¥,
xv('y) = 1. The function ¢(y) = y, can be regarded as a function defined
in I with values in cu(I’) or Iy (I"). Observe that e(y) is a symmetric basis

in (") and Ty (1) if hm M (2t)/ M (1) < oo. The basis {e,},.r is called the

natural basis for co(I") and Ty (I
to {67'}751"

The norm of & Banach space X is called wniformly convew in every
direction if the conditions:

). {€5},cr Will denote the system conjugate

lwall == lyall =1, Bpy Yy B X

= = An?, lim ||, + 9l = 2,
ns00
imply ‘

Lim |2} {lel| = 0.

The norm of X*, the conjugate space of X, is called weakly* uniformly
convexs if the conditions:

Ifall = lgull =1,  Hm[fp+gul =2,  fos GueX®
imply i ’
: lim (£, (%) — gn(2)) =0
for all weX. e

The norm of a Banach space X is called [umformly] smooth (in every
direction) if for any @, yeX with llz]| = [lyll =1
lim (llo 4 vyl + o — 7yl —2) = 0
T—>00 .
[uniformly in «].
For Banach spaces X, ¥, X x ¥ will denote their product with the
norm ||(@, y)l = (l=*+ 1yl )”2
3. Tn this section we construct an equivalent norm and investigate
its properties.
PropostTioN 1. Let T be a linear operator mapping « Banach space
X into oo(I") with some I' in such a way that for any & > 0 there exists an
integer T == I(e) such that for all weX loll <1, the set {y: |6y (Tw)| = e}
contains at most % elements. Then if

(1) gl = [llyulll =1,
then for any yel' we have

Lim ||, -+ Ynlll = 2,
n—00

1lm6,,(Twn Ty,) =0,

n—>00

where |||wl||| = (||:n||ﬁ—[—D*’(Tw))f’2 and {63}, r 15 the conjugate system to the

. natural basis of co(I).
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The proof will be proceded by a lemma concerning the norm .D(w)
in co ().

LeMMA 1. Let zecy( ), o) = {»}¥, and |v(a) > V2 l@(y;)|. Then
D) = D*(w— fe,) +277 £2,
where & = x(a).
Proof. Let a = y,,. Clearly, m < j. Thus

N
Z 2_’502 )+ Z b (mz(ym) -+ wz(yi))
G-l
kS S|
= 7R+ Y 27 (@b ) + 0t () +
fiomrt d=met1

+ Zz-i(wmwww) +27ay,)
i=7
=D a—e,,) +2a(yy). ®
Proof of Proposition 1. Observe that
2 (Mol l1* + yl112) — 1|2+ 51112
= (201l + 1yll*) ~ I+ Y21+ [2( DX Tw,) + DX Ty)) — D T, + Ty, )]
N - 9 3
Since the expresswn}s in the square brackets are non-negative, thus by (1)
2) lim [2 (D*(Tw,) + D*(Ty,,)) — D*(Tw, -+ Ty,)| = 0.
N—+00
Suppose that the assertion of the proposition is false. Then without
loss of generality we may assume that there exist ael' and 6> 0 such
that
(3) e (To, —Ty,)| = 8, n=1,2,...
‘We shall show that
(4) Lim e} (T, +Ty,)| > 0.

Ti~+-00

Suppose the contrary, i.e.

(8) _ lim 6} ( Tw, + Ty,) = 0
Choose n, such that o
(6) 6z (Ta,+Ty,)| < 36 for n>n,.

From (3) and (6) follows
e (T2,)| > 30, |e(Ty,) > 36 for n>n,

On non-separable Banach spaces 257

Hence, by Lemma 1,
(1) D} (Tw,) > D*(Tw,—ep(Tw,)e,) 275562 for n > my,
(8) DX (Ty,) = D*{Ty, — & (Ty,)e) +27%562  for n>m,,
where & == 1(8/4V2).
It follows from the triangle inequality, the definition of D(x) and
from (1) that
(9) 'Dz(Tmn “++ T?/n) < D (Twn ”"kTyn - 0’:(1"'371. +T4 n) 6[,) +
+(2V2 +1) |T|- |65 (T, + T9,)] -
We have, by (7), (8), (9),
2 (-Dﬁ(Twn) "}" -Dz(T:’/n)) _-DZ(-Tmn + -Tyn)
> 97k=3 52 (22 1) | |- |eF (Tw, + Tw,)|  for  n > m,.
But this together with (5) contradicts (2), so (4) is proved. Without affect-

ing the generality we may thus assume that there exists ¢ >0 such
that for all » =1,2,...

Let o(Ta,+Ty,) = {y n}tgl By the definition of D(x) we have

2 (.DS(TQJ“) '}““DZ(T.%L)) - DZ(Txaa_"Tyn)
Ny,

= [-Dz(Tmn) - sz": (6:.5_“(1"'”71))2] +[ TJH. 22_1 (e%n Ty” ) ]—{_

g=1

+[22"”‘ :i (Tw, — .’l’yn))"’].

Since the expressions in the square brackets are non -negative,we have,
by (2),

Ny, .
Lim Z 27ey, (T, ~Ty,))* = 0.
Ne>00 T
On the other hand, it follows from (10) that ae{y;, iy, where k = k(e/2))
for all m == 1, 2, ..., henece, again by (10), :
N
22—{(0;1',1;(Tmn_1,yn))2>2_—7':627 no=1,2...
fua | '
This contradiction concludes the proof of Proposition 1.
" 4. In this section we apply Proposition 1 to find necessary and suf-

ficient conditions for the existence of an equivalent norm, uniformly
convex (smooth) in every direction, in non-separable Banach spaces
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with a symmetric basis. As is shown in [2], in any separable Banach
space an equivalent norm, uniformly convex in every direction, can be
introduced. It is also proved in [2] that in any separable Banach space
an equivalent norm can be defined such that the norm of the conjugate
space will be weakly* uniformly convex. Shmulyan [7] proved that the
norm of a Banach space X is uniformly smooth in every direction if and
only if the norm of X* iy weakly* uniformly convex. Thus it follows from
[2] and [7] that in any separable Banach. space there exists an equivalent
norm uniformly smooth in every direction.

It is well known that for any unconditional basis {u,},., there exists
a positive constant ¢ = ¢({u,}) such that for any finite system {y,}7, < I"
and any system {a;};~, of real numbers we have

(11) ' I i’m u,,

It can be also shown, by the definition of an unconditional basis, ‘ﬂhatv
there exists a positive constant d = d({w,}) such that for any finite systems
{a}ity, {8}, = I' and any system {a,}7, of real numbers wo have

m . m
(12) ”g;aiua? ,/\/dugamm”.

Leyma 2. Let {u,},.p be & symmetric basis in o Banaoch space X. Then
either for amy e > O there ewists am integer T such that for all feX* the sets
{v: 1f(w,)| > e|lfll} contain at most & elements, or the basis {U,}per 18 equiv-
alent to the natural basis of 1, (I").

Proof. Suppose that for some & > 0 there are sequences {ffFey = X
and {y;};2, < I' such that

(13) Ml =1,

m
= ¢ max H 2 810Uy,
legl<1 " 521

|fn(uv,-)|>6; i=in+19 in'{'z""’in-#l?
Tpgr— by =1, % =1,2,...

Then for any finite system {8,}\, = I" and any system {a;}t., of real
numbers we have

n Inf1 , n
(14) “ gmuﬁi H > dHiZ; Bty Uy | sodzl | @l
==ty fem

It follows from (12) and (14) that the basis {Uy}yer 18 equivalent to the
natural basis of the space I, ().

]:.:EI\AZL\IA 3. Let {u,},er be & symmelric basis in a Banach space X and
let {u, )?'f rcX *. be the conjugate system to {¥y}yer. Theweither for any s > 0
_there emists an integer T such that for all we X the sets {y: |uy (@)] > e |lw|l}

contain at most k elements, or the basis {%,}yer 15 equivalent to the natural
basis of c,(I).

icm
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Proof. Since {u},,r is 2 symmetric basis for its closed linear envelope

span.{uy }, thuy by Lemma 2 either there exists an integer % with the
desired. property, or there exists a positive constant b such that for any
finite system {y;}f., < I" and any system {a;}%; of real numbers we have

(15) Hf{‘aou;;n > b§|a,|.

Now take an Mbitmry finite subset B « I We can find a finite
subset .4 = I'" and real numbers {a,}..4 such that

H Z%%’; gl,”ZzaﬁH < Za,,uﬁ(}_:uﬂ)-l-l/b.
as.d BeB aed feB

Hence, by (158), we get

(16) ‘ ngﬁugz/b.

It follows from (11) and (16) that the basis {u,},.r is equivalent to the
natural basis of the space ¢,(I).

PRrROPOSITION 2 (cf. [2]). If I' is uncountable then the space ¢o(I") admits
no equivalent norm, uniformly convem in every direction.

ProrogrrioN 8 (ef. [1]). If I' és uncountable then the space l_l(l")
admils no equivalent smooth norm.

TuworEM 1. Let X be a non-separable Banach space with & symmetric
basis {t,}yer. Then the space X admits an equivalent norm, uniformly conves
in every divection, if and only if the basis {u,},.r is not equivalent to the
natural basis of the space cy(I'). » ,

Proof. The “only if” part is an immediate consequence of Prop-

osition 2. .
The “if" part. We define a bounded linear operator I' from X into

6o(I): for weX wo pub T = y where y(y) = uy(x) for all yeI'. The norm

(11-1]] is defined as in Proposition 1. Now let |[l@,]|| == H[yni_[[ =1, 0, —Yu
e= A2, lim|[jo, -9,/ = 2 and let [¢} > 0. Then there exists ael' such
Ner O

that |u¥(2)] > 0. Hence, by Lemma 3 and Proposition 1, limi,=0. m

Ne>00
CoRorTARY 1. Let X be a Banach space with a symmetrioc basis {u,},r-
Then if X contains o subspace isomorphic to co(d) with A uncountable,
then the basis {u,},.p 18 equivalent jo the natural basis of ¢o(I').
Proof. Tt follows from Proposition 2 that X admits no equivalent
norm, uniformly convex in every direction; the assertion thus results
in view of Theorem 1. ‘
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THEOREM 2. Let X be o non-separable Banach space with 4 symmelric
-bsis {u,} p. Then the space X admits an equivalent norm, uniformly smooth
in every direciion, if and only if the basis {u,},.r is not equivalent to the
natural basis of the space 1, (I").

Proof. The “only if” part is an immediate consequence of Prop-
osition 3.

The “if” part. We define a bounded linear operator ' from X* into
eo(): for feX* we put Tf = y where y(p) = f(u,) for all yeI' The equiv-
alent norm |||-]|| in X* is define as in Proposition 1. For v <X put

Halll” = sup{lf(@)]: Il <1};

this is an equivalent norm in X. Since the operator 7' is weak* continuous,

the |||-|||]-unit ball is weak* compact and hence the space (X, [||*]|])
is conjugate to (X, [[|-[I|")-
We shall prove that the norm |||-])|’ is uniformly smooth in every

direction. According to Shmulyan’s result [8] referred to above, it suf-
fices to show that the norm }||-]|| is weakly* uniformly convex.
Let |Ifolll = lllgulll =1 and lim [||f,+g,lll =2. Take an weX.
N—+00

Fix ¢ > 0. We can find a finite subset B = I" and real numbers {a,}s,» such
that

(1) [{m~2aﬁuﬂ‘]< 3.
BeB

In view of Lemma 2 and Proposition 1 there exists an integer n, such
that for n > n, we have

(18) fn(gaﬂuﬁ)——gn(zjgaﬁuﬂ)l< $e.
€ Be

From (17) and (18) follows

Ifa(@)—go(@m)<s for n>n,. m

OOROLLARY 2. Let X be a Banach space with o symmetric bagis {t,}yers
Then if X contains a subspace isomorphic to Ty(d) with A uncountable,
then the basis {w,},.r is equivalent to the basis of I (I).

Proof. It follows from Proposition 3 that X admits no equivalent
smooth norm; the assertion thus results in view of Theorom. 2.

CoroLLARY 8. If I' and A are infinite sets and I'u A is uncountable,

then the space co(I) % 1,(4) cannot be isomorphically embedded in a space
with a symmetric basis.

Proof. Apply Corollary 1 and Corollary 2.

e ©
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ProprositioN 4. Let M (t) be an Orlicz Sfunction such that

lim M(t)jt =0

-0

and  im tM' () BL(t) = 1.
>0

Then for any set I' the Orlice space 1y (I") does not comtain amy subspace
isomorphic to 1,(A) for uncountable A while every infinite-dimensional
subspace of Uy (I") contains a subspace isomorphic to 1,.

Proot. Since-the natural basis of 1,,(I") is not equivalent to the
natural basis of 1,(1"), Corollary 2 implies that I,,(I') does not contain
any subspace isomorphic to I,(4) for uncountable A. It follows from [3]
and [4] that every infinite subspace of I,,(I") contains a subspace iso-
morphie to ¥,. )

ProrosUrioN B. There exwists a Bamach space U with ¢ symmetric basis
{ty}yer such that U does not contain amy subspace isomorphic to c,(A) for
uncountable A while every infinite-dimensional subspace of U contains
o subspace isomorphic to ¢,.

Proot. Let M(t) be an Orlicz function such that lim ¢M’ ())/M (1) = oo
>0

and M (1) = 1. Let U denote the subspace of I, (I") generated by charac-
teristic functions w,(o) of all one point subsets of I'. Note that {u,},.r is
a symmetrie basis for U. Since {w,},.,is non-equivalent to the unit vector
basis of ¢,(1"), it follows from Corollary 1 that U does not contain any
gubspace isomorphic to ¢o(4) for uncountable A.
Let X be an infinite-dimengional subspace of U. By [8], there exist
sequences {a5,, {6,021, {»)2, such that the space generated by ,
g1
= b;\? Gy, 0l =1, w =1,2,..., is isomorphic to a subspace of X.
Let us set
i g1—1
M) = D Mlat).
=iy,
Let us observe that M, (1) = 1. Since tM'(t) < M(2t) for £ > 0, we
have M, (1) = 2 for 0 < ¢ < 27", Hence without loss of generality (if neces-
sary passing to s subsequence) one may assume that

(19) | My () =M, (0] £ 27 for m =1,2,... and for 0<I< 27

We pick a sequence {r;}j., so that M, ()| M, () > j+2 for 0 <t <<y
(§ ==1,2,...). Then
7

M, (t e
(20) M (52 M) = exp[ = [ E t; at| <2
ot n

for j =1,2,...
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We shall show that there exist finite mutually disjoint sets of the indices (8] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math.
A; and positive numbers o; and 4 such. that 10 (1971), pp. 379-390.
. . [4] — — On Orlicz sequence &paces II, ibidem 11 (1972), pp. 3556-379.
(21) 2 Mo () = 27t for §=1,2,.., [6]1 J.Lindenstrauss, 4 remark.on symmetric bases, ibidem 13.(1972), pp. 317-320.
ned; ) [6] V.D.Milman, Geometric theory of Banach spaces I, Usp. Mat. Nauk 25 (1970),
L pp. 113-174. (Russian). English translation in Russian Math. surveys.
(22) Z 2 M(a;f2) <1-27% for k=1,2,.. [71 V. L. Shmulyan, On differentiability of the norm in a Bamach space, Dokl
J=1 ned; Akad. Nauk SSSR 27 (1940), pp. 643-648 (Russian).

= (8] C. Bessaga and A. Pelozyidski, On bases and unconditional convergence of

Let us consider two cages: series in Banach spaces, Studia Math. 17 (19568), pp. 151-164.

(*) lim B, () > 0 for all te(0,27']. Let us put A =2, 4, = {n}
n

where n; i an arbitrary positive integer and a, = 1. Suppose that for Received November 15, 1973 (755)
some k > 1 the sets A4,, 4,, ..., 4;_, and positive numbers ay, ¢y ..., 0y_y

have been defined to satisfy with 4 =2 the conditions (21) and (22).

We pick #, so that if # > n, then

k-1
né¢lJ 4;
I=1
and
(23) . Mnk(r,,/z) > 27",

We pub Ay = {ng, n+1,..., m+[1/ M, (7)1} and a = 7,. Then (19),
(20) and, (23) imply (21) for j =& and Y M, (a,/2) < 27%.
ned.

(#%) lim M, () = 0 for some ?, > 0. Then there exists an increasing
n-+0
sequence {n;};2; of the indices such that
M, (t)<27 for j=1,2 ...

We put 2 =147 o; =1 and 4; = {n;} for j =1,2,...
Finally, let
H=a Yo, (=1,2,.).
ns,A:,
It follows from (21) and (22) that

k
lysll = 272, Hi’yj{}gz for j=1,2,..;k=1,2,..
i=1

Hence the unconditional basis {y;}i2, is equivalent to the natural basis.
in e¢,.
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