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Self-decomposable probabilit); measures
on Banach spaces

by .
A. KUMAR* and B, M. SCHREIBER** (Detxoit, Mich.)

Abstract. Self-decomposable probability measures (laws) on a real, separable
Banach space E are defined and identified as the limit laws of certain normed sums
of independent, uniformly infinitesimal, F-valued random wvariables. It is shown
that self-decomposable measures are infinitely divisible, and a characterization of
such measures in terms of their Lévy—Khinchine representations is given on the spaces
for which such a representation is known to exist. Finally, a representation theorem
due to K. Urbanik for certain measures agsociated with self-decomposable probability
measures on finite-dimensional spaces is generalized to separable Banach spaces.

In §1 we introduce the notion of a self-decomposable probability
measure and obtain a necessary and sufficient condition for a self-decom-
posable law to be stable in terms of its “component”. In § 2 we first show
the class of self-decomposable measures on a real, separable Banach space
can be identified with the class L ([2], p. 145) on the space. It is then shown
that a self-decomposable measure and its “components” are infinitely
divisible. This result is of interest since it is not known whether the limit
laws of uniformly infinitesimal triangular arrays of random variables with
values in a separable Banach gpace are always infinitely divisible (see [9]).
§ 3 is devoted to characterizing self-decomposable probability measures
on certain Orlicz sequence spaces in terms of their Lévy-Khinchine
representations as given in [7]. The paper ends with the extension to
the present context of the work of K. Urbanik ([13], [14]) on the represen-
tation of self-decomposable probability measures 131 § 4.

1. Notation and preliminaries. We shall denote by E a real separable
Banach space and by R and R* the space of real numbers and strictly
positive real numbers, respectively, with the wsual topology. E* will

T+ Some of the results in this paper appear in the doctoral dissertation of this
author. He wishes to thank his thesis advisor, Professor V. 8. Mandrekar, for his
constant encouragement and valuable suggestions during the writing of that disser-
tation. .

** Research of this author was partially supported by the National Science
Foundation under Grant No. GP-20150.
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denote the (topological) dual of E, and (-,-» denotes the dual pairing
between E and E*. The elements of Z and E* will be denoted by #, v, 2, ...
and of R by a,b,¢,... For a probability measure x on the B({rel field
#(E) of E, the characteristic functional (ch. f.) y, denoted by g, is the
function on H* defined by

y) = [Pau@).
I

It is well known ([4], p. 37) that for a real separable Banach space the
function 2 uniquely determines the measure x on H. It is not difficult
to see, using the fact that every singleton is compact in the sense of Defini-
tion 1.1 (b) below on a separable space, that 4 is continuous in the weak-*
topology on bounded subsets of E*. For two probability measures u
and » on B, we shall denote by ux» the convolution of x4 and » ([12], p. 56).
For any measure 4 on B and ae R, T, u is defined to be the measure on
given by T, u(B) = u(a™'B) for every Be #(E); and for a = 0 we define
T,u = 0y, where for ze B §, is the unit point mass at o We shall call §,
the probability measure degenerate at x.

We need the following definitions.

DeFINITION 1.1. (a) A sequence {u,} of probability measure on
E 1§ said to converge weakly to a probability measure g on K, denoted
un =1, if for every bounded, continuous, real-valued functmn f oon X,

ffd/"n—’ffd/‘

(b) A sequence {u,} of probability measures on  is said to be compact
if for every ¢ > 0 there exists a compact set K, = B such that u,(K,) > 1 —e
for every n .

Remark 1.2. This notion of compactness is equivalent to conditional
compactness in the topology of weak convergence ([12], p. 47) since H
is separable.

The following theorem will be used repeatedly, and for further refer-
ence we state it here.

TrroreyM 1.3 ([12], p. 58). Let {A.}, {i.), {v.} be three sequences
of probability measures on B such that A, = w, *», for cach n. If the sequences
{An} and {u,} are compact, then so is the sequence {v,}.

Levma 1.4, Let {u,} and u be probability measures on B and let {a,}
and o be elements of R. If u,=u and a,—a, then Lo, oy =T po

Proof. The lemma follows immediately from [1], p. 34.

PROPOSITION 1.3. Let u be a probability measure on F. If there exists

@ number ¢ >0 and a nondegenerate probability measure w, such that

o =Touxy,, then ¢ < 1.
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Proof. Note that

B(y) = ploy) fely), yeB".

Fix yeE*, Y #0, and define a probability measure » on B by »(B)

~,u(y B)) for all Be#(R), and let », be defined analogously from
. Then ' .

V() = fi(ty) = ploty)iic(ty) =7 (ct)v,(5), te R.

Moreover, y can be chosen so that », is nondegenerate. The fact that ¢ < 1
now follows from [11], p. 322.

Now we are ready to define self-decomposable probability measures
on B, following Loéve [11], p. 322.

DeFINITION 1.6. A probability measure x on B is said to be self-
decomposable if for each 0 < ¢ < 1 there exists a probability measure s,
on I such that

(1) = Topu fhg.

The measure y, is called the component of // with respect to c.
ProrosrrioN 1.7. If w is self-decomposable on E, then ,u(’l/
for all ye B*.
Proof. Sinee u is self-decomposable, for each ce (0, 1)

() = pe)dly),  yeB*.

For ye B, y # 0, let » and v, be defined from v, u and u, as in the proof
of Proposition 1.5. Then » is self-decomposable on R, so by [11], p. 522,
v (1) # 0 for all e R. Taking ¢ = 1 gives 2(y) 5 0. .

DeriNrrioN 1.8 ([8], p. 136). A probability measure x on B is said
to be stable if for each @, beR™ there exist ¢e Rt and ze B such that

TousTyp = Topxd,.

PrOPOSIITION 1.9. Let p be o nondegenerate, self-decomposable probability
measure on I, and suppose that for each ce (0, 1) the component u, of u
is given by
(2) te = G "‘T(l—cl)l/’n”

Jor some we B and 0 < A< 2. Then p is stable. Conversely, if u is o stable
probability measure on H, then u s self-decomposable and for each 0 < ¢ < 1
the component of u is given by (2).

Prootf. For a, be R and 0 < 1< 2, lot
| [0, D]s = (o +BY,
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Suppose p is self-decomposable with component given by (2) for each e.
For 4, be R, (1) with ¢ = a[a, b gives

no= Ta[a’b];l ‘u*Tb[a,b];x ik Oy
. Consequently, .
(3) TopxTyp = Tigp1, 4% Ora,u1500 a,be BY.

Hence, p is stable.

Conversely, if u is stable, then there exist we B and 0 < A< 2 such
that (3) holds ([8], Lemma 2.6). Take b = (1—¢""*, where 0 < ¢ < 1.
Then (3) gives

TopusTyp = pu*d_y.

It follows that u is self-decomposable and has component for each ¢ of
the form (2).

2. Self-decomposable laws and limit laws. In this section we show
that the class of self-decomposable measures coincides with certain limit
laws of sums of independent, Banach-space-valued random variables
and consists of infinitely divisible -measures.

DerFiNiTIoN 2.1. A collection s, j =1,2,...,%,; n =1,2,... of
measures on F is called uniformly infinitesimal if for every neighborhood
of 0 in B, .

lim  inf g, (U) =1.
n—o0 1<k,

PROPOSITION 2.2. Let {u,} be measures indewed as. in Defimition 2.1,
and consider the following conditions.

(8) {as} 98 @ uniformly infinitesimal collection.

(b) For each choice of j,, 1 <j,<ly, n=1,2,..., Pongy = Oo-

(e) For all a> 0,

Hm  sup sup |@;(y)—1] = 0.

nroo 1ishy, lvi<ae
Conditions (2) and (b) are equivalent and imply (o). If the collection {uyy} 18
vompact, then (o) implies (a) and (b).

Proof. It is easy to see that (a) and (b) are equivalent, since one
can easily verify that a sequence {»,} of measures on B converges weakly
to &, if and only if », (U) 1 for every neighborhood U of 0. The remainder of
the assertions follows from [12], p. 171.

) DeriNITION 2.3. Denote by 4y (E) [resp., 4, (B)] the class of prob-
ability measures x on E with the property that there exist sequences
{£a} = B, {b,} = B and {u,} of probability measures on F such that
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() o, *k[_YlTbk/"k =M
(of course, the product here represents convolution) and
(bt) for all y  E*,

im sup sup |u,(b,ay)—1] =0
n—roo lgkgn 0<al

[resp.,

(b®) the collection T, piyy kb =1,2,...,n;n =1, 2,..., is uniformly
infinitesimal].

LeMmA 2.4.°If pe A\ (E), then pn(y) # O for oll ye B*. If u is non-
degenerate, then b,—0 amd b, b, ,—~1 as n-oo.

Proof. Since pet 'y (B), for any ye B* ve A"y (R), where » is defined
from x and y as in the proof of Proposition 1.5. Hence by [2], p. 147, 5
never vanishes on R. Therefore jii(y) # 0 for any ye B*. If 4iis nondeg- .
enerate, then so is » for suitably chosen y. The second assertion then
follows from [2], p. 146.

TumoREM 2.5. The following are equivalent for a probability measure
u on H.

(a) peAy(B).

(b) peAy(B).

(6) u s self-decomposable.

Proof. The implication “(b) implies (a)” follows from Proposition 2.2.
If 4 is degenerate, then choosing @, = 0, b, = 1/n and u, = u for every.
7 shows that uet”, (B). So we can assume that u is nondegenerate. _

[(c) implies (b). Suppose p is self-decomposable, and define prob-
ability measures v, = Typpiey, & =2,3,..., where ¢, = (k—1)/k and pu,
is the component of u. For % =1, define », = u. Then

E=1;2,...

n .
Hence [[ Ty, = u. So take @, =0, b, = 1/n for n =1, 2, ... and for
o1

each a > 0 note that

2 sup |1 —@(y/n)|

n
’ Ivl<a
sup  sup =) < 1 3
Igksn |vi<a N int  inf | -
M Y inf inf |4 Y
n 1<kn ul<a (g
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(see, for example, [11], p. 195). Since & is weak-* continuous on bounded
sets, we conclude from Lemma 2.4 that

5

¥y t—>0 uniformly for |]_7/H< @ 28 n-+o00, we have

5 (?)_11 0.

Hence, by Proposition 2.2, it suffices to show fhe collection 2w,
k=1,2,...,m; n=1,2,..., is compact. To see this, fivst note that (1),
Lemma 1.4 and Theorem 1 3 imply that the sequence {u,, } is compact,
50 given any & > 0 there is a eompact set K in E such that u, (K)> 1—e
for all k. Let K = U aK. Then X is also compact, and we have

0<<axl

lim inf inf

n—o0 1<h<n yl<a

> inf [ii(y)] > 0.

Ivll<cee

Thus, since

lim sup sup
n—oo 1l<h<n |lvl<a

Topie (K) > 1—e

for all 0 < @ <1 and all k. Since

Tl/n”lc = Ilc/m“ckv

the collection {T,,v;} is compact.
(a) implies (c). Let wue A" (B) and let {z,}, {b,} and {u,} satisty

(a) and (b*) of Definition 2.3. Then by Lemma 2.4, b,~0 and b, /b, ,—1.
Consequently, given a c¢e(0,1), we can correspond to every integer n
an integer m, < » such that b,/b,, >0 My—>00 and % —m,—+0c0 a§ n—>0o
([11], p. 323). Let a, = b,/b, , n =1,2, ... and note tham

vy = Lo, Vi, %

Ty, ?

where 4, is the probability measure given by

” Ty, ptie-

m—-am
n nmn

lem=m -1 )
Sinee v, =u, Lemma 1.4 gives
Loy, =>Top;
and hence by Theorem 1.3, {In,} is compact. In view of Lemma 2.4,
Y. (y)-—>M for all ye 0¥,
" #(cy) ’

and hence by [12], p. 153,
(4) ' v,

=
my, = Moy
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where u, is given by
(y) = uy)Jiley), yeB*.
Thus p = T,pu*p,. This completes the proof of the theorem.
From this theorem we conclude that the elass L of probability measures

and the class of self-decomposable probability measures on a real separable
Banach gpace are the same.

TrrorREM 2.6. Let I be a veal separable Banach space and p be a self-
decomposable probability measure on B. Then p and for each ¢ (0 < ¢ < 1)
the component u, are infinitely divisible (i.d.).

Proof. Let 0 < ¢ < 1. From (1) it follows by iteration that for each =,

o= phox ToppoxToapse ... *Ton1peTonpp = Ay % Tynpe
where

Imge = the*Toptex Toapron .o %L no1 .
Since ¢*—0 as n—oo, it follows from Lemma 1.4 that
‘ Tonpe=0g.
b()nseq110nt1y by Theorem 1.3 and [12], p. 153,
(5) Ape=p a5 B->o00.
Let m be a positive integer, and for n = 1,2, ... let

Ve = Me* Tompro s Toam i, %

T n—1ym pig.

Then
(6)  wp Loy, oxT2m, % ...

#Lm—1, o

L] Tnmn—l MHe = /lnm,w

=tk Ty phe® ...

and the right hand side in (6) converges weakly to u as n—oco by ().
Oomequcntlv by [12], p. 59, {»,} is shift-compact, i.e., there exists a se-
quence {#,. = ¥ such that fv” ok 6,n o 18 compact.: Hence, by passing

b0 & subsequence if necessary, we may assume that v, .0, c»/l,,, s

2 probability measure on B, ay n-—-co. From (5) and (6) it follows that

(7) *’11)1,,1: ”‘Tc *'lm,u*Tu‘“’ "‘1m,u*
where

by S .
. % _[’an»l R Im,u * éflm;u ==y

. 1
Yu,o = — Iim Ly,
0 nsco

Let {d,,} be a sequence in (0, 1) converging to 1. Since (7) holds with

"¢ = e, for all K, {1, } is shift-compact, and we can argue as above and

apply Lemma 1.4 to conclude that there is a probability measure A,
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on K and an element y,, ¢ K such that Ay « 3, = u.Since m was an arbitrary
positive integer, x is i.d.

To prove that u, is infinitely divisible for each ce (0,1), consider
a Hilbert space H containing ¥ such that {BnE: Be #(H)} = #(H)
([6], p- 355). We can regard u and p,-as measures on H. Then (1) holds
on H, 80 u, is i.d. by Theorem 2.5, (4) and [12], p. 199. Hence for each m
there exists a probability measure »,, on H such that

(8) Y=y, on H.

The proof will be complete once we ghow that »,, is concentrated on H.
Since u is infinitely divisible on %, there exists a probability measure

Jm on F sueh that '

(9) . I =

on E. We can regard 1, as a measure on H, and then (9) holds on H as
well. By (1), (8) and (9),

m _ m, ,m
A T T g™

on H. Hence

(10)  [An(T" = Uhn ()T I (1)T™ = [h(0y) s ()", ye H.

By Proposition 1.7 and the fact that both sides of (10) are continuous
and equal to 1 at y = 0, it follows that

j:m.(fl/) = j“m(cy);'m(y)5 yeH.

Consequently, 4, = Ty, *v, on H. Since 1, and T 4, are concentrated
on B, it follows that », is also coneentrated on . This completes the
proof of the theorem.

Remark 2.7. Theorems 2.5 and 2.6 generalize the ‘classical results
about self-decomposable laws on R ([11], p. 23, Theorem. 23.3A. and ‘Corol-
lary, [2], pp. 145-149). We note that these theorems are very easy to handle
in the finite-dimensional case because of the availability of the powerful
Lévy continuity theorem. However, in the case of an infinite-dimensional
Banach space, no complete analogue of the Lévy continuity theovem is
available and hence the methods used here are founded on the propertiey
of characteristie. functionals. The fact that 4 and u, are i.d. will enable
us below to use the uniqueness of the Lévy-Khinchine representation

[7], [15] to obtain a condition relating the Lévy measures for woand g, .

on ecertain Orlicz spaces.

3. The Lévy-Khinchine representation on certain Oxlicz spaces.

The Lévy-Khinchine representation for the characteristic functionals of .

Probability measures on certain Orlicz sequence spaces has been studied
by J. Kuelbs and V. Mandrekar [7]. In this section we shall obtain neces-
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sary and sufficient conditions for an i.d. probability measure x on such
an Orlicz space to be self-decomposable in terms of the representing
measure for u.

Before examining measures on more general spaces, we shall first
characterize self-decomposable probability measures on a Hilbert space.
Let H be a real, separable Hilbert space, which we shall also identify with.
H* in the usual way. Recall that a complex-valued function ¢ on H is
the ch.f. of and i.d. probabilily measure on H if and only if it can be
represented in the form

1
) p) = exp|idon, )~ Dy, 0>+ [ Elo,nadi], yer,

where x4¢ H,

e,y

(2) T+ [l

K(o,y) =67 -1

D is an S-operator, M is a o-finite measure on H finite on the complement
of every neighborhood of zero in H, and [ [j|?dM (v) < oo ([15], p. 227;
lalll
[12], pp. 181-182). Moreover, the representation (11) is unique.
TuroREM 3.1. A complex-valued function @ on the veal, separable
Hilbert space H s the ch.f. of a self-decomposable probability measure
on H if and only if o can be represented in the form (11) and for each ¢e (0, 1)
the measure M which appears in (11) satisfies M = T .M + M, for some
(nomnegative) measure M, on H.

Proof. Suppose-¢ is the ch.f. of a self-decomposable probability
measure on H. Then for each ce (0, 1) there exists a eh.f. ¢, on H such
that

(13) () = p(y)g.(9)-

By Theorem 2.6 p and ¢, are the c¢h.f.’s of i.d. measures. Fix ce (0, 1),
and let the representations (11) for ¢ and ¢, be given in terms of elements
x, and , of H, S-operators D and D, and measures M and M, respectively.
Note that

ion, g | i<,y _ia, o)
Lfesl®  1+llea)® 14|l

K (2, cy) = Glemw 1

i{ew, ) |l (1 — %)

= K (e, y)+ (L lol®) (1 + c®[®)



GUEST


64 A. Kumar and B. M. Schreiber

and that for all ye H,
(@, ) llwll®

M
ay [ T Lo )
<ill [ lelrdd @)+l [ A () < o,
llll<1 Jia>1

50 the left-hand side of (14) has the form (%, y) for some Te H, Then (11)
gives

1
(15) «p(cy)=exp[«so<wo+ (1=, 45— <Dy, 4+

+ [ E(a, y)ch]V[(m)].
H

It follows from (18) that the representation (11) for ¢ can be given in
terms of the element

cxy+ e(1 —6*) & -+,

the S-operator ¢?.D D, and the measure T, M +M,. By the uniqueness
of (11) we have M = T .M +M,. :

To prove the sufficiency, let x be the probability measure on H whose
ch.f. is ¢ and for ce (0,1) let u, have ch.f. ¢, represented as in (11) in
terms of the point

1—06)zy—o(l—0c®Z,

where 7 is determined from (14) as above, by the S-operator (1 —¢2)D,
and by the measure M,. Then (15) implies (13) holds, 80 u = Tc/m Yo
This completes the proof of the theorem.

REMARKS 3.2. (1) The proof of Theorem 3.1 shows that li w is self-
decomposable on H with Lévy-Khinchine measure M, then 1he conponent
4 has Lévy—Khinchine measure M, = M —T,M.

(2) The main result of Jajte in [B] can be obtained as a corollary of
the above theorem in the following manner,

Let 4 be a stable probability measure on H. Then u is self-decomposablo
on H by Proposition 1.9, and it follows from (2) that for each c¢e (0, 1),

M, =Ty _op.

Hence Theorem 3.1 gives M = T, + Ty al)ljl.zlf Now, by the same
argument as in [8], Lemma 3.6, we get T, M = ¢’} for every ce (0, 1),
whence for all ¢e R*.

‘We now turn to the consideration of self-decomposable probability
measures on Orlicz sequence spaces. For the construction and properties
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of Orlicz spaces in general and Orlicz sequence spaces in particular we
refer the reader to [16] and.to [3] and [10], respectively.

DerFinrIoX 3.3. The function a which we shall now fix for the
remainder of this section is to have the following properties.

(a) ¢ is defined on [0, &) into [0, oo).

a(0) = 0 and a(R*) =« RT.
(c) a is convex and strictly increasing on [0, co).
) 23)4 Ma(s) for all se RT and some positive constant M.

f a(u?)dy u)&()’a[ Jurdv(u)] for all Gaussian measures » on R
wn;h mean zero, where C is some constant. w

Let «, be the function complementary to « in the sense of Young
([16], p. 77), let y(t) = a(i?), te [0, co), and let y, be the complementary -
function to y. Denote by 8., §8,,, §, and §,, the Orlicz sequence spaces
corresponding to the funetions a, a., », y., vespectively, and by Z, the

subspace of S, of all sequences @ = (&, @y, ...) such that > a,(rz;) < oo
i=1

for all r > 0. By Theorem 3.1 we may assume S, 5 1,. For ga.ch. A in the
positive cone of X, whose norm is less than or equal to one-half, define

llelf = X 4af. The space of sequences with the property that |w|, < oo
1

~will be denoted by H,. Obviously 8, = H, by Young’s inequality ([16],

P- 77). In fact, S, and all its Borel measurable subsets are measurable
subsets of H, ([7], Lemma 7.1). As donein [7],if 8, = I, we assume a () = ¢,
te R*, and define |jz]|, = |jzl,.

It was shown in [7], Theorem 7.2, that a probability measure u on
8, is infinitely divisible if and only if for each A in the positive cone of
Z,, We can write

(16)  fa(y) = exp[i<my, v) —4T(y, 9) +

+fKa @, y)dM (2)+ fK (@,9)dM (a)], yeS) =8

ve?

where 2,¢ 8, T is an a-operator on Sn

U={oed,: Xy(la)) <1},

qe=l

(73, p- 118),

K, and K, are given by (12) with the norms being respectively the 1-norm
and y-norm, and M is a measure on S, finite on the complement of every
neighborhood of 0 in §, and safmsfymg

00

(fmczM ))

‘i—al

5 — Studia Mathematica LIIT.1
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The representation (16) is unique for any given 1. (Notice that if S, = I,
(16) reduces to (11) and the conditions for M given here as identical to
those given prior to Theorem 3.1.)

Remark 3.4. In [7]it was assumed that the function a, also satisfies
the “/,-condition” (d). However, by considering only elements 1 in the
positive cone of Z, , not of §,, and using results appearing in (3], [10]
we can avoid this added restriction, thus apparently enlarging the col-
lection of Orlicz spaces S, for which a representation of the form (16)
exists for all i.d. probability measures.

THEOREM 3.5. A probability measure p on 8, s self-decomposable
if and only if for each fimed A as above fi has the form (16) and for each o< (0, 1)
the Lévy-Khinchine measure M appearing in (16) satisfies M = T .M -+ M,
for some measure M, on 8,. If w is self-decomposable, then the component
uo has Lévy-Khinchine measure M, = M —T,M.

Proof. First recall that every measure on S, can he considered as
a measure on H, because

{BNS,: Be B(H,)} = #(8,)

(L71, pp. 136-137). A probability measure u on §, is i.d. [resp., self-decom-
posable] if and only if the extension of x to H, is i.d. {resp., self-decompo-
sable] (cf. the proof of Theorem 2.6). Moreover, if x is i.d. on §, then
the measures M which appear in (11) and (16) coincide. To see this, recall
that we can write

amn _ po=vxf
“where £ is the Gaussian part of u and
(1.8) e(Fy) % 6y, v

for some increasing sequence {F,} of flmte measures on S, and some
{2,} = 8, [15]. (Here ¢(F,) is the usual normalized exponential o‘E F,.) Then
g is Gaussm.n as a probability measure on H, ([7], pp.140-141). Now, (17)
and (18) are valid on H; as well as on §,, since the embedding of §, in H,
i§ continuous. It follows from the uniqueness of the representations (11)
and (16) and from [7], Lemma 7.4, that in both cases the measures M
must be given by M = lim ¥, . Hence our theorem follows from Theorem 3.1.
N0

4. The Urbanik representation. We shall exfend to tho spaces N,
defined in § 3 the representation given in [14] for the ch.f.’s of self-
decomposable probability uleasures on a finite-dimensional space. Our
development parallels that of [14], but some modifications are necessary
to deal with the infinite-dimensional case. Before proceeding, we shall
modify the representation (16) slightly by replacing the measure M with
a finite measure as follows.
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Let M be a measure on S, satisfying the conditions stated prior
to Theorem 3.4 with reference to the representation (16), and for fixed A
as in § 3 define a measure N on S, by

[l
1+l

N(B) = aM(@), BeA(S,).
Then, since U contains a neighborhood of 0 in 8, ([7], p. 143), N is a finite
measure on S,. The following fact is obtained by direct computation.
ProrosirroN 4.1. Let M and N be as above. Then M satisfies M
= T, M + M, for some measure M, on S, zf and only if there is a measure
N, on 8, such that for all Be #(8,),
1+l

19 N,(B) = N(B)— ———— 4N (@).
(9 e T

Theorem 3.4 and Proposition 4.1 imply that a probability measure
w on 8, is self-decomposable if and only if it can be represented as in
(16) — w1th the functions K(z,y) suitably modified — in terms of an
element #,¢ S,, an a-operator T, and & measure N such that for each
¢e (0, 1) there is a measure N, on §, given by (19). We proceed to examine,
in a more general context, the class of all measurés N with this property.
Recall that the spaces S8, are all separable conjugate spaces [3], [10].

DerinitioN 4.2. Let E be a separable, conjugate Bamnach space,
and let U and 8 denote the closed unit ball and unit sphere of H, respec-
tively. Let [0, co] be the usual compactification of R*, and set K=T x
X[0, oo]. If U is endowed with the relative weak-* topology of E, then
K becomes a compact metric space. Define h: EN\{0}—K by h(z) = (o/|l,
llzll). If U were given the relative morm topology of F, then A would:
be a homeomorphism of B\{0} onto § xR*. Thus, since it is well known
that the Borel fields on ¥ with respect to the norm topology and with.
respect to the weak-* topology concide, h and its inverse on § xRt < K
are measurable. For ae [0, ] and # = (w,r)e K, set | =r and azx
= (w, ar). Let N(E) and N(K) denote the set of all finite Borel measures
N on E and K, respectively, such that for each ce¢ (0, 1) there is a measure
N, satisfying (19) with the A-norm being replaced by the morm on E.
Here the integrand on K is assumed to have its limiting value ¢~ when
#e Ux{oo}. Let P(H) and P(K) denote the set of probability measures
in N(B) and N(K), respectively, and denote by N°(E) the elements of
N(Z) concentrated on E\{0} and by P°(B) the set P(H)NN°(E). Clearly
all these sets of measures are convex. Recall also that the space of all
probability measures on K is compact and metrizable in the topology
of weak convergence ([12], pp. 45-46). ‘
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Lemma 4.3. The set P(K) is compact,

Proof. It is only nécessary to show P(K) is closed. For Ne P(K),
ce (0,1) and fe C(K), (19) gives

1 - [l|f?
= —e T AN (@),
(20) [faw. = [1av—e [ fton) G 4 @)
K K K

Sinece the integrand in the latter integral of (20) is continuous on K, it
follows that, if {N™} « P(K) converges weakly to a probability measure
N on K and if N, is determined by (20), then

f AN f fay, dfor all fe O(K);
K K

whenece ¥, is a nonnegative measure, so Ne P(K).

Levma 4.4. There is o one-to-one mapping of K onlo the set P(K)°
of extreme points of P(K).

Proof. For any Borel set B of U, the sets B x{0}, B x{oo} and B x Bt
are invariant under multiplication by elements of RB*. Hence if ¥e N(K)
the restriction of N to any of these sets is again in N(K). It follows that
every extreme point of P(K) must be either degenerate at @ for some
2 with |lz]] = 0 or co or concentrated on {z} x R™ for some we U. Moreover,
& measure concentrated on {#} x R* is in P(K)® if and only if, considered
a8 & measure on R, it is in P(R)% In [13] Urbanik showed that P(R)°
consists of d, and all measures A, given by

Aa(B) it, Bed(R)

_ 2 [ i
log(1+a?) BaL, 1422

for ac B, where I, = (0, a) or (a, 0) according as. & > 0 or a << 0. Thus,
for uwe K, let 1, =6, if |lu|l =0 or oo, and for u = (w,r) with re¢R*
define 2, by i

2 fleell m, (), BeB(K),

21 =
) FlB) log(1+[uf®) J 1+ Jal®

where m,, is Lebesgue measure on the interval {w} x I,. The correspondence
#~>1, I8 the desired mapping of K onto P(K)"

Lemma 4.5, The mapping w— 24, is a homeomorphism.

Proof. It is to be shown that if {u,} ¢ K and we X, then t,>u
if and only if Ay, =%y Using the definition of the 1, and considering in-
dividually the three cases (a) Jju|| = 0, -(b) [u] = o and (¢) |ulle RY,
this can be accomplished. The details will be omitted as they may be
easily supplied by the reader.
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Via the mapping %, let us consider the measures A, for we 8 xR*
as measures on B as well as on K.

THEOREM 4.6. Let K be o separable, conjugate Banach space. A measure
N on E is in N°(H) if and only if there is a finite measure o on B with
w({0}) = 0 such that

(22) J1aN = [  fl@) @iy (@) deo (u)
) E E B

for every bounded measurable function f on H.

Proof. To prove the necessity it suffices to consider N e P°(E).
Consider such an N first as an element of P(K), via h. By a well-known
corollary of the Krein-Milman Theorem there is a probability measure
o on P(K)® which “represents” N in the sense that

(23) [ravw = [ [f@)ar@)do(2)
. K PRSEK ‘ :

for every fe O(XK). It is easy to see that (23) holds for all bounded measur-
able functions on X, and by Lemma 4.5 we may assume o is defined on K.
Moreover, it follows from (23) with P (K)° replaced by K that N is concen-
trated on 8 xR™ if and only if o is. Thus, since % is measurable and so
ig its inverse on 8 X R™, the desired representation (22) holds. The sufficien-
ey is clear.

CoroLLARY 4.7. Let S, and A< 8,, be as in § 3 and let u be a probability
measure on 8,. Then w is self-decomposable if and only if i has the form

, 1 oG,
i) = oxpfico0, 0> =3 1,0+ [ i dale)|, v,
Sy

g (1-+l@3)
where z, and T are as in § 3; w is a finite measure on S, with «({0}) = 0;
and

@ vy it

s, = [

tant (@], | tan”’|lel, —tan~ |Z, ]
llella flecl, ’

at—ilw, y)[
0 .
z for me BN\{0} being given by T = a,& where U is as in § 3 and a, = sup{a:
0<a<<l, ave U}. .
Proof. By Theorem 3.5, Proposition 4.1 and Definition 4.2, u is
gelf-decomposable if and only if there are , and T as in § 3 and a measure
NeNO(8,) such that

Aly) = exp|i<ae, 1 —4T(w, )+ [E(@, )N @), ves,,
S,
where Y

Tl -

Ela,y) =Ko, 9)—pa
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K (z,y) denoting K,(z,y) or K,(x,y) according a8 e U or ¢ U. If NV
is considered as a measure on H, and w on H,is twice the measure appearing
in Theorem 4.6, then it is easy to see that w is concentrated on S, and that
the representation (22) holds for all fe L*(N). If for each ye 8, we set
fl@) = E(@,y) in (22) we obtain, after some computation, the asserted
representation of u.

Setting §, =1, = H, in Corollary 4.7 we obtain the representation
of self-decomposable probability measures on Hilbert space which is the
exact analog of the finite-dimensional cage.

COROLLARY 4.8. Let u be a probability measure on the real, separable
Hilbert space H. Then u is self-decomposable if and only if

R , (@, y)

ite) = exp|i<a, vy, 0+ [ o camde@] v,
where xy and D are as in § 3, o is a finite measure on H with w({0}) = 0,
and

(D .
_ e =1 . 2, 9> -
Dz, y) = Of , at th ).
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