74 L.-A. Lindahl
by a—Je. Then I consists of ‘joint topological divisors of zero, so by

Theorem 2 there iy a pe Z(A) with T < Kergp. In particular, |a(g)| = |4|
=1 and it follows that pe U. This proves that UnZ(4) is nonempty.
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A moment theory approach to the Riesz theorem
on the conjugate function with general measures

by
MISCHA COTLAR and CORA SADOSKY (Buenos Aires)

Abstract. A meagure x> 0 belongs to the class My if it satisfies the Riesz
inequality
27

2n
[ 1F@PRdu < M [ if@)2du, Ve L2(w),
0 []

where fuis (essentially) the conjugate functions of f, with fixed constant M.

Applying a moment theory approach we introduce (and give explicit formulae
for) the canonical extremal (simple) elements for Rjpy, which prove to be given by
R(t)dt, with E(f) certain rational functions, making up a determinant set for Rpr.
These particular measures are for the class Rys what the Dirac meagures are for the
class of all meagures. Among the possible applications of this parallel construction
is the analogue for the Rps-simple measures of Bochner’s theorem of decomposi-
tion on Dirac measures.

1. Introduction. We say that ‘a measure u >0 satisfies the Riesz
inequality in L? if

(1.1) [IF@Pdp< M [1P@OFdu, VFe L),
where F is the conjugate function (or the Hilbert transform) of #, and u
is defined in (0, 27) (or in R"). Here we consider the simplest case when
p =2 and u acts in the unit circle; the essential part of this exposition
can be extended to L”(0, 2n) and L?(R) if p is even. The generalization
for all p and R™ will be considered. elsewhere.

Let &, be the set of all complex trigonometric polynomials of the
form

N . .

P(t) = _%‘anen(t), ea(t) == ¢,

(1.2)
& = \J&y, and for each F of the form (1.2) let us set
N=0

N
(1.2a) P(t) = D anealt),
=0
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so that 24F = ia0+iF—lﬁ, where F is the conjugate function of 7, and
therefore (1.1) is equivalent to

(1.1a) [1FPap < M [|FPay, Feo,

with a different congtant B,
Let .# be the set of all measures x>0 defined in (0, 2x) satistying

2

p) = [

0

an
(1.3) du =1 (where p(F) = [ Fdy).
0

A is @ convex compact set in the weak topology (u,—u weakly if u, ()

—u(F) for all Feg). For e, we define py(u) = (u(6_y), - ., uley)).
If M is a fixed constanty we shall write pe Ry if pe 4 and

(1.4) [1Pran< M [IFPap  holds for all |FPeéy,

and set Ry = M Ryw, R = U R;. We shall see that if M <1 then

Ry, contains at most one measure, du = df; s0 we consider only M > 1

and focus R through the study of gy (Rym). ‘
Helson and 8zegd [4], extending a previous result of Gaposhkin,

proved that weR iff pe# and

(1.8)  du = w(t)dt,

Hunt, Muckenhoupt and Wheeden [5] proved that ueR iff du
= w(t)dte 4 and

with  w = e, u,ve L™, ||, < =/2.

(1.6) ( i w(t)dt) ( f w(t)“’dt) <olIf, for all intervals I.
I I

Condition (1.6) is of great simplicity and its use opened the way for the
generalization of the Riesz inequality to L?(R"); furthermore, it appears
in different problems, revealing their deep connections (ef. [2]).

As it stands, result (1.5) gives an explicit construction of all te R
and tells ns “how many?” they are, but it is difficult to check whether
& given u satisties (1.5). On the other hand, (1.6) is easy o be checked
if the measure i3 given in the form du = w(%) dty but neither is practical
if uis given as a functional u(F). However, this iy quite commonly the
case, and, moreover, it is frequent to have u given only by its moments
or Fourier coefficients, that is, only by its values for J = Cyy M =0, +1,
+2,... This led us to try a moment theory approach for further
study of R. The umefulness of such an approach comes to view in the
treatment of the following question:

— is the class R determined by a set whose elements are of simple
nature?
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This is a standard question in several classical theories, where a cer-
tain class 2 iy deseribed (i) by showing that every element of it is the
limit of finite combinations of “simple” elements (which are of a special
nature, such as characters, spherical functions, ete.), and (ii) by giving
explicit formulae for those simple elements. In most known instances,
where 2 is a convex compact set (so that by Krein-Milman theorem
every element of % is the limit of convex combinations of extremal points),
the special elements are essentially the extremal points of 2.

In the case U = 4, the extremal points of .# are the Dirac measures
0y (0;(I")= F (&) if Fe &) which are of simple nature indeed. However,
there is still another natural type of “simple” elements in .#4. We say that
pe.# is of finite order N in # (or canonical of order N in #) if there exists
a finite integer n such that the following condition holds:

(1.7) veutt and »(F)=pu(F) for all Fed, implies »=p,
and ¥ is the least such n, or equivalently, @y (x)e boundary gu(4).

Fortunately, seeking the “simple” elements of .# we mneed mot to
make a choice between the extremal points and those elements of finite
order, since the extremal points are known to be just the measures of
finite order 1 in .# (cf. Section 4 below). So, if .#, is the set of the extremal
measures and #, is the set of the canonical measures, then ,N.#,
= M,. Thus, M ,N.#, is the set of the “simple” objects of .#, and the
convex combinations of these simple elements from a dense set in .

By analogy, in the case A = R it would be natural to call simple those
measures u such that ¢y (u) is both extremal and a boundary point of
¢ (R). However, since R is convex but not compact (in the weak top-
ology), we have to deal with R, — which is convex and compact for
each fixed M — and more precisely with ¢n(Ryy) = By

We are then led to the following ‘

ProBrEM. Give explicit formulae for the simple elements of B,y and
prove that it is determined by their convex combinations.

Remark. Let us observe that the proofs of (1.5) and (1.6) apparently
do not furnish the exact value of M in (1.4), that is, (1.3) and (1.6) do not
characterize the classes M;,, for a given M. A positive answer to the above
problem gives a characterization of R,; and therefore an information
about the constant in the Riesz inequality.

The moment theory approach furnishes a positive answer to the
problem, of the following type. To each finite sequence {m,}Yy we as-

sociate certain determinants and two trigonometric polynomials Py,

Py ’
dt = R(t)dt, B(?)
Qn

function; the simple elements of R, are just all such measures correspond-

a rational

Qy, and form the measure du =
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ing to sequences {m,} whose associated determinants satisfy a fixed
condition. Thus the simple measures of R,y are absolutely continuous
with a density of a very special type ((1.5) only tells us that every ue®R
is absolutely continuous). In Seetions 2, 3 and 4 we give the exact definitions
‘and statements and indicate how to construct such sequences {m,}, which
tells us “how large” is Ryy.

Though our R,-moment theory is parallel to that of # there are two
striking differences: (i) while the simple elements of .# are discrete meag-
ures, those of Ry are absolutely continuous measures with rational
densities; (ii) while the simple elements of .4 are of order 1, those of R,
may have arbitrarily high orders. These differences are due to the fact
that though both the measures of .4 and of R;, are in 1-1 correspondence
with non-negative forms >k, & &,, we have &y, = u(e.,) it ue#, but
b = ejopul65_y) it pe Ryr, with ¢, taking the Lwo values M and M 1.
We also need a “lifting” operation unnecessary in the classical case.

The object of this paper is mainly to indicate the existence of a con-
nection between moment theory and &ingular integrals, and to point
out the interest of eonsidering the quasi Toeplitz forms associated with the
Riesz measures. In Section 5 we outline the basic questions for further
development that will be treated elsewhere.

2. Positive functionals and quasi Toeplitz forms associated with R,,.
As in Section 1 let .4 denote the set of all measures w0, u(l) =1,
and R, the subset of .# of measures satisfying (1.4) for all ¥ and a flxed.

2 O b (8

M. &= U &y is the set of all trigonometric polynomials F (¢
N=0

For each pe # we set

2n

@2.1) my = f ety
. 0
80 that
(2.18) W8y) = m_py = My

{ma}%, is the sequence of the Fourier coefficients or the trigonometrio
moments of u. Let us denote by #" the set of all sequences m == {m,}*.,
such that there exists ue & with m, = pu(e_,) for all n; and by ¥y, the
set of all sequences m = {m,}2,, such that m, = u(e_,) With ueRy,.
As it is well known, the measures pe 4 are in 1—1 correspondence
with the positive linear functionals u(F) defined in & with #(l) =1,
In other words, if ‘
(2.2)

={Hed: H(t)>0 for all tc(0,2n)},
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then # is a cone in the vector space & and e A iff u(F) is linear in &
and positive with respect to the cone 4: u(H) > 0 for He &. By the clas-

2 all 611

sical Féjer—Riesz theorem (cf. "[3]) the polynomial H(?)
belongs to & iff

N
(2.2a) H(t) = Q@) where =D &uealt),
50 that '
N —
(2.2b) H) = D &E6 (1),
J k=0
and

N
(2.2¢) pE) = Y my 58, my = pley),
1,k=0
so that ue 4 iff
(2.2d) Ty (&; m) my = p(e_;),

= 2 my, ;65,2 0,
k=0
for every sequence &, ..., &y, N =0,1,...
Thus, to each finite or infinite sequence m = {m,}, m_,
is associated the (finite or infinite) Toeplitz form

m) = 2 My ;&5 &

4,k=0

== MWy, +

(2.2e)

and m belongs to #" iff m, =1 and its associated Toeplitz form is non
negative (i.e.: the expression (2.2e) is > 0 for any sequence & = {£}%,
such that & 0 for j in a finite set).

Now u satisfies inequality (1.4) iff w(M|FP—
Fe & This suggests the introduction of the sets

\f’F) > 0 for every

(2.3) Ay = {Fes: F = MQP—IG8}
and
(2.3a) Ay = {all finite sums of elements of A}

Cleaxly # p,is & cone: H e A pry A 2= 0 imply AH ¢ oy, and H,, Ege A
imply Hy+-Hye A 3. This cone defines an order < in &:

(2.3b) G < H iff H—GeAyy; Gedy iff @>0.
Observe that H (1) > 0 for all ¢ unphes H > 0, that is He% implies
He Ay, as seen from (2.2b) where Q @, so that

—1QP).

_ 2
H = 1(MIQI
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If u(F) is a linear functional in & which i positive with respest
to < (u(F) =0 if F > 0), then it is positive in the orvdinary order <,
and # is a non negative measure; moreover ue R, . Therefore ue R,y
off w(F) is a linear functional in &, non negative with respect to A 5 (or
to the order <), (1) = 1.

And from (2.3) it is clear that w(F) is positive with respect to o4y,
‘iff u(H) 3z 0 whenever He AY.

N

I Qt) = Y &i6,(H) e Ay then
oy

N N :
(2.80)  MIQUP—IQWE =M 3 EFe ()= > &Fe 1)
N

4l om0
N e
= Z 8§56 by (1)
. 1 E=—N
where
(2.3) o = M~-1 it both.j, k are =0,
M otherwise.
So that ye Ry, iff p(1) = Land
N
(2.3¢) I¥ (& m) = 2 ey &5, 2 0,
hl=N

for every sequemce &_y,..., &y, N =0,1,....
To each sequence m = {m,}, m_, =m,, we agsociate now a
(finite or infinite) guasi Toeplite from ‘ ‘

(2.3) TG m) = Y e &
ik

~ Then, mue ¥ iff my = 1 and the form (2.3f) is non negative for
every sequence & = {£,}5° such that £, = 0 only for » in a finite set,
or equivalently, if all the finite forms (2.3e) are non negative for
¥ =0,1,... v

We say that u(F) is strictly positive with vespect to the cone 4 M

(or to the order <) it H >0, H = 0, imply u(H)> 0. Let Ri; denote
the set of all measures ue Ry, such that u () is strictly positive, Similarly,
let ¥73; be the set of all me ¥, which are positive definite. Then the
above remarks may be summarized as follows. °

© LRI

PrOPOSITION 2.1. There is-a 1-1 correspondence between the MeASUres
ne Ry, the functionals u(F), u(eo) = 1, which are non negative with respect
to the cone Ay, and the non negative infinite quasi Toeplitz forms with
mo = 1. Moreover, peRi; iff the associated quasi Toeplitz form is posi-
tive definite. g
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Since in the case of .4 the forms have indexes ranging from 0 to oo
(because of (2.2a)), while in the case of Ry they range from —co to oo,
to work with the partial forms we have to adopt the following ordering
of the integers:

(2.4) 0, =1,1, —2,2,..., —m, n, ...
and eohsequently we shall order the double sequence {6,}*,, as
(2.40) €03 615 b1y €_gy Ogy - .-

and similaﬂy & = {&} and m = {m,}. Then the infinite quasi Toeplitz
form T™(&; m) is non negative iff so are all the finite forms

(2.3¢) TE(&m) = D oumy ;&F,
B
where J, is any of the sets of the sequence
(2.4Db) Jo={0}cd; ={0, 1} cJ, = {0, ~1,1} = J,

={0, =1,1, =2} = ...

A sequence of sets of indexes related to {Jy} that will be used in
section 3 is {Jy} formed by :

if N is odd,

Tyy U {N-l—l }

(2.40) Ty =

9 .
lJN_lu{—N;_} if N is even.

(Observe that J, consists of the first N +1 integers of the ordering (2.4)
and that J} is obtained from J, by substituting the last term by the
following one in (2.4).)

‘With the notation

(2.44) kt+dy ={jeZ: j =n+k,nedy},

we have Jy = —(—1)V--Jy.
We associate with each m the sequence of the determinants of the
form T™(&; m)

M1 Mm_,
(2.5) Ap=dyg =M=ty A=Ay =y ]
M1 Mm_, (M —1)m,
Ay = A, = | Mm,; Mo Mm, ,
(M—1)m_, Mm_, M-1 |

6 — Studia Mathematica LIILL
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M1 Mm_4 (M —1)ym;, Mm_,
y 4 Mm, M Mmy Mm_y
BT T M —)ym_, Mm_, M—1 Mm_,|" """
Mm, Mm,y Mg M

in general,

— N1
AN AJN - I(l])q‘])’qml’

where
Moy, g o p=2j,q =2k,
M=1)ym,_, it p=2+1,q =2kl o
(2.5a) Opg = ( My . P J 4 ‘ T, ked ).
Mm_y_y it p=2j,q=2k41,
Mmyre it p=2+41,q =2k

More generally, for every finite set 4 of integers we have the finite
form )
(2.6) T m) = Zsjkmk——j &&s

jed
. ked

and the corresponding determinant 4,. These determinants (in which
j and % vary in the same set 4) are called the partial determinants of m:
among them are 4y, 4y, ...

From, the classical theorem on positive hermitian forms, we have
then

PROPOSITION 2.2. (a) e ¥ 3 iff my = 1 and all its associated deter-
minants Ay are positive for N=10,1,2, ...

(b) me ¥y iff oll its partial determinants 4,4 are non negative.

From Propositions 2.1 and 2.2 we get

COROLLARY 2.3. If peRy then M—120 and |u(e_,)] = |my

VE
<
for M =1 there is only one measure peR,, namely du = dt, with m,
=0 for all n 0.

Thus, from now on we are justified in assuming M > 1.

Let us consider now the measures ue Ry, which are not in Ri;, that
is, u(H) = 0 for some He Ay, H #0. Such an H ig of the form H
= J(MQ, (1) 1@, (1)) and since u(M|Q,"—(Q,F) >0 for every m,

n

this implies that the last expression is equal 0 for every n. That is, H
can always be taken from ¢’ %- Observe that in the case of &, if pe .4

—1
for n=£0. Henoe for M < 1 there are no measures ue Ry and

y 2
is not strictly positive, there exists @ e & such that u(|Q*)= 0 = f 19 (®) dp,
0

©
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'which 1mp11es that @ is concentrated in the finite set {ti,...,?#}where
e%,j =1,...,k are the zeros of the polynomial @ (e* “), located in the .
unit clrcle Observe also that if ye # is finitely discrete, e.g. p = J the

Dirac measme so that m, = u(e_,) = 1 for all n, u ~ Zmn% 1), then
p = Zm,, e,(t) is not a measure but only a distribution.

Instea.d in the case of u< Ry we have the following
ProposIrIoN 2.4, Let we Ry be such that w(H) = 0, where

N
Ht) = MQOPF—IQOF, Q1) = Y aue,(t), H #0;
-N
then

(a) it holds
(2.7) #(Q@Wea (1) =0 for n=1,2,3,...
(@72 ul(MQW—Q)e(n) =0
or equivalently,

. N
(2.8) Z am_y_p, =0 for mnz=l

he—N

for n=0,-1, —

(282) M Z WM _gppn M—l)Zak'm wn =0 for w20
k=N

where m, = ,u(e_,,
(b) If y~2'm,, L (8) and p "’Z My, (1), then both p and u® are

absolutely commuous measures: du = w( Vb, du® = wo(t)dt, w, w'e L*(d5),
w(ty % 0 p.p. Moreover,

' ‘Po(t) ” 0 .~ opt)
(2.9) wo (1) = — . “degree” of P' << “degree” of ¢,
Q1)
N
where 1° (%) Z‘ b,6, (1) 48 given by b, = D WMy
- CES IR
e , P
(2.92)  w(f) = wO(t) -+w(t) +1, and w is of the form 72—“—)« .

Proof. (a) Lotbing Q,() = Qi) +ee_, (1), it n>1, we shall have
0ut) = Q (1),
MIQ,()F —1Q.()F = MIQ(t )l“+aMQ() oo (1) -+ £ Q1) 6, (1) +30e — 1Q(2)
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Since f(e) =,u(IlIlQ,,(t)]‘“'—.lés(t)lz)>0 for all real ¢ and f(e) = 0
for ¢ = 0, we have f'(0) = 0, which yields
p(@) e_n (D) + (R W) en (1) = 0.
Taking e instead of e, we obtain similarly

1@ ey (1) — u(Q(6) e, (1) = 0,
so that
for

#(Q)ey(8) =0
Instead it m =0, —1, —2, ..., then Q,(t) = {(f)--se_,(4) and

no=1,2,..

F1(0) = (G0 —F0) o)+ u(HQ1) G ()e) =0
and we obtain
#((2Q—@)e,) = 0

(b) Let » be the linear functional in € defined by »(e,) = u(e,) — u’(e,),
that is, v(e,)= u(e,) if » > 0 and »(e,) = 0 if % < 0. Then for each Fe &
we have

) = i) < [ 171 < ([ 1R < 202 (f17ran)® < e .

for n =0, -1, —2,...

This shows that »(F) is continuous in the norm of the space ¢(0, 2x) and
therefore v is a measure (= bounded linear functional in C(0, 2x)). Since
v(e,) = 0 for » < 0, by the classical theorem of F. and M. Riesz (cf. [67),
» 18 absolutely continuous. Therefore as the Fourier development of b is
equal to that of —14-7, u° is also absolutely continwous, du® = w'(t)ds,
w’e L', and so du = w(t)dt, we L'

el
If we set w'(H)Q(f) = > b,e,(f), then

N
by = Zakm—-]u

k=1

N
by = gj%m—lﬂ-u
=2

by = byyq = ... = 0.
Instead, if # < — N, then by (2.8),

o0
bn = E QMg g = 0.
b=—N

icm
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Thus b, =0 for in|>N and W (1)Q(t) = P°(1) is a polynomial of
degree <. N —1. This proves (2.9). Since w(t) >0, it follows from (2.9)
and the Féjer-Riesz theorem that w(t) is of the form (2.9a). Q.E.D,

CoROLLARY 2.5. If (@) =0 where Qe H N8y then veRy and
v(F) = p(F) for Fe &y imply v = p.

Proof. In this case »(@) =0, Qe X 3y and by Proposition 2.4 (b),
dv = w(t)dt where w(t) is given by (2.9a).

The converse of (2.7) and (2.7a) are also true:

Provosrrion 2.6. (a) If F 4s a continuous Sfunction, uweRy and
#(Fen) =0 for n=>1, u((MF~F)e_,) =0 for n>0, then

W(MFP—|FpE) =0,

(b) If @ = 3 ayey, any linear functional and tf u(Qe,) = 0 only for
ked 5 o
nedy, n =1, and ,u((MQ—Q)e_n) =0 only for nedy, nz=0, then

p(LIQE—1GP) = 0.

Proof. (a) Observe that the proof of part (b) of Proposition 2.3 is
based only on (2.7) and (2.7a). So these identities imply that du = w(£)dt.
As MQ($)w(t) is analytic by (2.7) and Q) w (¢) — MQ (t)w (1) is antianalytic
by (2.7a), MQ(t)w (t) is the analytic part of Qt)w(t):

(2.10) MQw = (Qu)" .
Thus
(2:10) i MQuw—i (Qu —MQw) = (Guw)”

(where T is the conjugate function of F). Moreover, as
Q = (19 —2i()".
— (7, é), we have

(2.10b) Q = 2iQ —iQ;

Since (F, &) =
[(Gw)" @ = — [ Gud,
and by (2.10) and (2.10b),
J @idQu—iGu)q = — [ Gu(@id—iQ) = [ Guw(2i§ i),
$0 that M [QuQ = [, henco
P IQE—1QP) = o.
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(b) Let @ = X ape, =( X + 3 Jarey, where
kein peiy keI

Iy ={medy: n <0}, Jf ={neJy: nz0},

50 that .
HIQE—1Qr = > MQuee+ > (MQ—-Q)uey,
ke.l;,{v Icc./;\!:,
and

w(LIQE—1G8) = 3 Magu(@a)+ 3 wp((M1Q ~Q)ey).

kel 5y Ice.lx

Since by hypothesis p(Qe) = 0 for ke Jy and u{(MQ—@)e) =0 for
ke J3, the conclusion follows at once. Q.A.D. -

3. The reduced moment problem for R,,. Let us writo {m,}"y e ¥ y
if there exists me.# satisfying p(e_,) =m, for |n|< N. The clagsical
reduced moment problem studies necessary and sufficient con(li‘bio_ns
for a given finite sequence {m,}Yy to belong to # y and the properties
of the measures pe .4 having {m,}y as their first N 41 moments.

Similarly we write {m,} ye ¥z (or ¥5") if there oxists we Ry,
(or Ri;) such that w(e_,) = m, for |n|< N, and consider the reduced
moment problem for Ry,.

If peR,, then the A y-positive functional u(F) is also & real linear.

functional: if € = |J &% is the set of all real trigonometric polynomials
P = 3 ty6y, 6_, = G, then u(T) is real for every I'e &%, and p iy deter-
mined by its restriction to &%.

To each sequence {m,}" with m_, = m, we associate the real lincar
functional 1(F) in &% defined by l(e_,) =m,, |n|< N. ‘

Then the reduced moment problem of whether {m,}~¥y belongs to
v (vespectively to #y) is equivalent to the problem of extending !
to a A y-positive (respectively, & #-positive) real functional on &%, Com-
bining this fact with the Hahn-Banach theorem we get the following
condition:

ProrosmroN 3.1 {m)Nye ¥Y; (respectively W y) iff me =1 and
the corresponding real linear fumctional 1, defined by 1(e.,) == my, |n| < N,
is mon megative in &% with respect to Ay (respectively, o €), i.e.:

(8.1)  UF)=04f F >~ 0 (vespectively, T = 0) or, equivalently, if e Ay 8y
(respectively Fe €NEy).
Proof. It pe Ry (or pe ) and ule_,) = m, for |n| < N, then y == 1
on €% and (3.1) holds.

Conversely, assume that (3.1) holds and let us prove that theve exists
weRyr (or pe #) with p =1 1in &%.
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It Fe & and [B(1) < 2 for all 4, then 21— F > 0, that is, 1 —Fe @
and therefore also A > F. 8o the function 1 = 6 is & unit of &% in hoth
orders : and >. By a known theorem of Hahn-Banach type (cf. IIL
of [1]) of extension of positive functionals, this implies that 1 may be
extended to a positive linear functional x(F) in &% Q.E.D.

We suy that the polynomial Qeé&, if Q = > aq6,. In the case

. . . . i fied
of . #, Fe4ngy implies > 0 and by the Wéjer—Riesz theorem we obtain
thats

B2) Penéy it F = |QF where Qe &y .
}Heénce, the condition of Proposition 3.1 reduces to

(3.3) {m ) e Wy i L(F) = 0 tor F= Q] with Qe

or equivalently

(3.3%) C{m Y ye W'y it the associated form Ty(& m)

N .
Y - . . ;
= Z My...; & &, 1 non negative for all &, ..., &y.
Jole==0

The derivation of a reduction similar to (3.3) and (3.3a) for Ry, is
more complicated due to the presence of the factors &, in the quasi
Toeplitz forms, and the fact that Fe ', need not be non negative in
the ordinary sense (so that the Féjer-Riesz theorem does not apply).
More precisely, in the case of R, we have to take into account that

(i) while every element of i, is a finite sum of elements of 47,
not every Fe £ 3;NEy is a finite sum of elements of A% Né&y.

Tn fack, it may happen that I, Ge Ay, F¢ &y, G ¢ Sy, but T+ Ge &y

(ii) an element Fe #%:n&y may be of the form .F = M QP — |Q
with ¢ ¢ &y~ However, this is easily overcomed since

(3.5) 1) 0 for Fe #%n&y it 1(F) = 0 for B = W|QF — QP
with

(3.hw) Qe dypgy Tor some 2, n| <t N.

Observe that - Jy in such that {j—%k| j, ken4-Jy} =[—N, N]
for all n. Thus any partial form T3, (& m) involves only {m,}Yy.
The difficulties introduced. by fact (i) are of a more serious character.
But althongh (3.3) i§ an essential step in the classical theory of canonical
measures, we may avoid sceking for its analogue for R, by introducing
the consideration of the classes Rypv.


GUEST


88 M. Cotlar and C. Sadosky

Let R = {(@_y, ..., oy)e R 11wy = 1}. For each pair of integers
0 <L<N let gy: ﬂ-}R“ be the continmous map defined by ¢y(u)
=(ue_y), ..., uley)), and “let
Wy = {M QP =191, Q< &1y}
Rypn = {pe M u(H) >0, VHe Ay},
Ripy = {we H: u(H) >0, 0 = He Ay},
R (D) = {pe Ryt w(H) = 0 for some 0 # He A5, but w(H) >0
0 # He Ay}

V(L) = gy (mzmv ( 14)) .

Ay the cone spanned by Ay,

Vaw = oy (Raw)y Pl = on (R,
The me ¥ 5y and the Me"R ay are called elements and measwres of order N
for Ry,

Note that Ryy = Rap = ... and Ry, = (M) Ry, s0 that the study of
Ry is reduced to that of Vyy, N = N

By conveniently modifying the proofs of Section 2 and of I.’ropomtmn
3.1, we obtained for R,y the following properties similar to those proved
for Ry,

PROPOSITION 3.2, (a) we Ripy (respectively, Ryry) iff M =gy () e ¥ byy
(respectively, ¥ ay) and iff T (&; m) is positive (non negative).

(b) Given m = {m,}*,, L < N, there exists pe Rypn with g, (p) = m iff
UP) = 0 for every Pe 81,0 3y, being the functional defined by min &, .

PRrOPOSITION 3.3. If ue Ry (L), 0 < LK N, and u(M Q1> — @) = 0
where @ = 3 o, then

kedp,

1.,.4,

(a) relations (2.8) and (2.82a) of Proposition 2.4 hold for n e J y (I varying
n Ji);

(b) there ewists an absolutely continuous measure p, = w(d)dé with
Malln) = uley) fO? nEJ\U

7f :uo_ Zm‘nen Iu'( -u) )"" Ml( l)

(N+—L+1 21, where t, has a rational density POJQ, with I°

w =0 4f n ¢J, and b, = 2/ M gy i ey
ked,

(Q) 4f L = N —1, then the {m,}~  are Hm mommzcs of a rational function
POQ) and are explicitely determined by {m, ) 5Y.., which ave said to be lifted
to {m, -

To any finite sequence {m,} x, m_, = #,, we can associate the
N +1 determinants 4,, 4y, ..., dy given by expressions (2.5). If theye
4, are all non negative for 0 < n < N, then we denote by [ the set of

m,” s Where my, = then u(e,

for n| <
=2 bn. en:

icm
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all complex numbers z such that also the sequence {m_y_,, M_y, ...
oy My My} With my ., = 2 has non negative determinants

(8.6) 4y =0,

vy A0, Ay, (2)=0

The determinant of order N obtained from 4 ~v-1 by adding the j
line and the %k column of determinant 4., for some Jy B N +1, will

be denoted by Ay._, ( ) We write A, l(ﬁi) — dy=dy .

Observe that 2 (or ) appears in 4 ~+1(2) (of order N—{—2) in the N -2
line and the N +1 colu.mn, while Z (or 2) is located in the N 41 line and the
N +2 column. So, 4, does mnot contain neither z nor Z, and depends
only on the given {m,}",

In what follows Al(j,k)go means that in A the element in the j line
and the & column is replaced by zero.

Levma 3.3. Let ue s and Qun(t) be the trigonometric polynomial
obtained by replacing the last column of the associated determinant Ay of

[
and let wy, u_y, ...

u by the column {eitseay = 2_1 , be the minors of
- 1

the last column in Ay.

Then, for every p = 0,1,2, ..., the scalar product of {u; iYiesy by the
even columns of Ay, are given by the numbers Mu(Qyey), n =1, nedy,,,
while the scalar products of {uj}ﬁ 7y by the odd columms of Ay.yp are given
by the numbers u((MQy — Qy)e W) B0, ned y,-

(It must be understood that for p > 0, we form the secalar product of
{4}jer, Wwith the columns of Ay, truncated at the first N +1 elements.)

Proof. Follows easily from the expressions (2.5).

TuworREM 3.4. (a) Let {m}Ny, m_, =m,, have positive associated

determinants: Ay>0,..., Ay >0. Then I' = 'y, is & circle of center
¢ and radius v, where

1 1 +1
(8.7 [ - dy_y ( )
! i /IN ¥ ¥ Nwvsr,mm0
) 1 Apdy
(3.8) o T s )
M Ay

Moreover, 2 belongs to the boundary of I iff dy,y(2) = 0.
(M) P i = {{m,}x: Ay > 0for n < N} Ry (L) = {ue Rypyt 4, > 0
if m< L, 4y, = 0}, Int¥ 3y = Vi 4s dense in ¥ 3. Rigy © Int Rypn.
N

Boundary ¥ yn = \J ¥ ax(D).
Li=1


GUEST


90 M. Cotlar and C. Sadosky

(€) {me ¥ gyt dy_y = 0} = closure {me ¥ py: 4, >0, n={ N2
Ay Ay_y = 0}. . o

(d) closure ¥ 3y (N) = closure {m = {m,}Yy: 4, > 0, # < N1,
Ay >0, dy = 0}.

Proof. (a) For simplicity we develop the case N = 2, but the argu-
ment applies unchanged for any N = 0. We have then

M1 Mw_; (M~Lymy Mm_,

Momy M Mom, Mm .,
Avaa@ =& =)y v Mme, M1 b ’

Mm, Mm, Mz M

eel' i /y.(2) > 0.

By the known Sylvester identity for determinants,

n—1 p n—1
Ay (n— 1) Ayy ( % )

Aiafuts) sl

We apply (3.9) to Ay, (2) and Ay_;:

(3.9) /Jn ‘5171——2 =

(3.10) .
M -1 Mwm_y (M —1)ym,y| | M -1 Mm_, Mm_,
Ay (&) Ay = | Mmy M Mm, | Moy M Mm_y |~
(M~1ym_, Mm_, M-1 | |Mmy Mmy M
| M—1 Mm_y Mm_, | M—1 Mwm_; (M-—1)m,
— | Mm, M Mwm_y|-| Mm, M ' Mmy

(M—-m_, Mm_, MZ ||Mm, Mm; Mz
As Ay > 0, Ay, (2) will be 2> 0 iff the expression (3.10) is = 0, which

amounts to
M—1 Mm_, (M~—1)m,

— M B —MA Mm, M Mmy  e—
' ijlfm2 © My 0

M1 Mm_, Mm_,

A, Mm, M Mm_ |zt 11(%) e (‘})
(M —Lym. _, Mm_, 0

; M1 Mm_, Mm_,| | M1 Mwm_; (M —1)m,

—| Mm, M Mm_,|-| Mm, M Mm, w0,
(M-1)ym_, Mm_, 0 Mmy  Mm, 0
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Hence ze I".iff 2 satisties —&2+ 02+ 0tz 12 —ct = 0, where ¢ and »
are given by (3.7) and (3.8). To, prove that I" is a circle it only remains
to check that M*1* = (dyAy)/4%_, is positive. This is in effect 80,
because by hypothesis all 4,, In| < N, are positive and, by Proposition
3.2 (b} this implies that also A} is positive.

(b) The first two assertions follow from Proposition 3.2 (a) and
they imply that Int¥ ., = ¥, and the last assertion. Since gy i8
continuous, Rizy = IntR,y. Finally, if #y 18 the Lebesgue measure,
then uy(e,) = 0 for n # 0, and its 4,,> 0 for all n, 50 e Y Trws all N.

. 1
For every ue ¥ 5y and every p = 1,2,....we have u-+—pye ¥y and
1 p
e . to—>u. Hence #75;y is dense in %y,

(¢) Let {my}¥ye ¥y such that 4,2 0,..., dy >0, Ay, = 0.
By (b) there is a {m;1¥ye ¥,y arbitrarily close to' {m,} with 47 > 0,
oy Ay >0, 4%, > 05 4% > 0. Hence, by (a) 4%, >0 and mb_,c G
=1Int IF  nIntIF, (Dy_y = {my_y: Ay_, > 0}). T we fix m} for
n < N —2 and replace mf_, by any my_,¢ @, all the determinants of the
new sequence would be > 0, and also A%_, > 0, so we can take mi interior
to I'}y and obtain a sequence from ¥ wun- By passing to the limit, the
same Is true if we take md_,e bdary@ < bdary I'_ ubdary I'§.,. But’
mf_re L% is close to the fixed point my_,, and so is my_;, since the
radins of I'f_, is small because 43_, is close to Ay_, = 0. As A =0
or Ay_, =0, the assertion is proved.

(d) Assume 4, >0 for n< N—1, dy_, >0, 4y =0 and let us
show that me ¥y, By (a), there is a mye Int Iy arbitrarily close to
My, and {m,}V5h 0 {my}e ¥ fy. Hence m is in the closure of ¥ e

Now let me 7y (N), 80 that 4, > 0forn < N, 4, = 0. Itis enough
to consider the case 4dy_,=0. Let m™* e ¥}, be arbitrarily close to m,
with 47 >0 for n<< N, 4F.,>0. As above, {m,} 3. U{md}e ¥ un
for every mjye I'f, and we can take me boundary s so that 4% = 0.
And. mj is close to my because I is small since A%_, is close to Ay =0.
Q.E.D.

JOROLLARY 3.5 If e ¥ yn(N) and Ay_, =0 then my = Gy 18
uniquely determined. The same conclusion holds for m e ¥y with A yep = 0:

In the cases of Corvollary 3.5 or Proposition 3.3 (d), m is called the
lified of {m,}N3h,. ‘ ‘

4. Determination of the simple clements and reduction theory.
Let ¥y (N) = {me ¥y (N): Ay > 0}, Rar(N) = o' (#5,(V)). The.
Me ¥y (N) and pe Ry (N) will be called the canonical elements and meas--
ures of order N (for Ry,). The me ¥ 3 (N)Nextr ¥y and pe o5 (¥ 5 (W)
Nextr ¥ yy) will be called the simple elements and measures of order N.
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We say that me VMN(J\)UVMN(N —1) is reducible to a lesser order if
it is the lifted of {m,)¥x.,. In this section we prove that. each me ¥ py
¢an be obtained from the gimple elements of order < N by the operations
of lifting, taking convex hulls and passing to the limit. (Note that
lifting is not comideled in classical moment theory.) Since bdary ¥y =

P au(N)Yu (U (L )U("VMN (V) —# 3 (
by _extr m < extr ¥y (N)U(¥ 3 (N) =¥ 3 (N)) © extr ¥y (N)U

(U VA D) U (¥ 3y (N) — ¥ 3 (N)), and the me¥ py(N) —¥ 3 (N) are
1edue1ble (Coroll. 8.5), the proof will be concluded by showing that the

N—1
me | ¥ (L) are reducible and that extr? ; (N) =¥y (N)Nextr ¥y p.

L=1
TemoREM 4.1 (a) me ¥y (N) iff 4,>0 for n<N—1, dy_ 1> 0
Ay = 0, and then m = @y (u) where u has a rational density |P(2)/Q(t)
being the trigonometric polynominal obtained by replacing 17@}247»1@& of
the last colummn of Ay by (1), ey (), €(t), ..., and |[PP = P°Q--P'Q
+1Q12, P° as in Proposition 3.3 (c).
b) If me ¥ yn(L) then' Ay = dp ., = ...
the me ¥ 3y (L), L N—~1 are reducible.
¢) If we Ny is canonical of order N then u is of order N in the sense
that ve Ry, and v(F) = u(F) for Fe &y imply v = p.
Proof. (a) The first assertion follows directly from Theorem. 3.4(d).
Now let ugy U_1, %y, ... be the minors of the last column of Ay and

(W), and ¥ 4 (N) iy determined

= Ay = 0. In particular,

(4.1) Qn() = ugeot+u_je_;+ w6+ ... = Zuje,-(t).

) Jedn
Since 4y = 0, by Lemma 3.3 we have

M((-ZVIQN“QN)ﬂlc) =0
for k<0, keddy.

(4.2) w(@Qye;) =0 for k=1, keJy and

By Proposition 2.6 (b), (M |Q|2—|@|?) = 0 and Proposition 3.3 (¢) ends
the proof.

(b) Let wg, w_qy... be the minors of the lagt column of A, and
Q) = Q1) = ugeo(t)+u_ye6_,(t)+ ... Then, as in the proof of (a),

p(M1Q12—|Q?) =0, and by Proposition 3.3 (a), conditions (2.7) and
(2.7a) hold with the restriction ke Jy. By Lemma 3.3 this implies that
the first L+1 lines of any determinant 4,,, are linearly dependent,
hence 4., = 0 for L+p << N.

icm
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(¢) Since the determinants of u satisty 4,>0, n <, 4y =0,
and they depend only on the m, = u(e_,) = »(e_,), [n| < N, we have
that these determinants are also the determinants of » and by part
(a), » and p are both given by the same expression (cf. Corollary
2.5). Moreover, let 4, >0 for n<< N and let us prove that there
exists veRyy such that v(e,) = u(e,) for n < N but » # u. In fact,
by Theorem 3.4 (a), Iy has then a non zero radius and we ocan take
MYy € I’V, my 7 my, and by Theorem 3.4 (d), there exists ve Ry such
that »(e_,) = m, = p(e_,) forn < N and »(e_y) = mk # ple_y). QE.D.

Theorem 4.1 (a) gives explicit formulae for all the canonical y for
Ry and shows that they are of a very special type, and that those
of order N are characterized by the condition mye boundary of I'y,
7y > 0.

The elements of ¥,y which are extremal and canonical of order N
are called the simple elements for Ry, of order N. Let now ¥ 5, (N) be the
set of all canonical elements of order N for R,,. I mev ,(¥N) we know

that if {u};.s, are the minors of the last column of 4y and Qy = 2 Uu;
jed
then (4.2) and Lemma 3.3 give N -1 linear relations between {u }JE In

and {m,}Yy of which only the first N may be independent. If in these N
linear relatlonb we consider {u;} as coefficients and {m,}, n =0, as 2N
unknowns, if we write wu; = v;+iw;, m; = @;--4y;, and Separa,te real
and imaginary parts, we ,shall obtfmn a system Sy(u) of 2N equations
for the 2N variables w;, ¥; and the determinant of this system will be denoted
by Ay.

ExAmpLE 1. If N = 3,

M—1 Mm_, (M—-Lym; Mm_,

Mm, M Mm, Mm_,
*TlM—ym_, Mm_, M—1  Mm_|

Mm, Mm,  Mmy M

Q = UG+ U_ 6 U €+ U_ye_s,

JI[Q-—CU} = (M —1)u,eg+Mu_ e, -+ (M —~1)ue,+Mu_se_,,
‘where
Mm, M Mm,
Uy = |(M~Lym_, Mm_, M—1|, ete.
Mm, Mm,  Mm,
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The relations (4.2) are now
(M —1) g+ My my A+ (M —L)uym_y -+ Hou_ym, 0, ‘ ‘
Mugm_g +Mu_y -+ My m_y - Mu_ymy =G, .
(I —1) 2ty + Ms_y g -+ (B 1)1+ Mit_y g == 0,
Mugme_y+ Mu_ym_y +Muym_y-- Mu_y == 0.

The last equation is a consequence of the other three. Letting w; .~ w; -f+ing;,
my; = a;+4y;, § =1,2,3, and separating real and imaginary parts in'
the first three equations of (x) we get that the left hand side of the systom,
8 () is ‘ )

(Bo_y + (I —1)0) a0y -+ ( ~Mawo_y + (M —L)w)yy + M.y @y~ Maw. oy,
(Mw_y+ (M —L)ywi)w, (Mo, — (M ~1)03)y, -+ Hw_ywy - Miv_y y,

M(v_y+vg)my o M (o —10_g) Yy -+ M0y @y M, Yy
M (w_g+wo) 2y A M (V_y —0) Yy +Mwy . w0y — My 4y,

(M —1) vy @y — (M ~1)woyy + Mv_ 0 — M _, 1o 4 My 20~ Mo _y 4,
(M~ L) wo by A (M —1) 0o g -+ Maw_y g -+ M0y Mo g 5 M gy

_ So, the determinant of §,(u) is B S

Mo_, +(M—1)v, (M —1)wy —Maw_, Mo_y —Mw., O 0 '
Mw_y +(M—1yw, Mo_y—(M—1)v, Mw_, Mv_, 0 0
1 = M (v_y +1,) M(we—w_,) Mo, Mw, 0, . (){ {
M (w_y +wg) M(v_y—w4) Mw, —Mv, 0 0
(M —1)w, ——(M—l)w‘; Moy —Mw_, Mv_, —Mw_,
(M —1L)yw, (M —1)v, o Mw_, Mo, Mw., Mov,

TuroreM 4.2. (a) A measure pis @ simple measure of ovder N for Ry
iff we Ryr (V) and 4% 0.

Moreover the simple clements of order N ave the eatremal points of
the set ¥ 3 (N) itself.

(b) The convew combinations of the Vifted simple elements are dense
(in the wealk topology) in ¥ yy. R P -

More precisely, given pe Ripy and &> 0, there emisls @ conven combi-
nation v of canonieal elements of order < N, such that '

v (en) —pley)l <e  for nl =i N.

Proof. (a) Let mev 1 (N) with 4% + 0, and let us show that m
is an extremal point of ¥ .., that iy, that m = (m'--m’)[2, m/,
m eV yy ioply m =m’ = m'’, m® = Pxlu®).
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We know that u(F) =0 where F = M|Qy*—|(yl?, and since
Fe oy, w' (F) 2 0, @ (F) 2 0, we must have also W (F)= 0=y (F). By
Proposition 2.4 the relations (4.2) will hold also for w oand u. I {m)N
are the moments of u', m, = af, 4 iy, then by (4.2) and Lemma 3.3 the
@y, Yy satisfy the same system Sy (p') = Sy(n), with the determinant
Ay # 0. This implies @), = a,, ¥, = y,, 50 M’ = m.

Conversely, lot me ¥, (N) with A% =10 and let us show that m s
not ab extremal point of the set ¥, (N), and a fortiori neither of ¥ N

By the same argument as above we shall have now infinite solutions
for the systiem Sy(u). Of course {m,, == w,--4y,} is one solution ; it {md}=,,
iy another, thon {mj, = m, 4 A(m,—ml)} is also a solution. We choose
A 50 thiti the m,, are arbitrarily close to the m,,. Since A, > 0 for 0 < n < N,
we shall also have Af) =~ 0 if n < N, where 4 are the determinants of
{m,}. And since {m,)} satisty Sy this means that the scalar product of
{us} by the colunng of A} are equal to zero and we have then 49 = 0.
By Theorem 3.4 (d), there exists a u'e Ry, such that W (e_y) = my, for
[n| <2 N5 moreover u' e Ry (N).

Letting™ m,, = m,—A(m, ~m’), we shall have similarly that om,
= u"(¢_y) with similar 4", and since (m),+m.)/2 = m,, wo have that

wley) = (/4’/(07@) + /“”(en))/2 for In| << N.

Thoe measure ve= (4’ - 4'’)[2 ¢ Ry coineides with x in &y, in other words
Tor(p) = y((u' +p'")[2). Binee m', m" e ¥, (N), m is not extremal of
V().

Finally, if me¥",,(N) iy an extremal point of the set ¥, (N) then
Ay must be positive, beeause we have shown thatb A% = 0 implies m
=(m'--m")[2, m',m" vy (N). But Ay >0 implies that m is
simple.

(b) By the Krein-Milman theorem and since the extremal points
of the convex hull of ¥, (N) are in closure ¥ u(N), the convex combi-
nations of the lifted simple elements of order N are dense in ¥ 5 ().

So it is wutticient to prove that given we Ry, there exists a con-
vex combination » of ecanonical measures of order < N such that
H(e) = v(a,) Lor |n|=; N. I A, (u) = 0 for some n< N then u itself is
anonical of ovder = N, ov o lifted element and wo are done.

No wo may suppose that A, (@) = 0 for all n << N.

The sequence {m,}¥wh, has all ity determinants positive, and by
Theorem, 3.4 (1) and Corollary 3.5, there is a circle I" such that for
ench z¢ I there exists a uge Ry With pe(e_,) = m, for |n| < N -1 and
H(ey) == 2, and pze Ny (V) if 215 on the boundary of I Since 4y(u) > 0,

My is interior to 1, and therefore my == convex combination of points
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2 of the boundary of I'. Therefore there exists a convex combination »
of elements from R, (N) such that »(e,) = u(e,) for |n| < N. Q.E.D.

While the canonical elements of order N of .4 are discrete measures
concentrated in N points, those for Ry, are absolutely continuous of “ra-
tional” type. On the other hand, the only simple measures of .# are the
canonical of order 1 (which are the Dirac measures) and none of the cano-
nieal measures of order N, N > 1, is simple. The sitmation is totally dif-
ferent for R, as shown by the following

CororvLARY 4.3. (a) If N = 1,2, every element of Ry (N) 48 simple.
If N = 3, none of the elements of Ry (N) is simple.

(b) For all M > M, there are in Ry (N) simple measures of order N
with arbitrary high N.

Remark. As for N =0, 4) = M —1 > 0 and there are no canonical
measures of order 0.

Proof. (a)

1% If N =1, then for every we R, (1),

4y = M(M~1)—M*m* =0,

. M1 . , . s
My =]/ ﬂfl e, 50 that u = (u' +u")/2 (in &) implies

VA=Y VT YT )
M 2. M M

which gives 6 = §' = 0", u =pu' = u”.
2° If N = 2, then for every ue Ry (2), 4,> 0,

l CM—1 Mm_, (M—1)m,
dy=| Mm, M Mm, | =0,
’ (M—1)ymy Mm_, M—1 .

Q = Qy = Wgly-+1_1 €1 U6y,
MQ *’é = (M —1) gy +Mti_y 0.y (M L)y,

where
Many M M1 Mam_y
Wy = , Moy = . y
(M —1ym_y, Mm_, (M —1) m_y Mm_,
M1 Mm_lt
Uy = e
Mm, M|
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The equations (4.4) are now

Mugm_y +Mu_ymo+ Muym_, =0,
(M—-1)7,4,0fm0-|~Jl[u,1m1~1—(]l_’[—1)ulm_1 =0,
(M —1)wgmy +Mai_y My -+ (M —1)uymy = 0.

In this special case we consider only the middle equation and its -
conjugate since they contain the single unknown my, and we have the

system
My g 4 (M —1)uygm_y = — (M —1) %y,
(M 1)ty my -+ MU m_y = —( M —1)7,.

The simplicity of the case makes it unnecessary to separate real and

imaginary parts s in the general case. The determinant of the system
is

AP s M 0T, — (M —1)%u, 7,

and it is wafficient to prove that A + 0 taking into account the result
of Theorem 4.2 (a). An eagy computation gives

A s e M(M =) (M Ay~ (M ~1) 4y) = M(M ~1)24, 0.

3% If N == 3, then for every ue Ry (3), 4, > 0, 4,> 0, dy= 0. Ag, A4
and the system §; are as in Example 1. We have to show that 457 = 0.
Since the elements of this determinant are themselves determinants
of order 3, to avoid the cumbersome direct computation we use the fol-
lowing relations of the minors {4}jcs, that arve easy to check:

Mu_ iy = (M —1)uuy;  Mu_y i = (M ~1)ugity;

Mu_ g = (M=) tg; gty = %_, 8.

(4.3)

Separating real and imaginury parts, these relations become

My b)) s (I —1) (v} 4208,

M(v. gt )~ W.g) == (M —1) (Vo1 —V120,)

(4.34a) . }
M0 304wy w.y) = (M —1) (Vg0 -Fwot0y),

VoW 1 Wty == Oy 0_y Wy Wy,

VW .y — WD,y == Dy Wy~ Wy V.

7 — Studia Mathematica LIILL
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Determinant 43 reduces to an order 3 determinant v;®|a;| where
g = Mo_ o, (M ~1)0] ~ M (w_g -+ W) 20..g,
gy = Mw_ v, — (M ~1)w, vy + M (v_g —vy)w_,,

Gy = Mv_yv, — Mw,w_,,

gy = Moy _y -+ (M —=1) 0wy M (wy -+ 10_,) 0.,
Uy = —My0_y -+ (M —1)0 4 M (v —v_y)0_,,
oy = Mw _y 0y -+ Mwyv_y,

Gy == V3V _g -+ Vg Wy -+ WoWy W W_q,

(g == Dy W_y —Vy Wy -+ VoW —V_o Wy,
2 2

gy = Uy W5 .

Using relations (4.3a), the minors of this determinant with respect
to the elements a5, ¢y, g5, of the last column are all multiplies of
(M —=1)(vi+wd) —M (o2, +ul,) =0, by the first of relations (4.3a).

(b) By Corollary 2.3 all |m,| are in absolute value less than or
equal to (M —1)/M)"*, so all minors of the determinants of order N are
bounded by a fixed constant. And so from 4.1a it follows that the density
w(t).of any canonical measure of order N is bounded by a fixed constant
that depends of M and N. If all simple measures for R, were of order
< N for a fixed N, for all M = 1, we would have w(¢) bounded by w fixed
constant € for every simple measure du = w (1) df. Since tho convex combi-
nations of simple elements determine ¥, this would imply [w(#)| < ¢
for every w(t)dte Ry by letting I — co. This contradicts the known
fact (cf. [4]) that there are unbounded funetions w(f) == ||~ such that
w(t)dic R, and therefore there is an M, for which w(t)dte Ry, for all
M= M, QE.D. ‘

Note. The relations (4.3) among minors {u,} extend for higher odd
values of & and may be used in the corresponding decision. of whether
A% is zero or not.

Exampra 2: (a) The simple clements of order 1 for Ry, ave in 1-1
correspondence with the points &¢ (0, 27). For each £e (0, 2x) (he measure
PP QP
dpg == o - dt,

where

R
Q=0 =M (—JKME‘—) O (M ~1)e_y (1), I = (M~—1)6_,(t)

(as in (2.92)), is simple of order 1, and overy simple element of ordoer 1
is of this type.
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{b) The simple elements of order 2 for R, arve in 1-1 correspondence
with the pairs of complex numbers (£, &), where &, is an arbitrary complex
number satistying ]2 « (M ~1)/M and &, is such that

| M—1 ME (M-1)&
i ME M ILE
V(M --1)E ME,  MH—1 ’

= 0.

The corresponding measure dpge, ) 18 a8 in Theorem 4.1a with

1049)

F M (M 1)=& ey ().

5. Remarks. Lt us mention briefly some questions rised by the
previous considerations.

(a) There is a full grown theory of the Toeplitz forms (ome aspect
of which iy exposed in [3]) and it may be of some interest to examine
which of ity resulty extend to quasi Toeplitz forms.

Of special interest is the extension of Bochner’s theorem, as generalized
by Berezanski and Maurin, for quasi Toeplitz forms.

According to Bochner’s theorem if Y, _, &,E, is a non negative
ordinary Toeplitz form then there exists a pe # such that

o

My = f c‘“”mkﬂd/‘(”) :f)[/l~-k(t)d[l'a(t)7

)
where the 3w, ()&, £, arve “elementary” forms satisfying
, it
L, ('ynmlt(t)) = Wiy A= €,
where L, (v, ) = Ypp1.p I8 & special difference operator such that

Lu("”’u-v-k) = *T:I:‘(mm-k)'

“The eclementary {y, .+ correspond to the Dirac (simple) measures
of . .
In the case of p aeting in R (or R") we have similar results with
the operator
0
Lf e Lof o= 4 f.
‘{/ J.h/ dw J
Berezunski and Maurin extended these results for general positive
definite forms and operators L. We arve interested in fthe determination
of the opoerators L for the caso of quasi Toeplits forms where the elemen-
oy {p,.) correspond to the simple elements for Ry, .
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(b) In Corollary 2.3 we saw that for all ueRy and all »,

M-—I_ €y +€_n /]/"JV 1
B 27 R A wo

It is important to know the exact value of sup{u((e,-e_,) 12}, weRy}
and of inf{u (e, +¢.,)/2), we Rar}y as well of sup {u(Q), ue Ryl for Qe g%,
This corresponds to the minimum problem of the elassical moment theory
and can be treated as a problem of Linear Programming. We are also
interested in extending to R, some of the deeper results of the classical

A

moment theory, which may give useful information about the Rieyz -

measures. In particular, for further study of the elements of R, it is
necessary to have more information concerning the determinants A%
and the zeros of the polynomials @ associated with the canonical meagures.
(While in the case of . all the zevos of @, are located on the unit circle,
in the case of Ry, none of the. zeros of Qy are on that cirele.)

(¢) We know that the order < given by the cone a has a unit.
Also the following archimedean property holds: if F 0, G >0 and
nF <G for n =1,2,..., then F =0 (because G = nlf A 3 (M| B2 —

o - " ] o~
—1Byf) = nF+ S(M 1) By 4+ 3 (5 — B}, hence [Tdt < (Ljn)fddt,
J j “ -
then [Fdt = 0, and since I = 3I(I|G,J* — %), we get (M —L) [ S|G Pt
:

<0, G4(t) = 0 p.p., and F = 0 p.p.).

On the other hand, #,, is invariant under rotationy z->w--6 and
dilations @—snw, » = 1, 2, ... Tt might be of interest to find all the linear
automorphisms of the cone o ,,.

If we identity R**' = R" with the subspace &y < & then EnNA yr
iy identified with a cone £, (V) in RY. We may apply then some of the
Koecher~Vinberg results concerning the characteristic functions and
Riemannian structures associated with o 22(N). Though the cone #",,(N)
is not homogeneous, many of those results will apply here and might
have interesting interpretations from the point of view of moment theory
in Ry,

(d) In the case du = di the Riesz inequality (1.1} was generalized by
Mazaev and Gohberg-Krein for Volterra operators in Hilbert spaces.
The class Ry, and the problems of the present paper can be considered,
in Mazaev's case. There it will be natural to treat pairs of mensures (pey )
satistying [P dy < [ M| dy.

(e) Finally, the mogt important question is to extend the above
considerations to L* and R". Since we do not kunow any complete exposi-
tion of the n-dimensional reduced moment problem, n > 1, the method.

of remark (a) may provide the essential tool for the extension of the
theory to R™.

icm
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