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Invariant measures for semigroups
by
RYOTARO SATO (Sakado)

Abstract. The invariant measure problem is investigated for a strongly contin-
uous semigroup I" = {Ty; ¢> 0} of positive linear operators on the I;-space of

b
a finite measure space which satisfies sup H L f thltH < oo,
bsoll b g 1
1. Introduction. Let (X, .#,m) be a probability space and L,(X)
= L,(X, #,m), 1< p< oo, the usual Banach spaces. Let I' = {T,;
t> 0} be a strongly continuous semigroup of positvie linear operators

~on Ly(X). Throughout this paper we shall assume that I" satisties

(%) sup

b>0

+fme

< oo,
1

‘With this condition on I', more general than sup | 7T}, < oo (used by Fong
>0

and Sucheston [3] and Lin [4]), we obtain a decomposition similar to
that of Fong and Sucheston ([3], Propositions 2.1 and 2.2.), and nec-
essary and sufficient conditions for the existence of a finite equivalent
invariant measure.

All sets and functions introduced below are assumed measurable.
All relations are assumed to hold modulo sets of m-measure zero. For
a set 4 <« X, 1, is the indicator function of 4 and I,(A) denotes the
Banach space of all L,(X)-functions that vanish a.e. on X — 4. 4 is
said to be closed (under I') if T,(L,(4)) = L,(A4) for any ¢ > 0. If x is
a o-finite measure on (X, #) equivalent to m, then L,(X, 4, u) and
L (X, #,m) are isometric by the Radon-Nikodym theorem and this
gives a representation {U,;; > 0} on L,(X, .#,u) of the original I'
= {T; t> 0}, which preserves also pointwise convergence.

2. The décomposition for I' = {T,; t > 0}. It is known (cf. [2], p. 686)
that for any fe L;(X) there exists a function Tf(x), measurable with
respect to the product of Lebesgue measure and m, such that for almost
all ¢, T,f(x) belongs, as a function of %, to the equivalence class of T}f.
Moreover, there exists a set N(f) « X with m(N(f)) = 0, dependent
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on f but independent of #; such that it w¢ N(f) then T,f(w) is integrable
over every finite interval (a, b) and the mtegml f T,f(»)dt, a8 a function
of @, belongs to the equivalence class of f T.fdt. We first note that a similar
result holds for {I7; ¢ > 0}. To see thls, let fe Lo (X) and 0 <
b
and let [ 77 fdt be the function in L, (X) defined by

b b
(u, [Trfasy ={ [ Tyudt,fy

for all ue L;(X). Then we have the following

Levma 1. For any fe Lo(X) there emists a Sunction T} f(x), meas-
urable with respect to the product of Lebesque measure and m, and o sel
N(f) = X with m(N(f)) = 0 such that if ¢ N(f) then T,f(x) is integrable

b

over every finite. interval (@, b) and the integral [ T;f(®)dt, as a function
b a

&< b < oo,

of «, belongs to the equivalence class of f Trfds.
Proof. The discussion in Lin [4], Theorem 1.1, can be modified to
yield a proof of the lemma.

THROREM 1. I' decomposes X into two sets ¥ and Z such that
(i) Z s closed under F,

(ii) if fe L, (Z) then liz

f T,fdt

(did) there emists a nom- negatwe fumotion s in L (Y) with s >0 on ¥
and T}s = s for all t> 0.

Proof. If we let

l_o

b

1

w(@) = umsup—fmmw)dt,
bteo

then an easy calcula,mon shows that we L, (X) and Tfw > u for any ¢.> 0.

Thus we can define

b

1
$(w) =lim— | T}u(w)ds

btoo

It follows that 0<<

{ <8eLy(X) and Tfs =s for any ¢>0. Put ¥
—WG.XS

)>0}and Z= X—Y.If0 < feLy(Z), then by Fatoun’s lemma,
1 1

lim| = [ T,fdt)| =lim{ s> 7 =

L h bﬁ[ Jar| b11301<f, - ufT,l(w)dt><ffudm<ffsdm 0.

Thus (ii) follows. (i) is clear. The proof is complete.
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COROLLARY 1. A wnecessary and sufficient condition that there ewists
a function s in Ly (X) with s > 0 and Tf s = s for all t> 0 is that for any
0 < ge Ly (X) with llgll, > 0,

limsup
bteo

b
1
——f.’l’tgdt > 0.
b .

Remark. It follows from Theorem 1 and [3] that
(i) i fe Ly (X) and 0 < ge I;(X), then the ratio limit

b b
13:11 ( [ T.f() dt) /( [Tig(@) @)
© g 0

exists and is finite a.e. on ¥nfwe X; [ Tyg(a)dt > 0},
[
(ii) if there exists a non-negative function ge L,(Z) such that the set

0(9)

fails on every non-null subset of C(g).
Local ergodic theorems can also be proved on Y as in [3] (zee [1]).

= {we X; [Tig(x)dt = o} is non-null, then the ratio theorem
0

3. Invariant measures. Let Y, Z, and s be as in Theorem 1. Let
0 < he Ly (X) be invariant under I' = {T}; ¢ > 0}, i.e.,, T;h = h for all-
t > 0. Define, for ¢ > 0 and fe L, (X), ’

8,f =Ti7.

Sinee (8, )bl = [(Tif)hdm = [fhdm = |fh]; for 0 < fe L,(X), §, may
be considered to be a positive linear contraction on L,(X, #, u), where
# = hdm, for each ¢ > 0. It is clear that 8,8, = 8, for ¢, ' > 0.

LeyMMA 2. 4 = {8;; 1 > 0}4s a strongly continuous semigroup of positive
linear contractions on Ly(X, #, u) such that

(i) The conservative part of A s Y, and the dissipative part of 4 is Z,

(ii) » = sdu is a finite invariant measure supporied on Y.

Proof. The gtrong continnity of 4 follows as in [4], Theorem 4.1.
Since 8,5 = T}s = s for all > 0, v = sdu is a finite invariant measure
and, if X = O+ D denotes Hopt’s decomposition for A (cf. [4]), then
Y « (. To see that Z < D, we may assume, using the Radon-Nikodym
theorem, that m = . So Tyl =1and 8;f = 7, f for allt > 0 and fe L, (X).
Hence Sf1,; = T)1; < 1, for t> 0. Put

g(@) =lmSplz(x) (n=1,2,...).
bioo
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It follows that

lim
btoo

b
1
g——b*J Tilzdt“ = O,
H 1

and Theorem 1 implies that ¢ = 0 a.e. It follows that Z is contained in
the dissipative part D, of the operator §,. But, since .D = D, [4], we
conclude that Z < D, and the proof is complete.

COROLLARY 2. If I' = {Ty; t > 0} has a finite equivalent invariant
measure then the following hold:

(i) For amy fe L, (X) there exists a fumction T7f(x), measurable with
respect to the product of Lebesgue measure and m, such that for almost all ¢,

Y f (@) belongs, as a functions of x, to the equivalence class of T
(i) For any fe Lo(X), the limits

b b
.1 .1
lim < f Tif(z)dt and lim-— f T f(a) db
vieo O J by O y
ewist and are finite a.e.

(iii) For any fe Ly (X) and any 0 < ge Ly (X), the limit

IlmUT"'f(m )dt) /(fT,g('v )dt)

ewists and is finite a.e. on {we X; fT;"g(w) dt > 0}.
[

Next let us assume X = ¥, and define another semigroup I
= {V;; t> 0} of positive linear contractions on I,(X) = L (X, .#, m)
a8 in Fong and Sucheston [3]. For ¢ > 0 and sfe L, (X), where fe L, (X), let

Vi(sf) = s(Tuf).

Since E}Vt(sf)ﬂ! = [s(Tyf)ydm = [ sfdm = |lsfl, for 0<feL;(X) and
{sfs fe Ly(X)} is a dense subspace of IL,(X) in the norm topology, V,
may be considered to be a positive linear contraction on IL,(X) for any
1> 0. It is easy to see that (i) W,Vy = V., for ¢, #' > 0, and (u) the
mapping t—V,f iy strongly continuous for each fe Ll (X).

Luvva 3. The following conditions are equivalent.

(i) There emists a function foe Ly(X) with fy >0 and T,f, =
all t> 0. '

(i) There ewists a function goe L, (X) with ¢, > 0 and Vigo = g, for
all > 0.

Proof. (i)=(ii): Obvious.

So Jor

icm
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(i) =(i): We may agsume without loss of generality that g, = 1.
An easy calculation shows that

1) m(4)>0 implies inf [ Tildm > 0.
[

Let @ be an invariant mean on the additive semigroup (0, oo) and define
a positive linear functional ¥ on L (X) by the relation

b
V(u) = (<%~ J T dt, u>) tor  we I (X).
0
It T} denotes the adjoint of Ty then we have

. b
1
(TT“WJ..![J)(“) == y/(T;f‘ou,—u) =¢(_f<1’,1, T?‘ou-—@) >0

for each 0 < e L (X). Thus Ti* ¥ > ¥. But, since Ty s = s, (T;"Q*T*W)(s)
= 0. %Jnce §>0, it followx that if 1 is a counta.bly additive
measure on (X, ) satistying 0 <A< (Th W —¥), then 2 = 0. Hence
if we denote by » the maximal (countably additive) measure with 0< p
< W, then T)*u = Ty u < pu, and hence Tyu = p, since Tys =s and
s> 0. Now put f, == du/dm. It follows from (1) and [B], Theorem 4,
that f, > 0. This completes the proof.
THROREM 2. The following conditions are equivalent:
(i) There emists a function he Ly(X) with b >0 and Tih =h for
all ¢ > 0. 1
0

1

(ii) m(4) >0 implies 1im1nf—~ f T*1,(w)dt = 0.
1 b

(i) m(A) > 0 implies hmm 5 [, Ty at>o.
0

(iv) m(4) > 0 implies hmsup f(l T}t > 0.
hhoo
b

{(v) m(4) > 0 implies limsup mJ J’, (@) dt 5 0.

bioo
Proof. (i)s=(ii): We may assuwe without loss of generality that

b == 1. Then, by Theorem 1,
b

,ﬁgwjm Lt — 1” = 0.

0

lim
Droo

Hence if m(4) >0 Lhen
fﬂ Lpdt, 1) = [(11,,1’* 1,00 >0
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for sufficiently large b. This implies that for some ¢, and 0 < fe Ly (Y)
With |fle > 0, Tyy14 > f. Corollary 2 implies that

b
1 1/
mn—fﬂuww>nmmjﬂﬂmm¢o,
btoo b H bioo b b

10
since <1, z—fl’:‘f(x)dt> =1, f> % 0 for any b > 0.
o ,

(i) =(itl) and (iv)=(v) follow from Fatoun’s lemma, and (iii)=(iv)
is obvious.

(v) =(i): It may be readily seen from Lemma 3 and [4], Theorem 5.3,
that there exists a function fe Ly (Y) with f> 0 on ¥ and 7,f> f for
any ¢ > 0. Let

b
1
= gtrong-lim-— [ T, E ) = X —s
¢ = strong 7)1‘:2175[ Jfdt  and B = X-—supp g.

It is clear I?hat Tig =g for all ¢> 0 and ¥ < Z. Since T}lye Ly, (H) for
all ¢>0, ')folE(w)dt =0 on X—H for any b > 0. This together with
the fact that s = 0 on Z implies that

1] '
1 : :
lm—fﬂhmm=0m.
bTmbO

(v) implies m(®) =0, and the proof is complete.
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Local eigenvectors for group representations
by
ELLIOT ¢. GOOTMAN (Athens, Ga.)

Abstract. We prove that every unitary representation V of a group @ has a local
eigenveetor (L.e, o common eigenvector for all V(g), ¢ ranging over a neighborhood -
of the identity) if and only if ¢, the connected component of the identity, is compact
and abolian, It follows as a simple corollary that for 6 compact and abelian, cocycle‘
reprogontations of G also have local cigenvectors. The proof uses Mackey’s little group
mothod.

Let V be a unitary or cocycle representation of a locally compact
group G on a Hilbert space . A non-zero vector x in o is a local eigen- -
vector (regpectively, local fixed point) for V if 4 is a common eigenvector

(respectively, fixed point) for all the unitary operators ¥ (g), as ¢ ranges

over some neighborhood of the identity ¢ in ¢. It is known that all unitary
representations of ¢ have local fixed points if and only if G is totally
disconnected. We extend this result by proving that all unitary repre-
gentations of G have local eigenvectors if and only if @,, the connected
component of the identity, is compact and abelian. The proof uses a pre-
liminary lemma that in fact all cocycle representations of totally discon-
nected groups have local eigenvectors, and as a simple corollary to the
main theorem we show that indeed so do all cocycle representations of
group @G with @, compact and abelian. These results have application
in determining the structure space of certain (*-algebras associated
with transformation groups ([3], Theorem 4.4).

As the proof of the main theorem involves application of Mackey’s
little group method, we assume that all groups are second countable and
all Hilbert spaces are separable. All unitary representations are continuous
and all cocyele representations are Borel. A cocycle representation with
coeycle a will be called simply an a-representation. For terminology and
basic results on cocycle representations we refer the reacer to [1], Chapter I,
Section 4. Throughout the paper we shall use without further explicit
mention the simple observations that a local eigenvector for a unitary
or cocycle representation V i3 a common eigenvector for all V(k) as &
ranges over some open subgroup eontaining G, and that if «, the cocycle
of V, is.cohomologous on an open subgroup K to & cocycle o’ of K it suffices,
in order to prove the existence of local eigenvectors, to replace V by the

3 — Studla Matherpatica LIIL2


GUEST




