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On the existence of a fundamental total
and hounded biorthogonal sequence in every separable Bamach space,
and related constructions
of uniformly bounded orthonormal systems in I*

by
R. I OVSEPIAN (Erevan) and A. PEECZYNSKI (Warszawa)

Abstract. (1) In every separable Banach space X a biorthogonal sequence (&, )
is eonstructed such that sup|ie,|lllzhl< oo, the linear combinations of the ,’s are
denge in X and, for every « in X, it u}(x) = 0, for all =, then x = 0.

(2) Linear subspaces of L2[0, 1] which admit an orthonormal basis consisting
of uniformly bounded functions are characterized.

The present paper consists of three sections. In the first one, using
a trick invented by Olevskil ([9], Lemmas 3 and 4), we prove

TuworeM 1. In every separable Banach space X there exists a funda-
mental and total biorthogonal sequence (x,, %) such that

i *
sap [l o, [| << oo
n

Recall that a sequence (w,,®,) of pairs consisting of elements of
a Banach space X and bounded linear functionals on X, i.e. elements
of X* — the dual of X, is said to be biorthogonal it @) (w,) = O for n, m
=1,2,... A biorthogonal sequence (s, 2y) is fundamental if linear com-
binations of the m,'s are dense in X, and is total if the condition a(x) = 0
for n = 1,2,... implies that » = 0.

Theorem 1 answers a question of Banach. ([1], p. 238). A slightly
weaker result has previously been obtained by Davis and Johnson [4].

The main result of the second section is

Tumorsm 2. Let B be o separable linear subspace of a Hilbert space
L2(u) where w is o probability measure on o sigma field of subsets of a set .
Then B admits an orthonormal basis consisting of wniformly bounded functions
if and only if

(i) BNL>(u) is dense in B in the L*(u) norm,

(i) Bo{fe L®(p): Ifle 1} 45 not o totally bounded subset of L2(u).
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Moreover, if BNL™®(u) is a separable subspace of L™ (i), then the ortho-
normal basis can be consiructed so that it spans a linear subspace which is
dense in the norm |||, i BENL™(u).

As a corollary we obtain that every subspace of L2[0, 1] of finite
codimengion admits a uniformly bounded orthonormal basis (011\i.si/ing
of trigonometric polynomials. This answers a question of IL. Shapivo [14].

In the third section we consider Banach spaces X with the Eol]owmg
property

() there ewist a compact Hausdorff space 8, an isometrically isomorphic
embedding j: X—C0(8) and a Borel probability measure u on S such that
the unit ball of j(X) regarded as a subset of L*(u) 48 not totally bounded.

Using a recent profound result of Rosenthal [13] we show that a Ba-
nach space X has the property () if and only if it containg & closed linear
subspace isomorphic to the space.l* of all absolutely convergent sevies of
scalars.

1. Proof of Theorem 1. If A is & non-empty subset of a Banach
space X, then [A] denotes the closed linear subspace of X generated
by 4, and lin 4 the linear subspace of X generated by 4.

‘We begin with a lemma which is a modification of Olevskil’s Lemma 3
of [9].

Liyva 1. Let X be a Banach space and let n be a positive integer, Let
By, Byy oe.y Bony be elements of X and let oy, o}, ..., w4n_, be elemends of
X" such that ay(w,) = 0% for p,q =0,1,...,2"—1,

Then there emists a unitary real matrim (@ )y <on Such that if

2%—1 pUT
6 = Z op;m;  and e = 2 ap; for ko=0,1,..,9" -1,
F=0 =0
then
(1) max Je,l < (1+V2) max |la-- 2~ |,
ogp<2® : 1agj 2™
(2) max [yl < (14V2) max || 27" ],
0gp<2® 17 <2
(3) eple) =68 for p,q=0,1,..,2"~1,

(4) Hephocp<m] = ({2 bocp<anl;

Proof. Conditions (3) and (4) are mtwbed for every unitary 2% x 2%
maitrix. The specific unitary matrix for which (1) and (2) hold is defined to
be the matrix which transforms the unit vector basis of the 2% dimensional

[{e;}0€57<2“] == [{ t}ogp<2“1
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Hilbert space Bn onto the Haar basis of this space. We put

al == 27 for 0

ity

k< 2",
2(&—<'Il)/2 for on-8— lr),)

20-m gy

k< 2" 2r 41,
orE L L 1) K k< 27521 - 2),
k< 2"y and for k> 9" 5"1(2¢+2)

3 —
W 980 =7
0 for

(8 =0,1,...,m—1; r=0,1,...,2°=1).
‘We have
' P a1

(") Z @ 4] == Z o0 LYY for

gm0
Clearly, (5) implies (1) and (2).
PROPOSITION 1. Let (w,, #5) be o fundamental and total biorthogonal
sequence in o Banach space X such that there exists am increasing infinite
sequence (ny) sweh that s supuwn]{lnm,,ku M < co.

0L k< 2",

Then there exists a fundamental and total biorthogonal sequence (e, €n)
i X such that
sup fle, eyl << M (1 +V2)* 41
n
and
lin{ep}, == lin{al}il,.

lin{e,}mey == lin{w,}e., and

Proof. Without loss of generality one may assume that |u,] =1
for all #. Pick & permutation p(-) of the indices and an increasing sequence
(m,) of the indices so that if Z, = w,, and Z} = ap, for all » and

1
ge= > 2™ for all 7, then

D=l

it m o q, for all v, then @& < M,

if @ w2 g, for some ¢ =0,1,..., then

(LYY 41 > [(LHV2)M A 12T AV2) o 1],
Next put:
o wm % and 67; s :Z';‘: for n << 2m0’

oty 2"y

Y mr e* . ZI a,ﬂ'l w
Otpmy = 2 WdPirmy) ke, T Rod ity -1
b =0

for 0<<k<2™;r=1,2,...

where ap% are defined ay in Lemma 1 for # = m,. Using Lemma 1, we
easily verify that the sequence (e, ¢r) has the desired properties.
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Proot of Theorem 1. We shall assume that dimX = co. Then the
separability of X implies that there exist sequences F, < I, = ... of
subspaces of X and F, c ¥, < ... of subspaces of X™ such that dimE,
ﬂdiml’ =1¢ fori=1,2, ,UL‘ is demse in X and if f*(x) =0, for

all e U F;, then z=0. In v1eW of Proposition 1, it is enough to construct
i=1

a Dbiorthogonal sequence (@,,#y) in X such that if &, = [m, @y, ..., @y, ]
and H, = [&}, @, ..., 2] then for all s

n . ) K g
(6) Guss @ Byy  Hygy 2 Ty gl el <5 6

Pick ;¢ X and a7 e X* 5o that 0 s @,¢ By and o} (¥;) = L. Assume that,
for some n —1 =1, the elements @, @5, ..., #,_, in X and the functionals
@7, %, ...y @,y in X" have been defined to satisty (6) and so that a(w,)
=07 for p,g =1,2,...,m~1. We consider separately three cases.

Case 1: w =3s—2. If G,_; o E, we define ,¢ X and a}e X*
trarily, so that

arbi-

Tpwg) = 02 and  af(m) =00 for p,g=1,2,..., n.

If B,\G,_, is non-empty, say ee B,\G,_;, then we put
n-—-1 .
Ty = €— 2 @y (€)w, and
D=1
Clearly, @, 0. Since dimE, = dim¥, ,+1 and eeG,\H,_, and since
the induetive hypothesis implies that E,_, = &,_,, we infer that G,> #,.
Since z,¢ G,\G,_;, there exists a bounded linear functional on G, say
g* such that g*(z,) =1 and g*(g) = 0 for ge&,_,. We define #* to be
any extension of g* to a bounded linear functional on X.

Case 2 ds~1 If H, > F, we define m,c X and o X* arbi-
trarily so that 2y (1) = 62 and Ty (@) = O for p,q =1 Z , m If
FN\H,_, is non-empty, nay ffe FNH,_,, Lhen we put

n—1
a =1 3w}
=1

an e X such that

Gn = [G'n,—l v {‘I’lnH .

Since f*¢ H,_,, there exists

L=f"o) = ) ) (@).

n—
We put 4, =@~ 3 a(w)z,. It is easy to check that W (@) = 67 and
_71=-l

wy(w,) = & for p,q=1,2,...,n Let H, —= [H,_,U{zy}] Since the
inductive’ hypothesis 1mp11eh that  F, ; < H,_, and since dimB,

=dimF,_,+1 and f*< F\F, ;, we infer that H,> F,.
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Case 3: n = 3s. Using Mazw’s technique (cf. [10], Lemma) we pick
an @,¢ X with @, = 1 so that »*(m,)= 0 for every s*c H,_, and, for
all g in &,_, and for all scalars i, llg-+1z,| = (1 —3%) |gll. Define g* on @,
by g¢*(g+tm,) =+t Then

[} == {ltae,,|| <<

Mg + bl + ligll < (L 4+3) llg + 1,1

Thus [lg*]| == 3. We define 27 to be any norm preserving extension of g*
to & linear functional on X.

Remark L. Using in Case 3 Day’s technique (ci [3]) which bases
on the Borsuk antipodal mapping theorem one can choose (both in the
case of real and of complex scalars) a,, and a3, so that

sl = lelyll = ep(ay) =1  for s =1,2,..

Now the inspection of the proof of Theorem 1 yields that in every separable
Banach space for every ¢ > 0 there exists a fundamental total and bounded
Dbiorthogonal sequence (e,, ¢b) such that fe,] leX]} < (14 V2)2+¢ for all n.
However, as it was observed by C. Bessaga, we have

CorornLAryY L. Bvery separable Banach space X admits an equivalent
norm |||+ || such that there ewisis in X a fundamental and total biorthogonal
sequence (6, en) with |lle,|l|-1llelll = 1. :

Proof. We admit ||lo]|] = max(al, suple;(x)|) for me X where

n

(€4, €) 15 any fundamental and total biorthogonal sequence in X such
that |le,| = 1 for all » and sup |e}l] < oo.

n
Remark 2. A similar argument to that which was used in the proof
of Theorem 1 allows us to prove the following
Tumorem 1. Let X and Y be Banach spaces and let T: X—~7Y be
a one-to-one bowunded linear operator. If X is separable, T (X) is dense in ¥
and T is not compact, then there exist fundamental and total biorthogonal
sequences (w,, or) in X and (¥, vs) in Y .such that

. . e y ok . y
supmax (|l kel vl lnl) < oo and  T(z,) =y, for all n.
n
2. Comstructions of uniformly bounded orthomormal sequences. We
employ the following notation. It 4 is & probability measure (= a non-
negative normalized measure) on a sigma field of subsets of a set § then

L, Yy = fm? 8) u(ds),

s

flolly = Cw, @™ and @, = inf sup|o(s)|
! u(B)=1 seB
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for any p-absolutely square summable scalar valued functions x and y

on 8. L¥(u) and L*(u) denote as usually the Banach spaces of those z
that |z), < co and |jzfl, < oo, respectively.

The proof of Theorem 2 is similar to the proof of Theorem 1. Instead
of Proposition 1 we apply the following result due to Olevskii ([9], Lemma 4).

Prorosirion 2. Let u be a probability measure on a sigmo field of
subsets of a set S. Let (z,) be an infinite orthonormal (with respect to the inner
product {, >) sequence of functions in L>(u) such that limint ||z,|, < oo
Then there ewists am orthonormal sequence (e,) such that "

linfoplun = lin{e, i, and  sup fleflo, < oo
n
The proof of Proposition 2 can be obtained by a non-essential mod-
ification of the proofs of Lemma 1 and Proposition 1.
To prove Theorem 2 it is convenient to use the following simple fact.
Lmvma 2. Let (g,) be a normalized sequence in L*(u) which weakly

in L*(u) comverges to zero amd let sup llgnlle = M < co. Then for every
n

fimite dimensional subspace of L™(u), say F, and for k> 0 there emist an
index ny >k and a function h in the orthogonal complement of B such that
[Fu{gno}] = [FU{h}],

Iy =1  and

bl < M +27%.

Proof. Let p = dimF. Let e,, ey, ..., ¢, be any orthonormal basis
for F. Pick ¢ > 0 so that

V4
MAe 3 lejlloo
—_—= < M2k,
l—ep

Since (g,) converges weakly to 0.in L2(u), there exists an index No >k
such that |{g,,, e <& for 1<j<p. Put

» F
b= (gno _f;: $Gngs 6,)6,) gno~g; {ny» ej}ajH;].

Clearly, b belongs to the orthogonal complement of F, [Al, = 1 and
[Fu{g,}] = [FU{R}]. We have

2 d
[90= 3 <y e < Mot | Zp T S ujz eyl
and - !

»
Hgn,,—jz/: {Gngs ej>6j‘

o lgals— J[jzp Cngs 4538 4> 1—ep.
=]
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Thus

P
Wlloo << (16 ) leglle) (1 = ep) ™ <M 427,

F=1

Proof of Theorem 2. It follows from (i) that there exists in F
an inereaging sequence of finite dimensional subspaces F, = F, < ...

such that dimP, - p and Ul I, is dense in H. Clearly, if ENL®(u) is
Pe=
a separable subset of L*(u) one can choose the sequence (F,) so that
o

the union | I, is dense in HNL*(u) in the L*(x) norm. Condition
Jreesd

(ii) yields that there exists in' I a sequence (g,) satisfying the assumption

of Lemma 2. In view of Proposition 2 it is enough to define inductively

an orthonormal sequence (h,) in L*(u)nE so that, for s =1,2,...,

(7) [{hay Bgyoney hog_1}] 2 F,

(8) Wigglloo << M +27¢  where M = sup G lloo -
We define h, as any element of F, with [h,]l, = 1. Suppose that for some
n—1 321 the functions hy, by, ..., h,_, have been defined to satisfy the
conditions (7) and (8) and so that {h,, h,y = 65 forp,q¢ =1,2,...,n—1.
Let us congider separately two cases.

Oase 1: n = 2¢ for some § = 1,2, ... We put h, = h where & is that
of Lemma 2 applied for F = [{hy, by, ..., hy,}] for (g;) and for &k =s.

Case 2: n = 2s—1 for some s = 2,3, ... I F, < [{hy, by, -y hy_i}],
we again define h, = h where h is that of Lemma 2 applied for r
== [{hy, hy, vy hasi}] for (g,) and for k=1, It F, & [{ky, ..., hn_l}]l
then there exists am f which belongs to FN[{ky, bs,y ..oy hy_1}]. Let f .
be the orthogonal projection of f onto [{hi, kg, ..., hy_i}]. We put h,
s (off v f) [~ f'H;‘ 1 Clearly, |h,ll, =1 and h, belongs to the orthogonal
complement of [{fy, by, +- .y hy.1}]. Obviously, wehave fe [{yy Bgyens B3N
N[{lyy hyy ooy by q}). By the inductive hypothesis, By < [{Ry, by ..
very By o} Thus, B, @ [{hyy hyy .oes by )] because dim B, = dimF,_,+1.

This completes the induction and the proot of the sufficiency of con-
ditions (i) and (ii). The necessity is trivial.

Remark 1. A similar argument gives

THroREM 2. Let T: X~»H be a one-to-one bounded linear operator
Sfrom a Banach space X into o Hilbert space H. Let B = T(X). If B is
separable and T is not compact, then there exists a sequence (®,) in X such
that sup )| < oo and (T'(m,)) is an orthonormal basis for B.

% .
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Moreover, if X is separvable and aye X* is defined by wy(w) = (T(),
T(®,) > for e X and for n=1,2,..., where {, >y denotes the inner
product of H, then (m,) can be chosen so that (#,, @) s o fundamental and
total biorthogonal sequence in X and sup |, ]l << oo.

n

Remark 2. There exists an orthonormal decomposition of L*[0, 1]

onto subspaces F, and F, such that neither B; nor #, admit uniformly
bounded orthonormal bases. It iy enough to define Hy = [{wy}U{wy,}i. o]
and B, = [{5,} U{#y 1} m=e Where (z,) i3 any orthonormal hasis for
I*[0, 1] such that the functions @, and z, are unbounded, @y, (f) =0
for 0 i<} and @,,(f) =0 for }<<t<<1 (m =1,2,...). However, as
was observed earlier by F. G. Arutunian (unpublished), we have

CoROLLARY 2. If B is a linear subspace of a separable spuce L7 (u)
where p is a non-purely atomic probability measure and if the orthogonal
complement of E is finite dimensional, then [T] has a wniformly bounded
orthonormal basis.

Moreover, if ENL™(u) is dense in I then the basis can be chosen from
elements of BENL®(u).

Proof. It is enough to show that [H] satisfies conditions (i) and (ii)
of Theorem 2. To check (i), first observe that the density of L™ (u) regarded
as & subspace of L*(u) in L*(x) implies that for every positive integer p
and for every linearly independent fi, foy ..., 5 in L*(u) there exist
Y1y Yoy ooy Ypgr I L7 () such that the matrix (95, f))icri<psa 18 invertible.

1
Let (@ x)i<in<cpsn D8 the inverse matrix and let g =p2+ @; Y, for 4
Te=1
=1,2,...,p-+1. Then z;e L®(u) and <z;, fi> = 6jfor i, j=1,2, ..., p+1.
The above observation applied to any basis of the orthogonal complement
of B and any non-zero element f of [F] yields the existence of an y in L® (1)
such that <y, f> = 1 and (y, g> = 0 for all g in the orthogonal complement
of B. The last condition means that ye [F]. Hence there is no f 0 in
[E] which is orthogonal to all ye [B]NL™(u), equivalently, [H1ALZ ()
is dense in [E] Hence [E] satisfies (i).

Let P denote the orthogonal projection from IL*(u) onto [4&], T the
identity operator on L*?(u), and I w L (@)L (u) the natural injection,
1,38 not compact because u is not purely atomie, while (1 - P) I, is compact
because the orthogonal complement of B is finitely dimensional. Thus,
PI, is not cowmpact, equivalently, [H] satisties (ii).

The “moreover” part of the corollary follows from the ohservation
that in this case if [E] satisfies (ii) then B also satisfios (ii).

An immediate consequence of Corollary 2 is

COROLLARY 3. Let f be any unbounded funciion in I? [0, 1]. Then the
orthogonal complement of f admits a uniformly bounded orthonormal basis
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consisting of trigonometric polynomials. This basis has no extension to any
wniformly bounded orthonormal basis for I*[0,1].
Corollary 3 answers a question of Shapiro [14].

3. Fat subspaces of C(S) spaces.

DuriNizioN. Let u be a probability Borel measure on a compact
Hausdorff space S. A closed linear subspace Z of O(8) is said to be fat
with respect to w if the unit ball of Z regarded as a gubset of the Hilbert
gpace L*(u) is not totally bounded. :

Let I,: L®(u)—>I*(u) denote the natural injection. It is clear that
Z is fat with respect to w iff the restriction of I, to Z is not a compact
operator or, equivalently, if B = I,(Z) satisfies condition (ii) of Theorem 2.

Our next result characterizes Banach spaces which admit fat iso-
metric embeddings into C(8) spaces. Some of the equivalent conditions
are stated in terms of 2-absolutely summing operators, i.e. such bounded
linear operators which admit a factorization through a natural injection
I, for some measure x (cf. [12] and [8]).

ProposreioN 3. For every Banach space X the following conditions
are equivalent:

() there ewists & uniformly bounded sequence (x,) of elements of X such
that mo subsequence of (,) is a weak Cauchy sequence,

(b) X contains a subspace isomorphic to I,

(c) there emists a 2-absolutely summing operator from X onto 1%

(A) there emists a 2-absolutely swmming non-compact operator from X
imlo 1%, »

(e) for every isometric embedding j of X into a O(8) space there exists
a probability Borel measure u on 8 such that j(X) is fat with respect to w,

(f) for some isometric embedding j of X into a C(S) space there ewists
a probability Borel measure u on 8 such that j(X) 48 fat with respect to .

Proof. (a) = (b). This is a profound recent result of Rosenthal

13].

: ](b) = (¢), Let 7' be a bounded linear operator from 1* onto 12 (cf.
[2]for the existence of such operators). Then, by & result of Grothendieck
[7] (et also [8] ), T is 2-absolutely summing. Hence, by [12], T admits
an extension to a 2-absolutely swmming operator from X onto 1%

(c) = (d). Obvious. :

(d) = (e). Let T: X-»I* be a non-compact 2-absolutely gumming
operator and let § be a compact Hausdorff space. By a result of Persg;on
and Pietsch [11], for every isometric embedding j: X—((8) there exists
a Borel probability measure u on § such that I' = AI «J for some bounde.cl
linear operator 4 : L (u)— 12 Since T is non-compact, the image of the unit

4 — Studia Mathematica LIV.2
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ball of §(X) under I, is not a totally bounded subset of L*(p). Thus, j(X)
is a fat subspace of C(S8) with respect to u.

(e) = (f). Obvious.

(f) = (a). It follows from (f) that there exists a uniformly bounded
sequence (@,) in X such that ||I§(2,)—Lj(@,)le=1 for n #m (n, m
=1, 2,...). Thus the sequence (x,) does not contain weak Cauchy sequences
because I, takes weak Cauchy sequences into strong Oauchy sequences.

A similar result to our Proposition 3 was recently independently
discovered by Weis [16].

Our last result is related to Gaposhkin’s [6] generalization of a result
of Sidon [15].

COROLLARY 4. Let u be a probability measure on o sigma field of subsets
of 8. Let (g,) be o uniformly bounded sequence in L™ (u) such that (g,) tends
weakly to zero in L?(y) and limsup || g,ll. > 0. Then there exists an infinite

subsequence (g,,) and ¢ > 0 such that

“ 2, O Gy ||oo

for every finite sequence of scalars ¢y, 04y ...,0, (p =1,2,...).
Proof. Without loss of generality we may assume that inf|jg,|l; > 0

wk‘

n
Then (g,) does not have Cauchy (in I*(u)) subsequences because (g,)
weakly converges in L*(u) to zero but no subsequence of (g,) strongly
converges to zero. Thus (g,) regarded as a sequence of elements of L™ (u)
does not contain weak (in L™ (u)) Cauchy sequences because the natural
injection I,: L*(u)—>L*(u) takes weak Oauchy sequences in L%(u)
into strong Cauchy sequences in I*(u). Since sup ||g,le < oo, to complete

"
the proof it is enough to apply Rosenthal’s criterion (cf. Rosenthal [13]
for the real case, and Dor [5] for the complex case).

Added jn proof. Since the completion of the present paper the second named
author proved that in every separable Banach space, for every &> 0, there exists
a fundamental total and bounded by 1-+¢ biorthogonal sequence (of. [17]).
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