

On the existence of a fundamental total and bounded biorthogonal sequence in every separable Banach space, and related constructions

of uniformly bounded orthonormal systems in L^2

bv

R. I. OVSEPIAN (Erevan) and A. PEŁCZYŃSKI (Warszawa)

Abstract. (1) In every separable Banach space X a biorthogonal sequence (x_n, x_n^*) is constructed such that $\sup_n ||x_n^*|| < \infty$, the linear combinations of the x_n 's are dense in X and, for every x in X, if $x_n^*(x) = 0$, for all n, then x = 0.

(2) Linear subspaces of L²[0,1] which admit an orthonormal basis consisting of uniformly bounded functions are characterized.

The present paper consists of three sections. In the first one, using a trick invented by Olevskii ([9], Lemmas 3 and 4), we prove

THEOREM 1. In every separable Banach space X there exists a fundamental and total biorthogonal sequence (x_n, x_n^*) such that

$$\sup_{n} \|x_n\| \|x_n^*\| < \infty.$$

Recall that a sequence (x_n, x_n^*) of pairs consisting of elements of a Banach space X and bounded linear functionals on X, i.e. elements of X^* — the dual of X, is said to be biorthogonal if $x_n^*(x_m) = \delta_n^m$ for $n, m = 1, 2, \ldots$ A biorthogonal sequence (x_n, x_n^*) is fundamental if linear combinations of the x_n 's are dense in X, and is total if the condition $x_n^*(x) = 0$ for $n = 1, 2, \ldots$ implies that x = 0.

Theorem 1 answers a question of Banach ([1], p. 238). A slightly weaker result has previously been obtained by Davis and Johnson [4].

The main result of the second section is

THEOREM 2. Let E be a separable linear subspace of a Hilbert space $L^2(\mu)$ where μ is a probability measure on a sigma field of subsets of a set S. Then E admits an orthonormal basis consisting of uniformly bounded functions if and only if

- (i) $E \cap L^{\infty}(\mu)$ is dense in E in the $L^{2}(\mu)$ norm,
- (ii) $E \cap \{f \in L^{\infty}(\mu) \colon ||f||_{\infty} \leqslant 1\}$ is not a totally bounded subset of $L^{2}(\mu)$.

Moreover, if $E \cap L^{\infty}(\mu)$ is a separable subspace of $L^{\infty}(\mu)$, then the orthonormal basis can be constructed so that it spans a linear subspace which is dense in the norm $\|\cdot\|_{\infty}$ in $E \cap L^{\infty}(\mu)$.

As a corollary we obtain that every subspace of $L^2[0,1]$ of finite codimension admits a uniformly bounded orthonormal basis consisting of trigonometric polynomials. This answers a question of H. Shapiro [14].

In the third section we consider Banach spaces X with the following property

(*) there exist a compact Hausdorff space S, an isometrically isomorphic embedding j: $X \rightarrow C(S)$ and a Borel probability measure u on S such that the unit ball of j(X) regarded as a subset of $L^2(\mu)$ is not totally bounded.

Using a recent profound result of Rosenthal [13] we show that a Ranach space X has the property (*) if and only if it contains a closed linear subspace isomorphic to the space l^1 of all absolutely convergent series of scalars.

1. Proof of Theorem 1. If A is a non-empty subset of a Banach space X, then [A] denotes the closed linear subspace of X generated by A, and lin A the linear subspace of X generated by A.

We begin with a lemma which is a modification of Olevskii's Lemma 3 of [9].

LEMMA 1. Let X be a Banach space and let n be a positive integer. Let $x_0, x_1, \ldots, x_{2^n-1}$ be elements of X and let $x_0^*, x_1^*, \ldots, x_{2^n-1}^*$ be elements of X^* such that $x_p^*(x_q) = \delta_p^q$ for $p, q = 0, 1, ..., 2^n - 1$.

Then there exists a unitary real matrix $(a_{k,j}^n)_{0 \le k,j < 2^n}$ such that if

$$e_k = \sum_{j=0}^{2^n-1} a_{k,j}^n x_j$$
 and $e_k^* = \sum_{j=0}^{2^n-1} a_{k,j}^n x_j^*$ for $k = 0, 1, ..., 2^n - 1$,

then

(1)
$$\max_{0 \leqslant p < 2^n} \|e_p\| < (1 + \sqrt{2}) \max_{1 \leqslant j < 2^n} \|x_j\| + 2^{-n/2} \|x_0\|,$$

(2)
$$\max_{0 \leqslant p < 2^n} \|e_p^*\| < (1 + \sqrt{2}) \max_{1 \leqslant j < 2^n} \|x_j^*\| + 2^{-n/2} \|x_0^*\|,$$

(3)
$$e_p^*(e_q) = \delta_p^q \quad \text{for} \quad p, q = 0, 1, ..., 2^n - 1,$$

$$(4) \qquad [\{e_p\}_{0 \leqslant p < 2^n}] = [\{x_p\}_{0 \leqslant p < 2^n}]; \qquad [\{e_p^*\}_{0 \leqslant p < 2^n}] = [\{x_p^*\}_{0 \leqslant p < 2^n}].$$

Proof. Conditions (3) and (4) are satisfied for every unitary $2^n \times 2^n$ matrix. The specific unitary matrix for which (1) and (2) hold is defined to be the matrix which transforms the unit vector basis of the 2^n -dimensional Existence of a fundamental total and bounded biorthogonal sequence

Hilbert space l_{2n}^2 onto the Haar basis of this space. We put

$$a_{k,0}^n = 2^{-n/2} \quad ext{for} \quad 0 \leqslant k < 2^n,$$

$$a_{k,2^{k}+r}^n = \left\{ egin{array}{ll} 2^{(s-n)/2} & ext{for} & 2^{n-s-1}2r \leqslant k < 2^{n-s-1}(2r+1), \\ -2^{(s-n)/2} & ext{for} & 2^{n-s-1}(2r+1) \leqslant k < 2^{n-s-1}(2r+2), \\ 0 & ext{for} & k < 2^{n-s-1}2r ext{ and for } k \geqslant 2^{n-s-1}(2r+2), \\ (s=0,1,\ldots,n-1; r=0,1,\ldots,2^s-1). \end{array}
ight.$$

We have

(5)
$$\sum_{j=1 \atop j=1}^{2^{n}-1} |a_{k,j}^{n}| = \sum_{s=0}^{n-1} 2^{-(n-s)/2} < 1 + \sqrt{2} \quad \text{ for } \quad 0 \leqslant k < 2^{n}.$$

Clearly, (5) implies (1) and (2).

PROPOSITION 1. Let (x_n, x_n^*) be a fundamental and total biorthogonal sequence in a Banach space X such that there exists an increasing infinite sequence (n_k) such that $\sup \|x_{n_k}\| \|x_{n_k}^*\| = M < \infty$.

Then there exists a fundamental and total biorthogonal sequence (e_n, e_n^*) in X such that

$$\sup \|e_n\| \|e_n^*\| \leqslant M(1+\sqrt{2})^2 + 1$$

and

$$\lim \{e_n\}_{n=1}^{\infty} = \lim \{\hat{x_n}\}_{n=1}^{\infty} \quad and \quad \lim \{e_n^*\}_{n=1}^{\infty} = \lim \{\hat{x_n}\}_{n=1}^{\infty}.$$

Proof. Without loss of generality one may assume that $||x_n|| = 1$ for all n. Pick a permutation $p(\cdot)$ of the indices and an increasing sequence (m_r) of the indices so that if $\tilde{x}_n = x_{\nu(n)}$ and $\tilde{x}_n^* = x_{\nu(n)}^*$ for all n and $q_r = \sum_{p=0}^{r} 2^{m_p}$ for all r, then

if $n \neq q$, for all r, then $\|\tilde{x}_*\| \|\tilde{x}_*^*\| \leq M$.

if $n = q_n$ for some $r = 0, 1, \ldots$, then

$$(1+\sqrt{2})^2M+1> [(1+\sqrt{2})M+\|\tilde{x}_n^*\|2^{-m_{r}/2}][(1+\sqrt{2})+\|\tilde{x}_n\|2^{-m_{r}/2}].$$

Next put

$$e_n = ilde{x}_n \quad ext{and} \quad e_n^* = ilde{x}_n^* \quad ext{for} \quad n < 2^{m_0},$$
 $e_{k+q_{r-1}} = \sum_{j=0}^{2^{m_{r-1}}} a_{k,j}^{m_r} ilde{x}_{j+q_{r-1}}; \quad e_{k+q_{r-1}}^* = \sum_{j=0}^{2^{m_{r-1}}} a_{k,j}^{m_r} ilde{x}_{j+q_{r-1}}^*$ for $0 \leqslant k < 2^{m_r}; \ r = 1, 2, \dots$

where $a_{k,l}^{m_r}$ are defined as in Lemma 1 for $n=m_r$. Using Lemma 1, we easily verify that the sequence (e_n, e_n^*) has the desired properties.

Proof of Theorem 1. We shall assume that $\dim X = \infty$. Then the separability of X implies that there exist sequences $E_1 \subset E_2 \subset \ldots$ of subspaces of X and $F_1 \subset F_2 \subset \ldots$ of subspaces of X^* such that $\dim E_i = \dim F_i = i$ for $i = 1, 2, \ldots, \bigcup_{i=1}^{\infty} E_i$ is dense in X and if $f^*(x) = 0$, for all $f^* \in \bigcup_{i=1}^{\infty} F_i$, then x = 0. In view of Proposition 1, it is enough to construct a biorthogonal sequence (x_n, x_n^*) in X such that if $G_n = [x_1, x_2, \ldots, x_n]$ and $H_n = [x_1^*, x_2^*, \ldots, x_n^*]$ then for all s

(6)
$$G_{3s-2}\supset E_s; \quad H_{3s-1}\supset F_s; \quad ||x_{3s}|| \, ||x_{3s}^*|| \leqslant 3.$$

Case 1: n=3s-2. If $G_{n-1}\supset E_s$ we define $x_n\in X$ and $x_n^*\in X^*$ arbitrarily, so that

$$x_n^*(x_q) = \delta_n^q$$
 and $x_p^*(x_n) = \delta_p^n$ for $p, q = 1, 2, ..., n$.

If $E_s \setminus G_{n-1}$ is non-empty, say $e \in E_s \setminus G_{n-1}$, then we put

$$x_n = e - \sum_{n=1}^{n-1} x_p^*(e) x_p$$
 and $G_n = [G_{n-1} \cup \{x_n\}].$

Clearly, $x_n \neq 0$. Since $\dim E_s = \dim E_{s-1} + 1$ and $e \in G_n \setminus E_{s-1}$ and since the inductive hypothesis implies that $E_{s-1} \subset G_{n-1}$, we infer that $G_n \supset E_s$. Since $x_n \in G_n \setminus G_{n-1}$, there exists a bounded linear functional on G_n , say g^* , such that $g^*(x_n) = 1$ and $g^*(g) = 0$ for $g \in G_{n-1}$. We define x_n^* to be any extension of g^* to a bounded linear functional on X.

Case 2: n=3s-1. If $H_{n-1}\supset F_s$ we define $x_n \in X$ and $x_n^* \in X^*$ arbitrarily so that $x_n^*(x_q)=\delta_n^q$ and $x_p^*(x_n)=\delta_p^n$ for $p,q=1,2,\ldots,n$. If $F_s \setminus H_{n-1}$ is non-empty, say $f^* \in F_s \setminus H_{n-1}$, then we put

$$x_n^* = f^* - \sum_{q=1}^{n-1} f^*(x_q) x_q^*.$$

Since $f^* \notin H_{n-1}$, there exists an $x \in X$ such that

$$1 = f^*(x) \neq \sum_{q=1}^{n-1} f^*(x_q) x_q^*(x).$$

We put $x_n = x - \sum_{p=1}^{n-1} x_p^*(x) x_p$. It is easy to check that $x_n^*(x_q) = \delta_n^q$ and $x_p^*(x_n) = \delta_p^n$ for p, q = 1, 2, ..., n. Let $H_n = [H_{n-1} \cup \{x_n^*\}]$. Since the inductive hypothesis implies that $F_{s-1} \subset H_{n-1}$ and since $\dim F_s = \dim F_{s-1} + 1$ and $f^* \in F_s \setminus F_{s-1}$, we infer that $H_n \supset F_s$.

Case 3: n=3s. Using Mazur's technique (cf. [10], Lemma) we pick an $x_n \in X$ with $\|x_n\|=1$ so that $x^*(x_n)=0$ for every $x^* \in H_{n-1}$ and, for all g in G_{n-1} and for all scalars t, $\|g+tx_n\| \ge (1-\frac{1}{3}) \|g\|$. Define g^* on G_n by $g^*(g+tx_n)=t$. Then

$$|t| = ||tx_n|| \le ||g + tx_n|| + ||g|| \le (1 + \frac{3}{5}) ||g + tx_n||.$$

Thus $||g^*|| \le 3$. We define x_n^* to be any norm preserving extension of g^* to a linear functional on X.

Remark 1. Using in Case 3 Day's technique (cf. [3]) which bases on the Borsuk antipodal mapping theorem one can choose (both in the case of real and of complex scalars) x_{3s} and x_{3s}^* so that

$$||x_{3s}|| = ||x_{3s}^*|| = x_{3s}^*(x_{3s}) = 1$$
 for $s = 1, 2, ...$

Now the inspection of the proof of Theorem 1 yields that in every separable Banach space for every $\varepsilon > 0$ there exists a fundamental total and bounded biorthogonal sequence (e_n, e_n^*) such that $||e_n|| ||e_n^*|| < (1 + \sqrt{2})^2 + \varepsilon$ for all n. However, as it was observed by C. Bessaga, we have

COROLLARY 1. Every separable Banach space X admits an equivalent norm $|||\cdot|||$ such that there exists in X a fundamental and total biorthogonal sequence (e_n, e_n^*) with $|||e_n|||\cdot|||e_n^*||| = 1$.

Proof. We admit $|||x||| = \max_n (||x||, \sup_n |e_n^*(x)|)$ for $x \in X$ where (e_n, e_n^*) is any fundamental and total biorthogonal sequence in X such that $||e_n|| = 1$ for all n and $\sup_n ||e_n^*|| < \infty$.

Remark 2. A similar argument to that which was used in the proof of Theorem 1 allows us to prove the following

THEOREM 1'. Let X and Y be Banach spaces and let T: $X \rightarrow Y$ be a one-to-one bounded linear operator. If X is separable, T(X) is dense in Y and T is not compact, then there exist fundamental and total biorthogonal sequences (x_n, x_n^*) in X and (y_n, y_n^*) in Y such that

$$\sup_{n} \max (\|x_{n}\| \|x_{n}^{*}\|, \|y_{n}\| \|y_{n}^{*}\|) < \infty \quad \text{ and } \quad T(x_{n}) = y_{n} \quad \text{ for all } n.$$

2. Constructions of uniformly bounded orthonormal sequences. We employ the following notation. If μ is a probability measure (= a nonnegative normalized measure) on a sigma field of subsets of a set S then

$$\langle x,y
angle = \int\limits_{\mathcal{S}} x(s)\overline{y(s)}\mu(ds),$$
 $\|x\|_2 = \langle x,x
angle^{1/2} \quad ext{and} \quad \|x\|_\infty = \inf\limits_{\mu(B)=1} \sup\limits_{s\in B} |x(s)|$

for any μ -absolutely square summable scalar valued functions x and y on S. $L^{\infty}(\mu)$ and $L^{2}(\mu)$ denote as usually the Banach spaces of those x that $\|x\|_{\infty} < \infty$ and $\|x\|_{2} < \infty$, respectively.

The proof of Theorem 2 is similar to the proof of Theorem 1. Instead of Proposition 1 we apply the following result due to Olevskii ([9], Lemma 4).

PROPOSITION 2. Let μ be a probability measure on a sigma field of subsets of a set S. Let (x_n) be an infinite orthonormal (with respect to the inner product \langle , \rangle) sequence of functions in $L^{\infty}(\mu)$ such that $\liminf_n \|x_n\|_{\infty} < \infty$. Then there exists an orthonormal sequence (e_n) such that

$$\lim \{x_n\}_{n=1}^{\infty} = \lim \{e_n\}_{n=1}^{\infty} \quad and \quad \sup_{n} \|e_n\|_{\infty} < \infty.$$

The proof of Proposition 2 can be obtained by a non-essential modification of the proofs of Lemma 1 and Proposition 1.

To prove Theorem 2 it is convenient to use the following simple fact.

LEMMA 2. Let (g_n) be a normalized sequence in $L^2(\mu)$ which weakly in $L^2(\mu)$ converges to zero and let $\sup_n \|g_n\|_{\infty} = M < \infty$. Then for every finite dimensional subspace of $L^{\infty}(\mu)$, say F, and for k > 0 there exist an index $n_0 > k$ and a function h in the orthogonal complement of F such that

$$[F \cup \{g_{n_0}\}] = [F \cup \{h\}], \quad \|h\|_2 = 1 \quad \text{and} \quad \|h\|_{\infty} < M + 2^{-k}.$$

Proof. Let $p = \dim F$. Let e_1, e_2, \ldots, e_p be any orthonormal basis for F. Pick $\varepsilon > 0$ so that

$$\frac{M+\varepsilon\sum\limits_{j=1}^{p}\|e_{j}\|_{\infty}}{1-\varepsilon p}< M+2^{-k}.$$

Since (g_n) converges weakly to 0 in $L^2(\mu)$, there exists an index $n_0 > k$ such that $|\langle g_{n_0}, e_j \rangle| < \varepsilon$ for $1 \leq j \leq p$. Put

$$h \, = \left(g_{n_0} \, - \sum_{j=1}^p \, \langle g_{n_0} \, ; \, e_j \rangle e_j \right) \left\| g_{n_0} - \sum_{j=1}^p \, \langle g_{n_0}, \, e_j \rangle e_j \right\|_2^{-1}.$$

Clearly, h belongs to the orthogonal complement of F, $||h||_2 = 1$ and $[F \cup \{g_n\}] = [F \cup \{h\}]$. We have

$$\left\|g_{n_0} - \sum_{j=1}^p \langle g_{n_0}, \ e_j \rangle e_j \right\|_{\infty} \leqslant \|g_{n_0}\|_{\infty} + \left\| \sum_{j=1}^p \langle g_{n_0}, \ e_j \rangle e_j \right\|_{\infty} \leqslant M + \varepsilon \sum_{j=1}^p \|e_j\|_{\infty}$$
 and

$$\left\|g_{n_0} - \sum_{j=1}^p \left\langle g_{n_0}, \, e_j \right\rangle e_j \right\|_2 \geqslant \|g_{n_0}\|_2 - \Big\| \sum_{j=1}^p \left\langle g_{n_0}, \, e_j \right\rangle e_j \Big\|_2 \geqslant 1 - \varepsilon p \,.$$

Thus

$$\|h\|_{\infty} \leqslant \Big(M + arepsilon \sum_{j=1}^p \|e_j\|_{\infty}\Big) (1 - arepsilon p)^{-1} < M + 2^{-k}.$$

Proof of Theorem 2. It follows from (i) that there exists in E an increasing sequence of finite dimensional subspaces $F_1 \subset F_2 \subset \ldots$ such that $\dim F_p = p$ and $\bigcup_{p=1}^{\infty} F_p$ is dense in E. Clearly, if $E \cap L^{\infty}(\mu)$ is a separable subset of $L^{\infty}(\mu)$ one can choose the sequence (F_p) so that the union $\bigcup_{p=1}^{\infty} F_p$ is dense in $E \cap L^{\infty}(\mu)$ in the $L^{\infty}(\mu)$ norm. Condition (ii) yields that there exists in E a sequence (g_n) satisfying the assumption of Lemma 2. In view of Proposition 2 it is enough to define inductively an orthonormal sequence (h_n) in $L^{\infty}(\mu) \cap E$ so that, for $s = 1, 2, \ldots$,

$$[\{h_1, h_2, \dots, h_{2s-1}\}] \supset F_s,$$

$$\|h_{2s}\|_{\infty} < M + 2^{-s} \quad \text{ where } \quad M = \sup \|g_n\|_{\infty}.$$

We define h_1 as any element of F_1 with $||h_1||_2 = 1$. Suppose that for some $n-1 \ge 1$ the functions $h_1, h_2, \ldots, h_{n-1}$ have been defined to satisfy the conditions (7) and (8) and so that $\langle h_p, h_q \rangle = \delta_p^q$ for $p, q = 1, 2, \ldots, n-1$. Let us consider separately two cases.

Case 1: n = 2s for some s = 1, 2, ... We put $h_n = h$ where h is that of Lemma 2 applied for $F = [\{h_1, h_2, ..., h_{n-1}\}]$ for (g_p) and for k = s.

Case 2: n=2s-1 for some $s=2,3,\ldots$ If $F_s\subset [\{h_1,h_2,\ldots,h_{n-1}\}],$ we again define $h_n=h$ where h is that of Lemma 2 applied for F = $[\{h_1,h_2,\ldots,h_{n-1}\}]$ for (g_p) and for k=1. If $F_m\in [\{h_1,\ldots,h_{n-1}\}],$ then there exists an f which belongs to $F_s\smallsetminus [\{h_1,h_2,\ldots,h_{n-1}\}]$. Let \tilde{f} be the orthogonal projection of f onto $[\{h_1,h_2,\ldots,h_{n-1}\}]$. We put $h_n=(f-\tilde{f})\|f-\tilde{f}\|_2^{-1}$. Clearly, $\|h_n\|_2=1$ and h_n belongs to the orthogonal complement of $[\{h_1,h_2,\ldots,h_{n-1}\}]$. Obviously, we have $f\in [\{h_1,h_2,\ldots,h_n\}] \smallsetminus [\{h_1,h_2,\ldots,h_{n-1}\}]$. By the inductive hypothesis, $F_{s-1}\subset [\{h_1,h_2,\ldots,h_{n-1}\}]$. Thus, $F_s\subset [\{h_1,h_2,\ldots,h_n\}]$ because dim F_s adm $F_{s-1}+1$.

This completes the induction and the proof of the sufficiency of conditions (i) and (ii). The necessity is trivial.

Remark 1. A similar argument gives

THEOREM 2'. Let $T\colon X\to H$ be a one-to-one bounded linear operator from a Banach space X into a Hilbert space H. Let E=T(X). If E is separable and T is not compact, then there exists a sequence (x_n) in X such that $\sup \|x_n\| < \infty$ and $(T(x_n))$ is an orthonormal basis for E.

Moreover, if X is separable and $x_n^* \in X^*$ is defined by $x_n^*(x) = \langle T(x), x \rangle$ $T(x_n)_{\mathcal{H}}$ for $x \in X$ and for $n=1,2,\ldots$, where $\langle \cdot,\cdot \rangle_{\mathcal{H}}$ denotes the inner product of H, then (x_n) can be chosen so that (x_n, x_n^*) is a fundamental and total biorthogonal sequence in X and $\sup ||x_n|| ||x_n^*|| < \infty$.

R. I. Ovsepian and A. Pełczyński

Remark 2. There exists an orthonormal decomposition of $L^2[0,1]$ onto subspaces E_1 and E_2 such that neither E_1 nor E_2 admit uniformly bounded orthonormal bases. It is enough to define $E_1 = [\{x_1\} \cup \{x_{2m}\}_{m=2}^{\infty}]$ and $E_2 = [\{x_2\} \cup \{x_{2m-1}\}]_{m=2}^{\infty}$ where (x_n) is any orthonormal basis for $L^{2}[0,1]$ such that the functions x_{1} and x_{2} are unbounded, $x_{2m-1}(t)=0$ for $0 \le t < \frac{1}{2}$ and $x_{2m}(t) = 0$ for $\frac{1}{2} < t \le 1$ (m = 1, 2, ...). However, as was observed earlier by F. G. Arutunian (unpublished), we have

Corollary 2. If E is a linear subspace of a separable space $L^2(\mu)$ where μ is a non-purely atomic probability measure and if the orthogonal complement of E is finite dimensional, then [E] has a uniformly bounded orthonormal basis.

Moreover, if $E \cap L^{\infty}(\mu)$ is dense in E then the basis can be chosen from elements of $E \cap L^{\infty}(\mu)$.

Proof. It is enough to show that [E] satisfies conditions (i) and (ii) of Theorem 2. To check (i), first observe that the density of $L^{\infty}(\mu)$ regarded as a subspace of $L^2(\mu)$ in $L^2(\mu)$ implies that for every positive integer p and for every linearly independent $f_1, f_2, \ldots, f_{n+1}$ in $L^2(\mu)$ there exist $y_1, y_2, \ldots, y_{p+1}$ in $L^{\infty}(\mu)$ such that the matrix $(y_k, f_j)_{1 \le k, j \le p+1}$ is invertible. Let $(a_{i,k})_{1 \le i,k \le p+1}$ be the inverse matrix and let $z_i = \sum_{k=1}^{p+1} a_{i,k} y_k$ for i $=1, 2, \ldots, p+1$. Then $z_i \in L^{\infty}(\mu)$ and $\langle z_i, f_i \rangle = \delta_i^j$ for $i, j=1, 2, \ldots, p+1$. The above observation applied to any basis of the orthogonal complement of E and any non-zero element f of [E] yields the existence of an y in $L^{\infty}(\mu)$ such that $\langle y, f \rangle = 1$ and $\langle y, g \rangle = 0$ for all g in the orthogonal complement of E. The last condition means that $y \in [E]$. Hence there is no $f \neq 0$ in [E] which is orthogonal to all $y \in [E] \cap L^{\infty}(\mu)$, equivalently, $[E] \cap L^{\infty}(\mu)$ is dense in [E]. Hence [E] satisfies (i).

Let P denote the orthogonal projection from $L^2(\mu)$ onto [E], I the identity operator on $L^2(\mu)$, and I_{μ} : $L^{\infty}(\mu) \to L^2(\mu)$ the natural injection. I_n is not compact because μ is not purely atomic, while $(I-P)I_n$ is compact because the orthogonal complement of E is finitely dimensional. Thus, PI_u is not compact, equivalently, [E] satisfies (ii).

The "moreover" part of the corollary follows from the observation that in this case if [E] satisfies (ii) then E also satisfies (ii).

An immediate consequence of Corollary 2 is

Corollary 3. Let f be any unbounded function in $L^2[0,1]$. Then the orthogonal complement of f admits a uniformly bounded orthonormal basis

consisting of trigonometric polynomials. This basis has no extension to any uniformly bounded orthonormal basis for $L^2[0,1]$.

Corollary 3 answers a question of Shapiro [14].

3. Fat subspaces of C(S) spaces.

DEFINITION. Let μ be a probability Borel measure on a compact Hausdorff space S. A closed linear subspace Z of C(S) is said to be fat with respect to u if the unit ball of Z regarded as a subset of the Hilbert space $L^2(\mu)$ is not totally bounded.

Let $I_n: L^{\infty}(\mu) \to L^2(\mu)$ denote the natural injection. It is clear that Z is fat with respect to μ iff the restriction of I_{μ} to Z is not a compact operator or, equivalently, if $E = I_n(Z)$ satisfies condition (ii) of Theorem 2.

Our next result characterizes Banach spaces which admit fat isometric embeddings into C(S) spaces. Some of the equivalent conditions are stated in terms of 2-absolutely summing operators, i.e. such bounded linear operators which admit a factorization through a natural injection I_{μ} for some measure μ (cf. [12] and [8]).

PROPOSITION 3. For every Banach space X the following conditions are equivalent:

- (a) there exists a uniformly bounded sequence (x_n) of elements of X such that no subsequence of (x_n) is a weak Cauchy sequence,
 - (b) X contains a subspace isomorphic to l1,
 - (c) there exists a 2-absolutely summing operator from X onto l2,
- (d) there exists a 2-absolutely summing non-compact operator from X into l2.
- (e) for every isometric embedding j of X into a C(S) space there exists a probability Borel measure μ on S such that j(X) is fat with respect to μ ,
- (f) for some isometric embedding j of X into a C(S) space there exists a probability Borel measure μ on S such that j(X) is fat with respect to μ .

Proof. (a) => (b). This is a profound recent result of Rosenthal [13].

- (b) \Rightarrow (c). Let T be a bounded linear operator from l^1 onto l^2 (cf. [2] for the existence of such operators). Then, by a result of Grothendieck [7] (cf. also [8]), T is 2-absolutely summing. Hence, by [12], T admits an extension to a 2-absolutely summing operator from X onto l^2 .
 - (c) \Rightarrow (d). Obvious.
- (d) \Rightarrow (e). Let $T: X \rightarrow l^2$ be a non-compact 2-absolutely summing operator and let S be a compact Hausdorff space. By a result of Persson and Pietsch [11], for every isometric embedding $j: X \rightarrow C(S)$ there exists a Borel probability measure μ on S such that $T=AI_{\mu}j$ for some bounded linear operator $A: L^2(\mu) \to l^2$. Since T is non-compact, the image of the unit

ball of j(X) under I_{μ} is not a totally bounded subset of $L^{2}(\mu)$. Thus, j(X) is a fat subspace of C(S) with respect to μ .

- (e) \Rightarrow (f). Obvious.
- (f) \Rightarrow (a). It follows from (f) that there exists a uniformly bounded sequence (x_n) in X such that $||I_\mu j(x_n) I_\mu j(x_m)||_2 \geqslant 1$ for $n \neq m$ (n, m = 1, 2, ...). Thus the sequence (x_n) does not contain weak Cauchy sequences because I_μ takes weak Cauchy sequences into strong Cauchy sequences.

A similar result to our Proposition 3 was recently independently discovered by Weis [16].

Our last result is related to Gaposhkin's [6] generalization of a result of Sidon [15].

COROLLARY 4. Let μ be a probability measure on a sigma field of subsets of S. Let (g_n) be a uniformly bounded sequence in $L^\infty(\mu)$ such that (g_n) tends weakly to zero in $L^2(\mu)$ and $\limsup_n \|g_n\|_2 > 0$. Then there exists an infinite subsequence (g_{n_k}) and c > 0 such that

$$\Bigl\|\sum_{k=1}^{p} c_k g_{n_k}\Bigr\|_{\infty} > c \sum_{k=1}^{p} |c_k|$$

for every finite sequence of scalars c_1, c_2, \ldots, c_n $(p = 1, 2, \ldots)$.

Proof. Without loss of generality we may assume that $\inf \|g_n\|_2 > 0$.

Then (g_n) does not have Cauchy (in $L^2(\mu)$) subsequences because (g_n) weakly converges in $L^2(\mu)$ to zero but no subsequence of (g_n) strongly converges to zero. Thus (g_n) regarded as a sequence of elements of $L^\infty(\mu)$ does not contain weak (in $L^\infty(\mu)$) Cauchy sequences because the natural injection $I_\mu\colon L^\infty(\mu)\to L^2(\mu)$ takes weak Cauchy sequences in $L^\infty(\mu)$ into strong Cauchy sequences in $L^2(\mu)$. Since $\sup \|g_n\|_\infty < \infty$, to complete

the proof it is enough to apply Rosenthal's criterion (cf. Rosenthal [13] for the real case, and Dor [5] for the complex case).

Added in proof. Since the completion of the present paper the second named author proved that in every separable Banach space, for every $\varepsilon > 0$, there exists a fundamental total and bounded by $1+\varepsilon$ biorthogonal sequence (cf. [17]).

References

- [1] S. Banach, Théorie des opérations linéaires, Monografie Mat., Warszawa 1932.
- [2] S. Banach und S. Mazur, Zur Theorie der linearen Dimension, Studia Math. 4 (1933), pp. 100-112.
- [3] M. M. Day, On the basis problem in normed linear spaces, Proc. Amer Math. Soc. 13 (1962), pp. 655-658.
- [4] W. J. Davis and W. B. Johnson, On the existence of fundamental and total bounded biorthogonal systems in Banach spaces, Studia Math. 45 (1973), pp. 173-179.

- [5] L. Dor, On sequences spanning a complex l₁ space, Proc. Amer. Math. Soc. 47 (1975), pp. 515-516.
- [6] V. F. Gaposhkin, Lacunar series and independent functions, Usp. Mat. Nauk 21 (132) (1966), pp. 3-82 (in Russian).
- [7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem., Sao Paulo 8 (1956), pp. 1-79.
- [8] J. Lindenstrauss and A. Pelezyński, Absolutely summing operators in \mathcal{L}_n spaces and their applications, Studia Math. 29 (1968), pp. 275-326.
- [9] A. M. Olevskii, Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR, Ser. Mat. 30 (1966), pp. 387-432 (in Russian).
- [10] A. Pelozyński, A note on the paper of I. Singer "Basic sequences and reflexivity of Banach spaces", Studia Math. 21 (1962), pp. 371-374.
- [11] A. Persson und A. Pietsch, p-nukleare und p-integrale Abbildungen in Banachräumen, ibid. 33 (1969), pp. 19-62.
- [12] A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, ibid. 28 (1967), pp. 333-353.
- [13] H. P. Rosenthal, A characterization of Banach spaces containing P, Proc. Nat. Acad. Sci. USA 71 (1974), pp. 2411-2413.
- [14] H. S. Shapiro, Incomplete orthogonal families and a related question on orthogonal matrices, Michigan J. Math. 11 (1964), pp. 15-18.
- [15] S. Sidon, Über orthogonalen Entwicklungen, Acta Math. Szeged 10 (1943), pp. 206-253.
- [16] L. Weis, On strictly singular and strictly cosingular operators, Studia Math. 54 (1975), pp. 285-290.
- [17] A. Pełczyński, All separable Banach spaces admit for every \(\epsilon<\) 0 fundamental total and bounded by 1+\(\epsilon\) biorthogonal sequences, Studia Math. 55, to appear.</p>

INSTITUTE OF MATHEMATICS OF THE ARMENIAN ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

Received March 17, 1974

(808)