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A vunified approach to Riesz type representation thecrems

by

DAVID POLLARD* (Copenhagen, Denmark and Canberra, Australia)
and
FLEMMING TOPS@E** (Copenhagen, Denmark)

Abstract. 'We establish abstract versions of the Riesz representation theorem.

Necessary -and sufficient condifions for the existence of regular finitely additive,
g-additive and r-additive representing measures are found. A methodological simplifi-
cation is obtained by constructing the measures directly, rather than via a preliminary
extension of the linear functional. Thus our approach is in agreement with the view-
pointy of Alexandroff rather than with those of Bourbaki. We are able to easily deduce
the Daniell extengion theorem as well as numerous topological representation theorems
such as those developed by Radon, Markoff, Alexandroff, Hewitt, LeCam, Maffk
and Varadarajan. Indeed, these results are sometimes strengthened. Our method is
baged on the theory developed by the second author; hopefully, our results demon-
strate the uselulness of this theory.

1. A common problem in Functional Analysis is whether a given

bounded linear functional defined on & vector lattice of real valued functions
iy representable ay an integral with respect to some suitable regular mea-
sure. By well-known techniques this problem can be reduced to the fol-
lowing situation:

On a set X there is given a convex cone % of non-negative real functions,

closed under the finite lattice operations and containing the zero function.
A non-negative, monotone, linear functional 7' is defined on %. That is,
our basic assumptions are:

Al
A2,

% is a (0, \f, Af) conven' cone in [0, oo[¥;

T: [0, oof,

T (ayhy + aghy) = 0, Thy +agThy for ay, ag> 0 and by, hye €, hy < by
and hy, hye € implies that Thy < Thy.

* Supported by an Australian National University Ph. D. scholarship and by

the Danish Natural Science Research Council.

#* Supported by the Danish Natural Science Research Couneil,

5 — Studia Mathematica LIV.2


GUEST


174 D. Pollard and F. Topsee

Tor the positive cone of a vector lattice of functions we also have
closure under the operation \ defined by

Ng ={F—at(=f—frg).

‘Another frequently satistied condition is Stone’s condition that hnle @
for all he%. Thus we consider:

A3. € is closed under \ and satisfies Stone’s condition.

A3 ivnot needed to prove one of the basic results, but if it is satisfied
then the subsequent analysis is greatly simplified. Notice that if A3 is
not satisfied then the monotonicity of 7' does not follow from its non-

negativity alone.

The regularity properties we desire for our representing measures
are expressible in terms of a paving 4 of subsets of X. We shall always
agsume that this o is closed under finite unions and intersections and that

it contains the empty set:

A A is a (B, UFf, NS paving.
Following Topsee [11], we define the associated pavings

F(A) = {F: EnFex for all Ke X},
G(A) = {G: ENGe A for all Ke A},
& (A) = the field spanned by %(X’),
B(A") = the o-field spanned by ¥(X').

A non-negative set function g, on a domain containing o, is said to he
A -regqular if pK << oo for all Ke A and

(1) w(d) =sup{uK: K< A, KeX'} foreveryAin ﬂle domain. of u.

If uis defined on &7 (¥), is finitely additive, and o/ -regular, it is called
a A -reqular finitely additive measure. If o iy also closed. under countable
intersections (M) ¢) and g is defined on & (), iy countably additive, and
satisfies (1) then it is called a o -regular o-additive measure. Finally, if
A" is also closed under arbitrary intersections (ﬂa), a A -regular o-additive
-measure is said to be a A -reqular v-additive measure if it. satisties the
further smoothness condition: for every downward filtering family {F.}
of F(A)-sets, for which uF,< co for some a, we have

#(NFo) = infou(Fa).

The following theorem on the construction of such measures, starting
from a u defined only on ¢, is basic to our whole method.
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T:{nuOIt.:laM A (cf. Topsee [11]; Theorem 2.2, Lemma 2.3, Theorem
4:..17). Let o be a (@, Uf, NS paving and u o map from A into [0, ool
such that, for every pair K,, K, in o with K, ¢ K,, we have

(2) pE-Fsup {ul: K € BENEy, Ke A7) = uk,.
Define px on 2% by

(3) B =sup{ul: K < B,Ke A},
Lhen

(i) The restriotion wx to o (A) is an ewtension of wito a A -regular
Jinitely additive measure.

(ii) If o fw closed under Me and u is o-smooth at O (d.e. for any
sequence in A", K \@ implics uwX,|0), then the restriction of px to F(A ) is
an extension of u to a A -regular o-additive measure.

_(iii) If & . s olosed under Ma and p is v-smooth at @ (i.e. for any
Jomily in &, K |0 implies pJ|0) then the vestriction of ux to B (A) is am
extension of u to a A -regular T-additive measure.

In each case, the extension will also be denoted by u.

The history of this result goes back at least to Alexandroff (1],
Theorem 3.2). .

‘We shall apply Theorem A to the set function u defined on # by

(4) o I = inf{Th: hz 1k, he €}.

To ensure that this u satisfies the conditions of Theorem A we of course
require some further assumptions about the relationship between €, A
and T. Specifically, we shall work with a type of lower semi-continuity
requirement '

A5, For every he® and a> 0, {h< a}eF (L),
and also a separation assumption

A6, If K, and K, are disjoint A& sets and & > 0, then there are € functions
hy 2 g,y hy 2 Lg, for which T'(hyahs) < e.

Observe that A6 implies that the u defined by (4) is finite valued.
In applications though we often have another form of separation

A6 If X and K, are disjoint A" sets, then there is. an he € taking the value
1 on Ky and 0 on K,.

‘When combined with A3, A6’ leads to the stronger form of A6:
if K, and K, are disjoint A" sets, then there are € functions by > 1 &, Jor which
hyAhy= 0. [Choose »' taking the value 1 on K,UK, and take % as in A6’.
Then hy = BN('N\R) and hy = (W'\h)\h ave the required functions.]
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We prefer however to relain A6 since it s this weaker form of sep-
aration which allows us to obtain the Daniell extension theorem ag
a corollary to our results.

Whenever Theorems A is applicable we define, for a simple function
k= JTa;l,, (with the 4.5 in the domain of definition of u),

(5) plk) = D" agpd,;.
Further, we define, for every fe [0, oa}X, the inner integral
(6) ua (f) = sup{u(k): k<f, k a simple function}.

Notice that for simple functions u« (k) = w(k), and also that for any subset
B of X, s (Lg) = ux (B) (as defined by (3)). Since w is #-regular we have,
for every fe[0, co]¥, the more useful expression

™ i (f) = sup{Z?a@'/«tKii 2?“"11‘77 < f, the K; disjoint .7 se‘us}.

In general, u is only superadditive and positively homogeneous on 7.
In those cases where it is in fact linear on % it iy customary to write x(h)
" or [hdp for u«(h). We shall say that u is dominated by T if py (h) << Th
for all he %, and that u is a representation of T if ux(h) = Th for all he 7.
Of course, when x is a representation of T, it must be linear on %.

In Section 2 we establish the existence of the largest A -regular finitely
additive measure dominated by T, and then deduce necessary and suf-
ficient conditions for this to be a representation. From these the Markoff
and Alexandroff representation theorems follow immediately.

In Section 3 we extend. these results to find necessary and sufficient
conditions for representations in terms of J-regular o-additive and =-
additive measures. From these we deduce the Daniell extension theorem,
as well as a number of topological representation theorems associated
with the names: Alexandroff, LeCam, Hewitt, Ma¥ik, Radon and Vara-
darajan. In fact, we obtain stronger versions of some of these resulfs.

For Section 3, further closure assumptions have to be made on %
In Section 4 we try to avoid this. The difficulties involved are illustrated
by simple examples.

All of the results in this paper can be generalized to the case where
T is allowed to take the value --oco. Apart from obvious modifications
we only need the extra assumptions that for every K there is an h = lg
for which Th < oo, and also that Th is the supremum of T4 with »' = b,
Th' < co.

In particular, Examples 4 and b can be extended to the case of Radon
measures on general topological spaces without the restriction of total
finiteness.
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For historical background to these results we refer the reader to Batt
[2], Bourbaki [3] and Dunford and Schwartz [4].

2. Henceforth A, h,, ...
sets in A7

Trrgorum 1. Assume that A1, A2, Ad, A5 and A6 hold.

Then there emists o largest A -regular finitely additive measure u dom-
inated by T, and this finitely additive measure is determined by theuwlue’s
of won A, given by (4).

Proof. Let u be the set function on # defined by (4). Cleaxly, u is
non-.zmga.tive finite valued, monotone and su’ba:dditive ( ‘u,(K: L)K )
s w4 pd,). To prove that 4 is additive, let K., K, with Kanl = 25
and ¢> 0 be given. Choose hj?l;rg,uxz such that /L(.K-IU.KB)>T2/L—°-E
Then choose, according to A6, h, > 1g, and hy > 1 such that T (hyA B )
<& We may also assume that h, < hy by < B Theri o

Wy A p Ky < Thy +Thy = T (huy + hy)
=T (hyVhy-+hyAhy) .
== L (hyV hy) 4 T (hy A hy)
L Th+e< u(K,UK,)+2¢,

will denote functions in % and K, K,,...

which proves additivity.

Define w on 2% as in Theorem A. To enable us to apply Theorem A
we must verify (2). Note that by monotonicity and additivity of u “<’;
holds-in (2), so it remains to prove that, for K, ¢ K,, T

(8) My A+ o (BN K ) 2> ul.

To do this, let &> 0 and chooge hy > 1, such that uK, = Th,—e.
For 0< a< 1 put K, = K, {} e AT i g
] ( put K, 20 {h < a}. Then K,e # by Ab. Since h=1g
implies h+a""lh1 > lg,, we obtain Th+a™'Th, > uK, for all such h
and yhence wl -0 Thy = pK,. Since K, < KE,NK,, it follows that
P (H NI + a7 Thy 2 K, henee u (KNK;) + Thy > #K, and (8) follows
since Thy < uK -+ e.

By Theorem A, u has an extension to u .7 -regular finitely additive
measure which we also denote by u.

In order to prove that 1 dominates u, let he € be given. According
o (7), it suffices to show that if YV a,1 &< b and if the K’s are disjoint,
Then ‘ .

(9) - M oul, < Th.

‘ By A6, we can, to & g‘iven e> 0, find hy, 4,5 =1,2,...,%, i £7,
such that, for all these 4, j,

hy = Ig,  T(hyahy) <s.


GUEST


178 D. Pollard and F. Topsse

Now define

By = haa N by 4 =1,2, ..., 0.

Notice that k; > alg, so that Thy z oK. Also Vih,<h and hi./\ Ty
< Mhynhy for i 5% j where M -=maXa;. By this, and the general ine-

Ei he <V iy —}‘ZK 4 Tog A gy

N apl< 3 Th =T (> hi)

LT (n FM Y By )

quality

we have

< Th+Mnie.
Tt follows that (9) holds, and hence 7' dominatbes e .
If » is any other A -regular finitely additive measure dominated by T,
then, for any K,

VK < inffo ot bz g} < int{Th: h> 1} = pkK.

By o -regularity, »A < pd for any Ae o/ () follows. @ v
Remarks. 1. It follows from (4) and A5 that for Ke 4

uk = inf{u6| G2 K, Ge%(X)}.

9. If each function in ¥ is bounded (*), then us is additive on :6? Let
us briefly indicate a proof of this. Given A, by and &> 0, choose Sl 4
< hy+hy with the Aps digjoint in o7 (#7) and w({UJT4,) < oo, such that
px (hy +hy) < X a;ud;+e. By A5, and the boundedness of hy, we may
assume that, for each ¢, M;—m;<s where M, [m,] is the supremurm .
[infimum] of h, on 4. Since

Z mil g, < Ty, Z (0= M)t Ly, < hay

we find thab

o Py e oy 22 Z [m;+ (e — M)V g 2 o (g A Fig) € - e U4y,

and the result follows.
Of course, if u is o-additive, u, is additive on % even without the

boundedness assumption. ‘
3. Tt is not difficult to prove that A6 is necessary and sufficient for
u defined by (4) to be a;dditive on .

() Note added in proof: Actually, this assumption is not necessary.

Tiesz type representation theorems T

4. Note that, for any non-negative function f on X,

us(f) = supint Th,

k<f h=le
where & denotes a 4 -simple funetion.

5. An important consequence of Theorem 1. is that if there is a 27
regular finitely additive measure representing 7, then it is unique.

The conditions of Theorem 1 are not sufficient to ensure that u
represents ' (consider for instance the trivial case when % = {@}). Thus,
in order to obtain a rvepresentation, we need a condition to ensure that
there arve enough %" sets relative to 1. The following property turns out
to be appropriate: We say that o ewhausts T if, to every he ¥ and &> 0,
there exists I e " such that Th' < & whenever ' e %, V' < h and »' =0
on IC. For example, this property is satistied if to any & there exists a K
such that {h > 0} = K.

THROREM 2. Assume that AL-A6 hold. Then & necessary and sufficient
condition that there ewists a o -regular finitely additive measure representing
€4, is that A ewhausts T, end that .

(10) Th =sup T(han) for allhe¥.

n
Proof. In the proof, u refers to the finitely additive measure
constructed in Theorem 1.

To prove sufficiency, assume that " exhausts 7. We know that
ts b << Th for all 7 and must prove the reverse inequality. To a given
h and £ > 0, choose K as specified by the exhaustion property. By (10),
we may assumne that b < 1. Also choose some fixed hy > 1 and a natural
number % such that ™ Thg < e. By Stone’s condition we may assume that
hg =1 on K. Put

K, =Kn{hzvn}; »v=1,2,...,n.

3

Since
K, = En{hg\h< L--v/n},
A'ye A by Ab. Now

(11) (h—n)1g<t DN g, < I

The right inequality gives

in

(12) ez 3N 0 kK, = inf{_‘l’hl: b= n”llKv}.
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Consider any &y > Y n "1y, . We may assume thab fy < h. Then h—hy
< 27! on the set K, by the left inequality in (11), so it follows that the
function

= (h—Ny)\n " g

satisties b’ < b and A’ = 0 on K. Thus Th' < e. Since

h—hy = W +(h—=h)An " he < W -+ Vg,
we obtain T'(h—h,) K Th' +n " Thy << 28, Thy = Th—2¢ follows. By (12),
this argument shows that weh > Th~—2e e belng arbitrary, this gives
the desired conclusion pyh = Th.

To prove necessity, assume that wh = T'h for all h. To a given / and

8> 0, choose D7o;ly, <h such that Th = wh < X qulte Put K
= (UL K;. To verify the exhaustion property, assume that A’ << b and
kB =0 on K. Then h—h'> } a1y, Thus we have
Th—e< N auk; < pu (h— 1) = T(h—H) = Th—1TH,
so that Th' < e, and hence the exhaustlon property holds.

Clearly, (10) is also necessary.

Remark. For the proof of neeessity A3 is not needed. [Employ that
e (W + Y ogle) = pn b+ (3 a;lg); cf. the proof given in Remark 2
to Theorem 1].

BExampir 1 (Alexandroff [1]; see also Varadarajan [127], part I)
Let X be an arbitrary topological space, # the cone of bounded continuous
non-negative functions on X, and T a positive linear functional on %.
We take o as the paving of zero sets, i.e. sets of the form A~*(0) with
he®.

Assumptions Al-AB and the exhaustion property arve then ecasily
verified. As is well known, A6’ is also satisfied [if K, == h;(0), considor
b= Ry (b +hy)™].

Thus T has a unique representation by a finitely additive measure,
regular w.r.t. the zero sets. The field () is usually called the Baire
field and hence, the representing measure is a findtely additive regular
Baire measure.

Examere 2 (Markoff [9]; see also Dunford and Schwartz [4], LV. 6).
Let X e a normal (not necessarily Hausdortf) topological space, 4 and T
a8 in Example 1. This time take # to be the p paving -of closod subsets.

Proceeding as in Example 1 (notmor that this time A6’ iy Ju% the
Urysohn lemma), we obtain a unique representation of T' by a finitely
additive measure regular w.r.b. the closed sets. . o7 (A7) is the Borel field;
The measure iy called a finitely additive reqular Borel measure.

icm°®
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3. Consider the problem of representing 7' by o-additive or z-additive
measures. The following smoothness conditions are needed. T is o-smooth
at 0 if b, |0 implies Th, 0. T is o-smooth at @ w.r.t. o it K,|@ implies that

Cinf{Th: = lg, for some n} = 0.
1'is z-smooth at 0 if A0 implies Th, 0. Here (h,) is any downward filtering
collection of functions in 4 with infh, = 0. T iy 7-smooth at @ w.r.b. A if
K9 implies

inf{Th: h 3z 1y, for some a} = 0.

TimoReEM 3. Assume that Al-AB, and A6 hold.

If ' is closed under (e, then a necessary and sufficient condition
that there ewists w A -reqular o-additive measure representing T is that A
ewhausts T, that T be o-smooth ot @ w.r.t. A and that (10) holds.

If o is closed under (Ma, then @ necessary and sufficient condition that
there ewists a A -regular T-additive measure represemting T is that A ew-
hausts T', that T' be v-smooth at @ w.r.t. 2 and that (10) holds.

In both ocases, the representing measure is unique and determined by
ils values on A'-sels which are those given by (4).

Proof. We will deal only with the case in which 2 is closed undel
countable intersections (the other case is handled analogously). Throughout
the proof, u denotes the .#-regular finitely additive measure constructed
in Theorem 1. Note that the condition that 7' be o-smooth at @ w.r.b.
A iy equivalent to the condition that u be o-smooth at @ w.r.t. 2.

To prove sufficiency, assume that . exhausts 7T, that T' is o-smooth
at @ w.r.t. 7, and that (10) holds. Then, by Theorem A, 4 has an extension
to a A -regular o-additive measure. This measure we shall here denote
by u.. By AB, each k is #(#)-measurable; indeed, there exists an increas-
#)-simple functions converging pointwise to #. It
follows from this that

ko (A
k o

o () == wup {ug () y-simple, k< h}

== jup {u(k): y-simple, & < b}

Hince the exhaustion property holds, it follows from Theorem 2 that
faac (R = T'h tor every bounded function in . Employing (10), we thus
got, for any he ¥
Uo () == sup py(hAn)
k3
- supd'(han)

n

— Th.

1
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To prove necessity, assume that u, is a # -regular o-additive represem.;—
ing measure. Denoté by ' the restriction of u, to (). Then u' is
a A -regular finitely additive measure. Employing A5 in the' same 'wn.y
as in the proof of sufficiency, we obtain, for every he %, u,(h) = u(h).
Since g, is a representation, so is x'. By Theorem 2 it follows that '
exhausts T and that u' = u. Since g, is c-additive, 4 must be o-smooth
at @ wrt. A, ie. T is o-smooth at @ w.r.t. 4. Clearly, (10) must hold.

This proves necessity as well as uniqueness. m

Remarks. 1. For the proof of necessity, ¥ need not be closed under \.

2. Assume that p is a o -regular v-additive representing measure.
It is not difficult to show that for every upward filtering system of ¢
functions,” with supremum g¢: h,tg, g is #(#)-measurable and

[ 9du = sup [ hadu (< o).
Similarly, if h,|f, then fis %(){” )-meagurable and
ffd,u = in:ff hodp.

It was remarked earlier that to get a representation we need “enough”
A" sets. The following results show that it only @ and T’ are specified then
by a suitable choice of £, this can be achieved even in an abstract setting.

THEOREM 4. Let € and T' satisfy AL, A2 and A3. Define tr % (the trace
of %) as the paving of sets of the form {h = a} where he® and o> 0. Let
A, be the paving of countable intersections of sets in tx €, A, the paving of
arbitrary intersections of sets in tr%.

Then T has o vepresentation by a X ,reqular o-additive measure (with
domain B(A,)) iff T is o-smooth at 0; and T has @ representation by o A .-
regular v-additive measure (with domain FB(A)) iff T is v-smooth ot 0.

Proof. The proof of necessity is simple, ¢f. Remark 2 to Theorem 3.
‘We now prove sufficiency by verifying the conditions for Theoremn 3
to be applicable. Al, A2, and A3 arve satisfied by assumption and also,
Ao is a (@, UF, Me) paving, 7, a (@, UF, MNa) paving. A5 follows in
both cases from the identity

< BY0 Mafhs 2 i} = Ma{(A a)NENS) 32 o).

That (10) is true follows from the fact that N0 ag n->o00. To prove
the exhaustion property, we first choose an n such that T(han) < g,
and then put K = {(hza" L. IV < hand b’ = 0 on X then b’ <5 han™,
thus Th' < e.

Now, if Ketr®, then by Stone’s condition we can find an s for which
h<1and K = h~'(1). The sequence h, = 7»(70\(1»%“1)) docreases to Lg.
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Thus for every Ke X', [Ke',], we can find Il [hllg], and so
the o-smoothness [z-smoothness] at @ w.r.t. Ay [#,] follows from the
o-smoothness [r-smoothness] of 7' at 0.

Lagtly, to verify A6, suppose K'nK' = @. For the case K',K'"ex,
¢hoose by Ly, hyllgn. As by, Al |0, we can find an » such that T (hyA by
<e. The ', case is handled analogously. m

Remark. It iy eagy to show that if 1e% then every totally finite
o-additive measure on #(4,) is automatically A regular. This is not
true in general.

OoROLLARY (Daniell’s extension theorem). Let % be a (0, Vi, Af, \)
conwew one of non-negative functions satisfying Stone’s condition, on  set X.
If T is a positive linear functional on €, which is c-smooth at 0, then T has
& representation as an integral w.r.t. a o-additive measure.

Of course, this representation immediately leads to the usnal exten-
sion of 7.

Recall that the paving o is said to be semicompact [compact] it every
countable [arbitrary] family of 2" sets with empty intersection contains
a finite family with empty intersection. For such pavings the ¢-smoothness
[z-smoothness] of I' at @ w.r.t. % appearing in Theorem 3 is trivially
satistied.

Tixanern 8 (Badon measures). We consider the classical setting of
a positive linear functional defined on the cone of non-negative continuous
functions with compact support on a loeally compact Hausdorff space
X. ' is taken ag the paving of compact sets.

Al-AB and A6" are easily verified. The exhaustion property as well
a8 (10) ave trivial. »#" is of course the architypical compact paving.

Theorem 3 then gives us a representation of T by a o-additive (in
fact v-additive) Borel measure u, regular w.r.t. the compact sets. This
representation is not the one always given.

Lot M denote the set of o-additive measures defined on the Borel
o-tield # (") for which pl < oo for all Ke ', and for which

ulC s inf{ud: G 2 K, Gopen}; Ke,
pG = sup{pli: X < ¢, Ke}; @ open.
Let M, Le the set of we M for which
pd = gup{pK: Ko A, Ke '}
and let M, be the sot of we M for which
wd = inf{ut: G 2 A, G open};

Aed(x),

Aec#(x).

Then our method gives the unique representing measure in M,
whereas an approach based on Bourbaki [3] will give the unique repre-
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senting measure in M,. This shows indirectly that there must be a 1-1
"correspondence between M, and M,. More directly, we can proceed as
follows. :

Associate with every we M, u, and u, defined by

A =sup{uK: KA, Ked'}; AdeB(A),
ped =int{u@: G 2 A, G open}; Ae#(A).
Then uye My, pae M, and uy < p < pp. Furthermore, u, and gy agree on
open sets, on compact sets and, more generally, on all Ae #(#") with
nsd < co. Hence .
[hdp, = [hip = [hdg, for all fie @,

Thus u, is the smallest member of M representing 7' and u, the largest,

The classical definition of Radon measures as linear functionals haw
been further developed by LeCam [7] and Varadarajan [12]. We now show
how their results can also be obtained by a simple application of our
results.

ExamMpPLE 4 (cf. Example 1). Let 7 be a positive linear functional
on the cone % of bounded continuous non-negative funetions on an arbi-
trary topological space X. We consider the following sets of totully finite
measures defined on the Baire o-field, i.e. the o-field generated by the zoro
sets.

M, = the set of countably additive Baire measures. (notice thatb

these are automatically regular w.r.t. the zero sets),

M, = the set of ue M, which are also v-additive, i.e. if Z,|Z, and

Z,, Z are zero sets, then wuZ uZ,
M, = the set of ue M, for which, given &> 0, there iy a compact
set € such that u(CO) < e.
M, = the set of ue M, for which there is a compact set ¢ such that
o (CC) =0,
Notice that
M,c M, M, < M,.

We prove that these ‘measures correspond exactly with the Hnoar
functionals having certain smoothness propertios.

() T is represented by an M, measwre iff T is o-smooth ab 0,

(i) T' 4s represented by an M, moasure iff T is z-smooth at 0,

(iii) T' is represented by an M, measwre iff Th,—~0 for every net (h)
tending uniformly to 0 on compacts, with h, < 1,

(iv) T is vepresented by an M, measure iff Thy~0 for every net (h,)
tending uniformly to 0 on compacta.
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Necensity is eany to establish in each case.

(i) follows immediately from Theorem 4 by noticing that the paving
Ay in that theorem iy precisely the paving of zero sets.

Applying Theorem 4 to the z-smooth functional in (ii) leads to a rep-
resentation by a 2 -regular r-additive measure on #(4,). The restriction
of this to the Baire ¢-field is the required measure. Notice that when X
is completely regular ", is just the paving of all clogsed subsets. In thig
case then, Theorem 4 gives a representation by a c-additive u defined
on the Borel o-field, regular w.r.t. the closed sots and having the z-smooth-
ness property:

wlB Jul  for every family (F,) of.closed sets filtering down to F'.
a

To prove sufficiency in (iii), let » be the representing measure given
by (i). Assume that there is some & > 0 such that, for every compact set
O, there is a zero set Zy contained in CC for which u(Zp) > & As any
continuous function achieves ity maximum on a compact set, it follows
that we can find continuous funetions hy with hy < 1 and taking the
value 1 on Zy, 0 on €. The net (hy) tends uniformly to 0 on compacta,
but

The) = ulhe) > p(Ze) > ¢,

which eontradicts the assumed smoothness.

A similar construction can be used to prove the sufficiency of (iv).
For, if there arve zero sets Zg = CC for which u(Zg) > 0 then, by taking
suitable multiples of the above hy’s we obtain a net (i) tending uniformly
to 0 on compacta (but not necessarily uniformly bounded) for which
T (hg)y+0.

The Baire representations in (ill) and (iv) above can be strengthened
to Bovel repregentations by merely adding the weak reparation property
that X be cowmpletely Hausdorif.

Bxamera b (ef, Fromlin, Garling and Haydon [p]). Let T De a positive
linear functional on the cone % of bounded continuous non-negative
functions on & completely Iausdorft topological space X. Take .7 to be
the paving of compact sets.

(onsider the set M of all totally finite #-regular measures defined
on the Borel o-tield and the set M of all ge M; with 4(CE) = 0 for some
KA. We show that

(i) 2" s vepresented by an M, measure iff Th,~0 for every net (hy)
tending wniformly to. O on compacta, with h, < 1;

(ii) T is. represented by an M, measure 3ff Lhy—0 for every net ()
lending uniformly to O on compacta.
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Again, neecessity is easy to prove. To prove sufficiency we uge Theorem
3. All the conditions of this theorem are trivially true, except for the ex-
haustion property. So consider any h, which we may without loss of
generality take to be < 1. If, for every K, we could find an Ay which took
the value 0 on K, was < h, and satistied T (hg) = ¢ then the resulting
net (A%) would tend uniformly to 0 on compacta with Wy < 1, but have
T (hg)+0.

The rest of the proof is analogous to that in Example 4.

Tt is sometimes easier to verify the exhaustion property directly
rather than the equivalent smoothness conditions. In case (i) this amounts
to verifying that to each ¢ > 0 there exists K such that Th = e for all
b <1 vanishing on K; whereas in case (ii) we need a K with Th = 0 tor
every h vanishing en K. m

The functions in ¥ have always been bounded in the examples
considered so far. Theorem 3 is also able to handle unbounded functions
thoug h,as is shown by our next example. This also illustrates the importance
of condition (10) in that theorem.

Exavrie 6 (Hewitt [6]). Let T be a positive linear functional on the
cone % of all non-negative continuous real functions (not necessarily
bounded) on an arbitrary topological space X, and let %' denote the
paving of zero sets. We show that T has a representation by a #-regular
o-additive Baire measure g having the additional property: for every
he % there is a real number N such that u{h > N} = 0. This is achieved
by an application of Theorem 3.

The only conditions of that theorem which are not immediately
evident are (10) and the o-smoothness of T at @ w.r.t. o To verify (10),
consider any he¢% and define the function g = 37 a,(h\n), where (a,)
is any sequence of non-negative real numbers. Now for any se X, we
can find an N such that h{z) < N. On the neighbourhood {h <X N} of ,
g=3%a,(h\n) which is continuous. Thus ge %. It follows therefore that

00> Tg = 3 a, T (h\n).

Choosing «, == T (A \n)"" if T(h\n) # 0 and 0 otherwise shows thab
T (h\n) 7 0 for only finitely many n. Thus, for some n, Th == T (hAn)-|-
T (hN\n) = T (han), and 8o (10) is a fortiori true.

For the o-smoothness w.r.t. &, consider fmy sequence K, |@. By
definition of ', we can find (h,) such that h, =1 and K, = h;'(1).
Clearly, we may assume h,). Consider the functlon f= 27 (hy)" Given
2e X, there is an N such that x¢ K. Thus there is an 7 for Wlneh Ty ()
<< r<< 1. Now on the neighbourhood {hy << 7} of , the series for f is uni-
formly convergent, by comparison with the series 2‘;"1’". It follows that

e ©
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fe® and hence oo> Tf 2= YT (hY). Noticing that A" >>1g , we obtain
the required o-smoothness. Thus Theorem 3 gives the requirgd A -regular
g-additive representing measure u. The essential boundedness of each
% function follows easily from

0 =T(\N)> [ (W\N)ydu
© {h>N}

and the countable additivity of p. m

Even though we feel that Theorem 3 is in a satisfactory form, one
may ask if, in general, condition o1 that T be o-smooth at & w.r.t. " may
be replaced by condition o2 that T' be o-smooth at 0. As a consequence
of Theorem 3, ol together with the exhaustion property (and (10)) does
imply o2. That ol alone does not imply o2 is obvious (construct an example
with # = {@}). That o2 even in the presence of the exhaustion property
does not imply 1 will be shown in Section 4. However, there is one impor-
tant case in which this implication is true:

If Xe, A6 holds and

(13)  to K@ there ewists G,|@ with G, 2 K, and G,c 4(X) for all n,

then o2 does imply ol. .

The proof is straightforward. Actually, this situation was obtained
in Theorem 4 by the judicious choice of the pavings o', #,. A further
instance in which (13) holds is now discussed.

Bxivere 7 (cf. Example 2). Let X be normal, % the bounded non-
negative continuous functions and T a positive linear functional on %.
Take 2 as the paving of closed subsets of X. From Theorem 3 we
know that ¢ necessary and sufficient condition that T be representable by
a A -reqular o-additive Borel measure is that T be o-smooth at @ w.r.t. A

Thus 2 necessary condition for this representation is that T De o-
gmooth at 0. As observed by Ma¥ik [8], thiy condition is also sufficient
if X is countably paracompact. This follows from the above since countable
parncompactness is equivalent to (13). It is still an open question whether
T g-smooth at 0 is sufficient in any normal space (notice that there are
normal not countably paracompact spaces ag shown by Rudin [10]).

The corresponding situation for # -regular r-additive representations
(oven for completely regular spaces) is far gimpler, see Example 4. ®

4. Tor Theovent B below we need the following generalization of
Theorem A (Topseo [11], Theorem 5.1, and also the notes and remarks
to that result).

Tumones B. Let 4 and u be as in Theorem A. Let X, denote the
paving of countuble [ the paving of arbitrary] intersections of sels in A,
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If uis o-smooth at @ w.r.t. o, then p has an extension to @ A -regular

a-additive measure.
' If u is T-smooth at @ w.r.b. 2, then u has an extension to a A ~regular
T-additive measure.
In both cases the extension is unique and determined by
pll = inf{uK': K' 2 K, K'< 2}
for every Ke ', [ e ] .

Using Theorem B instead of Theorem A in the proof of Theovem 3,
it is easy to see that the sufficiency part of Theorem 3 is true without
the condition that 2 be closed under ((e) [((M&)], where £ -regularity
is replaced by X ,regularity [ .-regularity].

The following analogue of Theorem 1 is proved by an eaxy adapta-
tion of the relevant parts of the proof of Theorem 3, thlh time appealing
to Theorem B rather than to Theorem A.

THEOREM 5. Assume that Al, A2, Ad, A5, and A6 hold. If T’ is o-
smooth ot @ w.r.t. o, then there exists a largest A -reqular o-additive measure
dominated by T, and if T is v-smooth at @ w.r.t. X', then there ewists a largest
A regqular T-additive measure dominated. by T.

On the surface this result looks satisfactory, but in faect, as exanples
below indicate, it is not. In particular, it is not possible to obtain necessary
and sufficient conditions for existence of o- or r-additive representing
measures from Theorem 5 in case £ is not closed under ((MYo) [((Ma)].

Exavmpre 8. Let X = [0, o), o the first infinite ordinal, ¥ be the
class of non-negative functions for which h(n) = h(w) eventually, and
T be defined by Th = h(w). Take 2 to consist of sets with finite co-
plement and of finite sets not containing w. Al-A6 hold. I' iy o-smooth
(even. z-smooth) at -0, but I' is not o-smooth at @ w.r.t. # (consider
K'ﬂ. = [:’l’b, (D[)‘,

o (A7) congists of all finite sets and of all sets whose complements
are finite. By Theorem 1, or directly, we find that the largest # -regular
finitely additive measure dominated by T is given by

0 A finite,

A =
a 1 CA finite.

Furthermore, we see, in agreement with Theorem 2, that x is a represonta-

tion of 7. x has no countably additive extension.

Since, for any 4, AUn, w[{4, we find that %, = 2%, Thus a 4,
regular c-additive measure is the same as a countably additive measure
on 2%, It is easy to sec directly that &, (a unit mass at w) iy the largest

# regular o-additive measure dominated by 7. In fact, e, is a represento~

tion of T.

icm
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Note that g, is 2 ,-regular, but its restriction to £/(#7) is not -
regular. This shows why the ((e¢)-closure of %" was needed in the proof
of necessity in Theorem. 3.

Examerr 9. Let X = [0, w[, % be the non-negative constant
functions, and Th = h(0) for he¥. Take . to consist of @ and all sets
of the form [n, w[. Again, Al-A6 hold. Note that 4, = 4. It iy easy
t0 see that there exists a 2 -regular finitely additive measure representing
T, and that the 0-measure is the largest ¢ ,-regular c-additive measure
dominated by 1. T is not o-smooth at @ w.r.t. A

Bxamprn 10. Let X = [0, @[, where 2 is the first uncountable
ordinal, and % be the non-negative constant functions. Take Th = h(0)
for he € and. 2 to consist of @ and all sets of the form [«, Q[. Note that
A == A = K. T 18 o-smooth at @ wat. A, but T is not z-smooth atb
@ w.a.t. . The reader can easily verify that there exists a #-regular
finitely additive measure as well as a A ,regular c-additive measure
representing 7, and that the 0-measure is the largest " -regular v-additive
measure dominated by 7. It may also be noted that the paving 4 is
semicompact hut not compact. m

The examples show that existence of a largest regular o-additive
or r-additive measure dominated by T dees not imply the smoothness
conditions of Theorem 5. Also, it does not help if we in fact have a repre-
sentation (Example 8) or if # = 4, [# = A,] (Examples 9, 10). If
we have a representation and if also 4 = X, [ = A.], the situation
is far simpler as shown by Theorem. 3.

Lastly, we state a result more general than Theorem 5. It explains
the hehaviour in Example 8 but is not general enough for Examples 9, 10.

THEOREM 6. Assume that Al, A2, A4, A5, and A6 hold. If the set
Sunction defined on A by

2K == inf{Z‘f Thy: 3 hy > 1a} |

is o-smooth at @ w.r.t. 7 [w-smooth at @ w.r.t. A, then there exisis a largest
A roqular g-additive [ A -regular T-additive] measure dominated by T,

The proof consists in a generilisation of the proof of Theorem 1,
which we shall not carry out, '
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