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STUDIA MATHEMATICA, T. LIV. (1975)

Extensions by mollifiers in Besov spaces®
by
PAWEL SZEPTYCKI (Lawrence, Kansas)

Abstract. An oporator B of extension from lower dimensional subspaces for
functions in Besov spaces is constructed using Friedrichs mollifiers. ¥ has the useful
property that for w defined on a hyperplane in R® the support Ew is contained in the
union of cones with vertices in the support of # and axes perpendicular to the hyper-
plane. Also if support of » is compact then so is the support of Bu.

1. Introduection. In this section we shall set np the notations, recall
certain facts concerning Besov spaces and state the problem to be dealt
with in the paper. Most of the facts about Besov spaces quoted below
can be found in [1]. )

For a (complex, real or vector valued) function % defined in R™ we
denote by Afu the kth forward difference with increment heR™ If R®
is represented as RB"™ = R™x R with # = (¢', 2"'), o'<R™, &' <R’ the
correslpondi.ng partial differences are denoted by Af. ., A;‘Lu,mu, b’ eR™,
h'" e R

The symbol || [, 1< p < oo, is used to denote the L” norm on R"
and, with notations as above, [u(-, 2" )|,, lu(®’, -)||, denote the norms
of u(a', »'') as a function of ' with 4" fixed or respectively as a function
of &' with &' fixed. '

The Besov norm || |lype, @> 0, 1< p < oo, 1 0 oo is defined by

illo = [+ ( [ 1817~ 1 45elf an)™" |

nv
where % is an integer %> a and for 0 = oo the integral in parantheses
is replaced by sup{|h|~“|dpully; b 7 0}

The different choices of &> a give rise to equivalent norms, this
is why & is suappressed in the notation.
A norm equivalent to (1.1) is given by the formula

I [ e O 0 AT ol
) L m R

* This researeh was supported by NST grant GP-16202.
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where, as above B" = R"x R, ¢ = («', «""), ¥, %" > o. Similar equiv-
alent norms arise from the decomposition of R"™ into cartesian products
of more than two factors.

Yot another norm equivalent to (1.1) is given by the formula

[+ ([ 3 =t ag putfan)" |

fi]=m

(1.3)

where m is an integer 0 <5 m < ¢ and k> a—m.(*)

To simplify the notation we will not introduce distinet symbols for
norms (1.1), (1.2) and (1.3); it will be clear from the context which one
of them is used at each instant.

The space of (equivalence classes relative to the class U, of sets of
Lebesgue measure 0 of) functions with finite norm || [,y 18 with this
norm a Banaeh space referred to as Besov space and usually denoted by

2 o(R™. The version (1.3) of the norm implies that

(1.4) BSo(R™) consists of all functions wel”(R") whose distribution deriv-
atives D'y e Byy™(R") for all 4, |i] < a.

Tt is known ([1], 8.9.1) that B ,(R") can be characterized as the
space of Bessel potentials, Bp,(R™ = G, xB ,(R")(?) where B (R")
is certain Banach space of distributions on R" and @« denotes the operator

of convolution with the n-dimensional Bessel kernel of order a,

(1.5) Gulo) = @m)™ [omE (14 187) 7 dE.
B
This fact and various properties of G, (see [2], [4], [6]) have sovoral
consequences, some of them we list below.

(1.6) The class O (R™) with norm || |lop.e has the perfect functional comple-
tion relative to the exceptional class By ,,, described as follows. A « R*
belongs to By, if and only if there is an ¢, 0 < 8 < min(a, 1), and @
fumetion veBS (R, v>0 such that 4 < {weB™; [ G, (v~ y)o@y)dy
= -+ oo}.

It is easy to check that the above definition of By, , is independent
of .

In ovder mot to complicate the notation we shall from now on wse
Bj , to denote the perfect functional completion described by (1.6) instead
of imperfect complection rel¥, introduced before. We remark that (1.4)
can be restated. with distribution derivatives replaced by pointwise deriv-
“atives (see [2]).

(%) 4 == (G5 eens B)y 8] =dp-b oo iy
.(®) In [1] the operator G4« is denoted by I,.

icm°®
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p,0 form an interpolation family
(obtained by the analytic interpolation memod see the imtroduction [5]).

Denote by uf the Lebesgue correction of a function we L, (R™),
i.e.
lun f (@ +r2) —ul (@) |dz = 0.

-0 la]=L
T gl At F e R .
I " (w) exists then o is called a Lebesgue point of u; a theorem of Lebes-
gue asserts that almost every point is a Lebesgue point of u, also 4% = u a.e.

(1.8) If u is equal almost everywhere to a function in B B(R") then w"eBS ,,
in particular the set of points where u” is 'Lmdefww(l is in By, 5., (see [3])-

IF 9 is o class of subsets of a set X and F < X then we denote by
A\, the class {ANIT, AU} The next proposition describes the restrie-
tion and extension properties of spaces Bj,. We consider R as being
canonically identified with a subspace of R*, R"™" = {(«', #,,)e R"; &, = 0}.

Provosiion 1.1 If a>1[p, 1< 0< oo then By, |gn—1 < 53””&},’51
and u->ulgn-1 defines a bounded linear operator (of restriction) of By o(R™
into B (R, Also for every f > 0 there is a bounded operator ( of exwten-
sion) E: Bj,(B")—+Bi® (RY) with the property that Evlga = v for
every veBl O(R"”l). In particular, the restriction operator in the first stale-
ment is onlo. : . ,

‘We note that by the first part of the proposition B"! is not an excep-
tional set for By o(R") so that w—u|pn—1 is well defined on Bj o(R™ ).

It Qis a domain in R" one can define B 4(£2) as the space of all func-
tions of the form u|g, weBj,(R") with the restriction norm [P, 00
= Inf{[[ully,g0; %o = v}. The norms similar o (1.1), (1.2), (1.3) can be
also divectly defined on £ and for domains satisfying mild regularity
conditions can be shown to be equivalent to the restriction norm ([1], [3]).

5.0(£2) is the perfect functional completion of OF (BR")|, relBg 4lo. Prop-
osition 1.1 can e also stated for By 4(R2).

Various explicit operators of extension are known, (see e.g. [1] in
genoral case, [27, [4] in special cases); the objective of the paper is to
prove that such an extension operator can be defined by the formula
(1.9)

(B () = pla,)u,(@) = p(@) [ o(z)u
nn—~1
where e is  sufficiently smooth real valued function on R with support
in the ball {|o’f < 1} satisfying the condition [e(z')de’ =1 and ¢ <07 (R')
is equal to 1 in a neighborhood of 0. In pan’mcular, if w has compact sup-
port in R** then Hu defined by (1.9) has compact support contained
in the set {weR", dist(a’, suppu) < @, < M} where suppy < [, M].

(@' ~w,2 )2y, @ = (2, @) <R",


GUEST


58 P. Bzeptycki Bxlensions by mollifiers 59
The latter property gf I ig ingtrumental in describing sl'?accs B, o on. mani- and consider first the case p < oo, For 1 < 6 < oo and some k> a -+ (1/p)
folds with singularities ([6]). The other known extension formulas men- we shall obtain estimates of the form
tioned above in general do not preserve compactness of support.

We remark that a formula similar to (1.9), with a specific choice of (2.3) f 45 gl BP0+ R ghs < Ol o
¢ was nsed by Gagliardo [8] to describe the restrictions to R™* of functions Rl
in the Sobolev’s spaces W, (R™), p > 1. and.

The operators refelred to in this paper as Friedrichs mollifiers ave et

e vl ficrs (2.4) f 1l 1019 G < a5

also called Sobolev’s averages.
TIn this research we were mainly interested in the case 0 == p (actually
6 =p = 2), we decided to included the case of arbitrary 0 in instances For 6 = oo we will obtain the estimates
when such generalization did not involve additional complications in . 1 1 mamUi)
proofs or actually resulted in a cleaver picture of the situation. 2.5) (i) sup || 145 2telly < Cllell, pyeo
To sinplify notations we shall use the letter ¢, possibly with subseripty (if) sup |h) oW H/I,mn tlly, < € ”’”’”a,r.

to denote positive constants which may be different at different instances.
We firgt prove (2.5)(i) and (2.3); taking & = 3 and using the last

2. Transformations related to Friedrichs meollifiers. For ze<R" wo exprossion for u, in (2.1), we can write

write @ = (@', 2,), @ = (By, ...y By_)-

" In this section we are interested in various properties of the formula (2.8) A pue (@, @,) = |w,|' ™" f Ay pelmgte) Ay oule’ —2') de'

P Rr=1
(2.1) u,(z) = f e(2)u(@ —m,2)de' = |a, '™ f e(m e Y u(' —2')de’ .
gn-1 nra~1 By the mean-value theorem and the properties of e
where ¢ i§ a bounded measurable function with support in the unit ball Len 2 —21712 '
. . : = [ de el te)| de’ < min(C, | B 0y) = Doy, b

{#'eR™; |2l < 1}. Clearly, w—>u, is defined for welLi,(R™™); we shall 12| fll" el (Gl ”l T Cu) (s )

study the properties of # as a tre rmati bween Besov spaces.
y properties of wiu, as a transformation between Besov spaces where €, = || 4%e], Oy = &lle];-

TEEOREM 2.1. ([1].) Suppose that ¢<Ci({|#'| < 1}). Then (2.1) defines Applying Young’s inequality to (2.6) we get
a bounded linear transformation of By ,(R™™") into B (R x (—M, M)) PRAVERS & quality to (2:6) we g ,
for any M >0, >0, 1<p< 00, 1L K0 o0, A4S e (-5 )l << Py B) 1A pettlly
Proof. Using Young’s inequality we get and '
o (s )1y < Nl s (2.7) 143 B < [ B (@, W), | Aull) = Cp ||| Apuly

implying that
whero 0, == (2p — 1)~ 0} 077 # (€, 0.

(2.2) lnellp << (22)'7 el - Noto that the same argument for & = 2 produces (2.7) with a constant

‘We note next that with .D, = 80z, we have sontaining (p 1)~ as & factor (making p = 1 seem to be an exceptional

_ ! cage).
Ditte = (Dyu)y, 6 =1,y m=1,  Dyuy= 3 (Dyu), The inequality (2.7) implies (2.5) (i).
, o el Tor 1= < oo we huve

where ¢;(') = —e(2')2;; similar formulas are also valid for higher order
derivatives. The remarks of SBection 1 concerning the norms (1.3) and f I A.le,m“% | /b/[l.—m'n-ll(rx+(l/zn) an' < O%p f I A,,ul\“; iy 1
the interpolation property (1.7) imply that it is sufficient to prove the o ‘ Rl

theorem for 0 a<C e for any e>0(*). We use the version (1.2) of the norm s
which is (2.3). ) .
(*) The result for 0 < a < ¢ implies the corresponding result for m < a < m g, The proof of (2.4), (2.5) (if) is more involved (1}1& to the' peculiar
m >0 an integer. The remaining values of a are taken care of by interpolation. way the variable o, appears in (2.1); we take k=2
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We firgt remark that
(2.8) "

=
flhl"l kA4 ot llp @ == 2 | h"’”"(““"“‘l“”)( [}Lwl%_w" ue(w)]”dm)wndh
b I

< QP 30~ lf Bt o(um/m)l( . dm)o”'m] ( j dm)o/" | ( j d )()/ulu
0«‘1,(1:, Doy, iyl
The last expression in the bracket can be estimatod ag follows
(2.9)
1 .\ 11y
. dw )m% . ..dw) prJ»( ..dm)”ﬂ
<0 8l 0 gy -3
1n’ n ~ o 1
<SP Vg, @) ([, w0 Pda) ™.
|2y |30 Tyl

Similarly we get for the first term

(2:10) a2y o) da)”.

[E= ) faey, | =220

Note that the last term in (2.9) can be reduced to the same form ag the
middle term in (2.8) and hence can be treated in the same manner,
It follows thait it suffices to estimate the integrals

(2.11) j pteram | f [Amnue(w)]”dmlw’”dlb
A1) ’
and
(2.12) [ hm-teram o |4} 00 (@) 0| .
0 g :

In (2.11) we use the formula

Ay e (0) = [ (&) [ (0 — (@, 1) &) — (0’ - w,2")| de’.
-1 .

Using the continuous version of Minkowski’s Inequality we got
1, e (5 ) < ( f 06" ) Wl ')

' Integration with respect to @,, @, < 3k gives

(6T f le(e

rn~-1

(2.13) 40,0, Uellp < N A e 'MH}, de’.

icm°
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‘We note that the right-hand side in (2.13) can be estimated by

Oh*sup (|e') |4y ul,)  with € = 6" [ [e(2")]|&/|"de’

and (2.13) gives in this case (2.5) (ii). For 0 < oo we substitute (2:13)
into (2.11), use Holder’s inequality, represent the integration with re-

gpect to &' in polar coordinates, and make the change of variables ks hr =1
to get

[
0

| A, llp D < 67 f W0 [l @) 1yl 8| a

nn—1
<o [ 1% [ o) il ( [ bte
0 Rl "
¢f
P

of

< (/'(m?x f 1e(m)|o~"-*-“”"da-) [ ft-l-“ 4 ulll dédo.

% )"/" dh

e (roo)| |1 4ppo o 7™ dr dhde

It

i

1% (re) |4y w120 At dr deo

S T
Tt g Tt

The lagt factor is equal to f (B[ || 4, w|%dR’ and in the present case
a Rrn—1
we get the desired estimate for (2.11) and therefore for (2.4). Note that
in the above formulas X is the sphere {w<R"*; |w| = 1}
In (2. 1.&) we use the formula (note that znftel the integration W1Lh
respect to 2’ the coefficient of «(2') is zero)

= [ A o " e(n 2 [ule —2)—u(@)]d .

nn-1

2
4, T, e (0

Using the mean-value theorem and the properties of e, we get the
estimato
(‘) 14)

- - e L e —1-n72
q)(h Dy, g ) I/lh T [w] e ('I)“ l’“,) ” = Omn ! nh’g x;v,,,~[~2h(z’> < Gmn "k X?’z"(z')i

where O = n(n—1) el +20||Velo-+117%¢l, and yz, denotes the charac-
teristic function of the ball {2'; || < 7} o .
Ag above we use the continuous forin of Minkowski’s inequality to

get

(2.15) < ( [ @, 2,04, ule,dz')”

Rn~—1

(H l/i r“ua( ! mn)”ﬁ
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integrating with respect to x,, .qu; = h we gel

o0
(216) 14} g wlron < [ ([ @, 3, #) 1A pul, @) do
b g1

.

< ( f Um D(h, @, z')ﬂHAmx,,’M:H’;dw,,,'lllfhdz')ﬂ.

r~1 I
Using (2.14), we get

(o]
@17) [ Ok, @y &V dw, <O [ BPa00dg,
h max (h,(|2'{/3)

= O((m41)p — 1)~ min (B 002 J22(f 1o |)-0v+1)
= W(h, )"
Substituting in (2.16), we get

. (2.18) 145, Uellzoon < [ P (hy 2)IA_pulde.
Rn—1

For 0 = oo we get

”Ah “‘n%"'HLJ’(Tn>h) ( f 'j/ h & ) [z Iadz )WI’ ]h'llma I /lh'u”ﬂ
RH—1

and by (2.17)
219)  [¥(h, o)) de’

=0 f hn 14+1/p 4 I'/_’_ gn+(p) f B2 |z/|—%~1 (*1/19-9-3'(]3-’.] = 01 h‘H-I/TI
2| <3n 1z X
which yields the desired estimate with y = a.
For 6 < oo we substitute (2.18) into (2.12) and use (2.19) (with y == 0)
to get b

o0

(2:20) [ WTINED AL | dh
. 0

< [ portenm( W (h, &) 14y ulyde) an

rn--1

< [ wmrtenm (g Y, yay )" [ Wb, @) IA_ )l de db

¢ Rn—1 Ra-1

°“8

8

= 03/0' f U B 1-0(a+1m)+0j0p yy(h, z/)dh.l ”A—:z/u”%dz,_

RmRn—=10
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From the definition of ¥ -
. o0
(2.21) [ BTRUDOD (g gy
0
12'/3

= () ((% -+ ])p — 1)—1 [ f h1*9(7~F1/10)>i>9/9'p (%lz’[)(lw)—n—l dh.+

0

2 h——1~6(a+1/11)+5/9'p+1/p+l—ndh] = O, om0
12118
provided that
1
(2.22) a< —5(2—1/1)).

Substitution of (2.21) into (2.20) gives the desired estimate for (2.12)
for a subject to (2.21). The proof is complete for p < co.
For p = oo we have

(2.23) ; (143 2lloo < J|e )14 4l 42
and
(2.24) 148, Uelloo < [ 1€(2") 113l

(2.23) vyields immediately the desired estimate for (2.3), (2.5)(i)
with k = 1. From (2.24) we obtain (2.5) (i) with & = 1 and € = [|e(2')] x
x |¢'|*de'; also for 0<<C oo

fl 14, e 1R ™2 AR = 2 [ 1y 10, o B
R . 0

g( f ‘e(z')l‘h')m’ff flﬂ(m)lHdhmuﬂ‘;h“l‘”"“r“—zdwdrdh
0 0

Rrn—1 P

o
< 04 !t*I*”"I}A,w'quodrudt,

1
¢ = [lo/"max f|e(a~m)]w~”“2“""“,
weX §
which is (2.4).

Remarks. (1) For 0 =p< co an alternative estimate fo1 (2.12)
can be obtained with a < 1 instead of (2.22).

(2) The above proof could be simplified if we knew that By ,, p < oo,
is an interpolation space between Bj, and B . A result of this nature
is contained in [9], but unfortunately it does not include the cases § =1
and 6 =
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(3) Theorem 2.1 implies that the operator (L.9) wie(x,)u,(®) iy
bounded from Bj,(R™™) into By (R"), o> 0.

3. Extension operators defined by mollifiecrs. We consider now the
transformation w—u, defined by (2.1) with e subject to condition :

(8.1) [e@)de’ =1, (@) =0 for |o'| > 1.

If ¢ is bounded, measurable and satisties (3.1) then lim w,(a’, o,)
= u¥(z') at every Lebesgue point of weLl,(R™ 1) el

‘With the above hypotheses on ¢ we also have

ProposrrroNy 3.1. (i) If ueLk,(, R”““’) L<<p= oo then ul(x) ewisls
at almost every point of R™™' and w*(a', 0) == u(a') a.e.

(i) If weBS, for some o> 0, 1\\p L oo, 15 0 <] oo, then ul(a, 0)
ewists exc. BE o, 1 and uF (@', 0) = w(w') exc. B

Proof. We have for o = (2, 0)

(3.2)
r [ gty @)y <ot [ e 4y, g — (@) dy, dy’

lyl<r [’ = |y, e

< [ [ @y ) ) dy

(W< fyyl<sr

20,0,9%0 1

R [ e’ 4y —u (@)l dy
=
The second term converges to zero as r—0 for every #' 8.6, w’(w') = w(2'),
i.e. almost everywhere.
- For the first term we have

L) =r" [ [ |2+, 9.)~ul@ +y)| dy, dy
/s )
=r [ [ | e@) e’y g #) el ) e | dy,, dy’
W< luylsr
<< [leflo ™™ f f f (@ -y =y, ) (@' - )| de dy,, dy’
(7] Qg |=iar 12t .
Consider now the funetion
(8.3) VU (y") = sup f [ (Y - re’) —uly") | de’;
0<rsp 12 ]l
2(3) 0 as o0 at every Lebesgue point v’ of w.
Since by hypothesis ue Ll (R*™), p > 1, by K. B, Smith’s genera-
lization of Hardy- tht]ewood’s theorem [8] ‘ '
sup f [y’ +72')| dz' e L] (R")

Iersl e
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and
?, EL%G(Rn—l) < Lllne(Rn—l)' N

Hence we can write for 0 < r < 0.

and

limsup I, (#') < liasup f V(¥ + 12 ) de’ = w,(a')
P -0 12']=1

for almost every o', Letting o—0 we get (i).
The proof of (ii) depends on the mean-value theorem for the Bessel
kernel ([2], p. 418) and is similar to the argument used in [3], §0, Th. I.

(3.4) [ Gulo+ry)ay <06,0), @0, r<1,

|yl=5L

with a congtant ¢ independent of r.
Pick 0< e< min(a, 1), by (1.6) there is veBy, o(R"Y) such that

(3.5) w(@') = [ G (o' —y)o(y")dy’ exc. ﬂspm_

Also [v]eBj, , and v is defined pointwise by (3.5) outside of the set

Using (3.4) we get

v [ el s 9,) @) dy

W'l (gl

= [ [ ([ o) [ o'+ )= G le? )00 g

W= (o lsr

el [t [ Gl Y~y — 1) —

LA ER TS ) .
— 6o~ )l dyae'| o (v
= felloo [ B (r, @', 1) Jo(t") | dt .

Bince ¢,.,(¢') is smooth for 2’ s 0, it follows that F(r,a’,#)->0
for ¢ o o', Also using (3.4) we geb e

Biry o, ¢) o ()] < (O +1)Gos(a’ 1) 0 (¥)| L' (R 1)

tor o'¢ 4. By the Lebesgue dominated convergence theorem we get the
result. : '

§ - Studla Mathematica LIV.L
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Remarks. (1) The first part of the proposition suggests that %ﬁ‘@’, O)
= u¥(«') for every Lebesgue point of u. This we were unable to prove;
if it were true the part (ii) would follow by Th. I, § 0, [3].

(2) The hypothesis weLf,,, p > 1 (or more generally, ue(L'log* IY,,.)
seems somewhat artificial; it would be interesting to wsee if (i) remains
valid with the hypothesis weli,,.

As an immediate consequenc'e of Proposition 3.1 we get

TuOREM 3.2. If weBy (R"™), 0> 0, 1<p<l o 150 00 and
ecOy({le'| < 13) satispies (3.1) then glpn-1 == uexe. BY ;. In particular,
w—>u, 18 an emtension. : ‘

Proof. By Theorem 2.1, u,¢ By;'” (R”) and by (1.8) u,= u¥ exc. By}
also u = u” exc By 0,01 and uf|pn-1 = w” by Proposition 3.1,

The definition of u, implies that

suppu, = {(2', #,) e R"; d(2', suppu) = |o,|}.
Using singular multipliers [3] this permits us to construet for every &> 0
an extension operator B: Bj,(R"*)—B*")(R" with the property
that

supp By < {(o'y w,) = B o esuppu, |o,| < od (2, O (suppu))}

(cf. [4]). The existence of such operators is very useful in defining the
spaces Bj, on manifolds with singularities.

4. p-restrictions.(4) In this section we restrict our attention to the
case f = p, we use the notation By, = By. We also assume unless other-
wise indicated that 1< p << co. The first part of Proposition 1.1 is not
valid for a = 1/p; (n—1)-dimensional subspaces of R® are exceptional
sets for B, It is easy to check that for 0 < g< 1 [p the conditions

Wy = Ulgh eBy(RY),  w_'= ulg ¢ Bj(R")
imply that ueB;(R™. Here we use the notation
R = {@R"; ©,> 0}, R" = {5eR"; @, < 0}.

The above statement is not valid if o = 1 /p which, suggests that in spite
of absence of pointwise restrictions Uy |gn-1, W, |gn—1 the functions ,,
and w_ must satisfy certain conditions in order that weB)P (R™)..The
concept is made precise by the following definition due to N, Aronszajn
who also suggested some of the results below.

(*) In [6] these ave referred to as abstract restrictions (p == 2),
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A function veL? (RY), p >; 1, has zero p-restriction to B™", u{Bn—1 = 0,

“if and only if

(4.1)

1 .
f w o(@)Pdw < oo or equivalently f f 27, [o(a) P’ A, << oo
nnl 0 pn-1

Two functions u, veL?(RY) have the same p-restrictions to R if
w—0|fn—1 = 0, )

The relevance of this notion to the question raised at the beginning
of the section is clear from the following proposition.

PRrOPOSITION 4.1. Suppose that welP(R") and Uy = Ulgh eBP(RL);
let v('y @) = w(@', —a,), ©,> 0, &'eR". Then weBY?(R™) if and only
of w,. and v have the same p-restriction to R™ .

Proof. If weB)”(R") then

@2) [ [ [ =y, @) (@', —y,) P dw dy,,

Bl B! Rn—1
oo o0
(]

rn—1
Thus we can write

0 I)' o0 0
o [ w2 [ < Bl < oo

rU-1 »n—1

Jat @ =@ rde = [ [ o7, o) —uie, ~a,)Pdd da,
R’i 0 pn—1 .

S 0
= f f [ (”nmﬁln)"zi%(% mn) “""’/(m,y "mn)]pdf'/ndwndw,
RN-10 ~co °

« 0
< 21’””1 f l f f (wn, - y’n,)uz (l'l'{'({nI! mu,) —u (w’7 g/n)lp +

nn=1 0 —o0
@’y yy)—u(a, T"wn)]y) dy nd“"n] do’ .
The first intiegral is bounded by the last integral in (4.2) and the second
can be egtimated by

0 0

f f flwn‘“yulmzm(w,’ yn)""u(w,) mn)]pdwndyudml

00 =00 pane~l

which is the second integral in (4.2).
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Sufficiency. If u, eB” (R}) then
(4.3)
f f f ].’B' - y'l—n [’M (wly =+ wﬁ) — U (mli + ?/n)lyd‘”' djl/_/ dmn < ”uﬂ: “ﬁ;,’fi(n’i)
0 pn—1pn—1 )
and .
(4.4)
o

o
f f |, — anMZ i (fl/", @) —u (m'y e ?/ﬂ) !4‘ da’ dmn d.q/n B Huy[; “Z;’/m("'r? )
©0 0 pgn-1 #

Adding the two integrals in (4.3) we obtain the estimate

T W11 il < ] g+ il
Rl D AR

Thus it remaing to estimate the integral [ {h|~*]4 Ty Wl @ Which. can
»l

be written as in (4.2). The first two integrals on the right-hand side of ’

(4.2) are estimated by means of (4.4); for the third one we can write

#

0 0 s
[ [ @) (e, @) —u(@, 9,)P dy, do

RN—10 00
0 0
<27t [ [[ [@—y) 1@, ) —u(@, ~0,)dy,do, +
Rl 0 —co
0 0
s f f(mn'l’yn)hzm(m/imn) ""u’(m’7 yn)lpd:'/ndmn]dm'
< 7 10l e, + [ 25" 0, 0,) (@', —a,)"da].
SR g )
+

Remarks. (1) The notion of p-restrictions, or some equivalent
concept. is essential in establishing compatibility conditions for Bessel
potentials on manifolds with singulavities (see [6]). Proposition 4.1 is
a special case of such compatibility conditions.

(2) It p =1 the compatibility condition becomes more complicated
due to the fact that differences of order at least 2 appear in the definition
of the norm in Bl

(8) The definition of . zero p-restrictions suggests that one could
identify restrictions of funetions in By®(R%) to R"* with elements of

the quotient space B;’p(Ri)/ﬁy”(Rﬁ) where J?}/"(R{f,) = {ueBy” (RY);
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wlgn-1 = 0}.This formal identification does not seem very useful because
B}? (R}) is not closed and actually is dense in BY?(R™).

‘We next describe some relations between pointwise properties of
functions and p-restrictions.

PROPOSITION 4.2. If weL?(R™), p>1, and ulbn-1=0 then (lu|?)* (&', 0)
=0 for a.e. @'<R"' In particular, w*(z',0) = 0 for a.e. o' e R™ 1,

Proof. By Fubini’s theorem, ; |u(a’, @) P L*(R,) for a.e. ' e R™™!
and therefore

”
(@) = f:c;l lu(@', @,)Pdo’ =0, for a.e. @', v, L*(R™1).
0 70
We have for 0< p<Cr

. e
o [ @ Y, v Pl < o [ [ wla -y, g dyndy’
lyi<e wl<eo

<™ [ o0 +y)ay'.

wi<e

Letting ¢—0 and using the fact that v, L', we get

limsup o~ [ lua +y, y,)P dy < v, () ae.

e>0 lyl<e

and since v,(2')—0 a.e., this completes the proof.

r—>0

The converse to Proposition 4.2 does not seem to be true but we do
not have a counterexample. (%)

The next proposition gives some insight into properties of the exten-
sion operator w—u, in the exceptional case.

ProrosiTIoN 4.3. Let ey, ¢, be bounded measurable Sfunctions satisfying
(8.1) and uel*(R"™"). Define u; = oy T =1,2 by (2.1). Then uy and u,
have the same 2-vestrictions to R, .

Proof. We have to show that the integral

[=+]
= [ |, @) —us(o, 2,07 da,
[
ig finite. Using Fourier transform with respect to the variable o', the
definition of u; and Parseval’s equality, we get
o

I=[ [ 18(0,8)—bolo, &)l lu(&)2aE do,
0 pr-l

(" Added in proof. See [6] for a counterexample for p = 2.
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and to arrive at the desired conclusion it suffices to show that the func-
tion.

p(&) = [ 7 len(88") — s (88)[2d

is bounded.
Using polar coordinates & == [£'|w, lo| =1, @(&) can be wriften
in the form.

(45)  p(&) = [ les(tw) —es(te)|t7 dt

1 «
< [ ley(t0) — e () 247 dt+ [ les(tw) — 6y (40) (217" .
0 1

Since ¢ = &, — é,¢C® (R™") and ¢(0) = 0, it follows from the second order
Taylor’s formula that the first integral is bounded. From houndedness
of ¢ and compactness of its support it follows that D%éeL*(R™™) for all
multiindices ¢; this implies, by the known theorems about restrictions,
that & belongs to I* on all lines with. a fixed bound for the norms, hence
the lagt integral in (4.5) is bounded uniformly in. £ and the proot is complete.

It would be interesting to see if the content of Proposition 4.3 re-
mains valid for p # 2, perhaps with some additional regularity condi-
tions on ey, 6,. '

The following result is in certain sense complements Proposition 4.3
and Theorem 3.2 in an exceptional cage.

ProrosITION 4.4. If ¢ satisfies (3.1), 18 bounded and measurable then
E defined by (1.9) is a bounded transformation of L*(R™Y) into PY:(R™
= B*(R.

Proof Let v(®) =

(Bu) (%) = @(x,) [ e(y)u(@' —,y)dy’, where ¢

e0P(—1,1), ¢ =1 in a neighborhood of mn = 0 We have to estimate
the m‘cegmlv
(4.6) fnv s Redw,, o= [ [ 1400, 0, )2 dtda,

Bl r
in terms of |]u||2.
The first integral in (4.6) can be written. in terms of Fowrier trany-
form of » with respect to »':

X ,
Li=@m ™ [ [ lp(e) b0, 8)30L+ 1819 [i(&) 28 da, .

-1 pn—1

To obtain the desired estimate we have to verify that the function

Oy (&) = (L4 (&2 flrp (@) & (@, &) [2dm, < O (L4 | &2 {\e @, £ 2duw,

iom
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is bounded. For & = |&'|w’, and |£]>1
(1483

D (&)L C
1(E) < &

1 o
" l
Jla(m,,,f’)!gdmn P f (tw')|2dt <~C‘ and
1 é —e0 |£ [
with € independent of o’ (see the proof of Proposition 4.3). For |&1<1
we have [8(x, &) <1+4+0,|&| where

C; =max|Vé(&) and

1§1=1

P, (&) <2 (140y).

The second integral in (4.6) can also be represented in terms of partial
Fourier trangform:

L= @0 [ f 14y [p(@)6 (0, )12 082t 2 dtda, a8

Rr—1R1 Rl

and as before we have to check that the function

= [ [1Alp@,)e (@, &)1t dtda,

Rl Rl
is bounded. The latter is easily recognized as the square of the difference
term in the P (RY norm of the function ,->p(x,)é(x,&). It follows,
by the smoothness properties of ¢, that this is estimated by a constant
multiple of the corresponding term involving & only. For & s 0, £ = |£|6’

[ [r2148(w, &) du,a = [ [1*14,5, 000,09 dw,dt

R R! r! R!

which, is part of the P¥* norm of the restriction of & to the line through
the origin in direction of ¢'. As already remarked in the proof of Propo-
sition 4.3, the derivatives of all orders of ¢ are in I, and by known restric- -
tion theorems the last integral is bounded independently of 6. The proof
is complete. _

Remarks, The estimates used in Sectionn 2 do not seem to yield
the statement of Proposition 4.4.

Propositions 4.3 and 4.4 allow us to elaborate on the mnotion of
2-vestriction. A function vePY(R") has 2-restriction to R™' equal to
awe LA (R if for some bounded measurable e satisfying (3.1)

(v — ) w1 = 0.

By Proposition 4.4 the above definition i independent of the choice of e;
if ﬂw 0011(111&011 is satistied for some ¢ then it also holds for all e. (%)

(") A more eatisfactory definition is given in [6].
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Toeplitz operators related to certain domains in C*

by
J. TANAS (Krakéw)

Abstract. Venugopalkrisna in [9] investigated the Toeplitz operators in strongly
pseudoconvex domain D < C®, n > 1. Among other he proved that Toeplitz oper-
ator with continuous symbol ¢ (smooth in D) is Fredholm if 4D is smooth and if ¢
does not vanigh on 4D. On the other hand, Coburn identified O*-algebra generated
by Toeplitz operators on odd spheres, modulo compact operators [2]. We shall iden-
tify the O*-algebra generated by Toeplitz operators in strongly pseudoconvex do-
main D modulo the compact operators. We shall also prove some simple properties
of Toeplitz operators on the n-dimensional torus I™.

1. Let L(H)bethe algebra of all linear bounded operators in a complex
Hilbert space H and let o (H) be the ideal of all compact operators in H.

DrrNiioN 1.1, For any bounded set D in €, denote by #*(D) the
space of functions f: D—C which are square integrable with respect to the
Lebesgue measure dV im C™ .

DrrNItioN 2.1. Denote by H*(D) the space of all fe £*(D), which
are, holomorphic in D.

‘We shall denote by P: £*(D)—H*(D) the orthogonal projection onto
the subspace H*(D).

The detinition of Toeplitz operator associated with a function e L=(dV)
(bounded, measurable in D) reads as inlows:

DRFINTION 3.1, Tet ¢eL®(dV). The Toeplite operator T,: H*(D)—
HA(D) is defined by '

T,f = P(pf).

Lot B Dbe the closed unit ball in €™ and let g be the usual surface
measure on OB = §*=!, Then one can define the Hardy space H*(u)
on A5 as a closed subspace of all functions in #*(p) which are holomor-
phic in the int B [2].

The definition of a Toeplitz operator on H*(u) is just the same as
Definition 3.1. Let ¢ be a (*-algebra generated by Toeplitz operators T,
(p<C(0B)) on H*(u). Then it was proved by Coburn in [2] that the *-alge-
bra @/ (H*(u)) is isometrically isomorphic with C(9B). We shall prove
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