The Orlicz type theorem for differential-integral equations with a lagging argument

by Michae Kisielewicz (Zielona Góra)

Abstract. The purpose of this paper is to give the proof of some category theorem concerning the differential-integral equations of the form

(1)
$$y'(t) = \varphi(t) \quad \text{for } t < t_0,$$

$$y'(t) = \int_0^\infty f(t, y(t-s)) d_s r(t, s) + g(t)$$
 for almost every $t \in \langle t_0, T \rangle$.

It is shown that non-uniqueness of solutions of (1) is in some sense a rare case.

The aim of this paper is to give a proof of some category-theorem concerning differential-integral equations of the form

(1)
$$y(t) = \varphi(t) \quad \text{for } t \leqslant t_0,$$

$$y'(t) = \int_0^\infty f(t, y(t-s)) d_s r(t, s) + g(t)$$
 for almost every $t \in [t_0, T],$

where the integration is of a Riemann-Stieltjes type with respect to $s \ge 0$ and φ , r, g, f are given functions. This theorem for ordinary equations has been proved by W. Orlicz in [5] and for partial equations of the hyperbolic type by A. Alexiewicz and W. Orlicz in [2].

By a solution of (1) we mean a function y which is continuous for $t \leq t_0$, absolutely continuous for $t_0 \leq t \leq T$ and satisfies conditions (1).

Let R denote the real line, and let R^n be an n-dimensional linear vector space with the norm $||x|| = \max(|x_1|, |x_2|, \ldots, |x_n|)$ for $x = (x_1, x_2, \ldots, x_n)$. Let P denote the set in R^{n+1} defined by $P = \{(t, y) \colon t_0 \le t \le T; y \in R^n\}$ and let $Q = \{(t, y) \in P; ||y - \eta|| \le a\}$, where $\eta \in R^n$ and a > 0. Let us denote by G the Banach space of all Lebesgue-integrable functions $g \colon [t_0, T] \to R^n$ with the norm $||g||_G = \int\limits_{t_0}^T ||g(t)|| \, dt$ and let $\bigvee\limits_{s=0}^\infty r(t, s)$ denote the variation of r(s, t) with respect to $s \ge 0$.

DEFINITION 1. A function $f \colon P \to R^n$ is said to satisfy the Carathéodory condition on P if f(t, y) is measurable in t for each fixed y and continuous in y for each fixed t, and if there is a Lebesgue-integrable function m(t) such that $||f(t, y)|| \leq m(t)$ for $(t, y) \in P$.

DEFINITION 2. A function f(t, y) defined on the set P is said to be uniformly Lipschitz continuous on P with respect to y if there exists a constant L satisfying

$$||f(t, y_2) - f(t, y_1)|| \le L||y_2 - y_1||$$

for all $(t, y_i) \in P$; i = 1, 2.

This is proved in [1].

THEOREM 1. If the function $f: Q \rightarrow \mathbb{R}^n$ satisfies the Carathéodory condition on Q, then there exist continuous functions f_n such that

- (i) $||f_n(t, y)|| \leq m(t)$,
- (ii) $\lim_{n\to\infty} \max_{y} \{ \|f_n(t,y) f(t,y)\|; \ \langle t,y \rangle \in Q \} = 0$ for almost every $t \in [t_0,T]$.

As an immediate corollary of Theorem 1 we get the next theorem (see [4]):

THEOREM 2. Let the function $f: Q \to R^n$ satisfy the Carathéodory condition on P. For every $\varepsilon > 0$ and for almost every $t \in [t_0, T]$ there exists a function $f^{\varepsilon}: Q \to R^n$ such that

- (a) $\max \{ \|f^{\varepsilon}(t, y) f(t, y)\| : (t, y) \in Q \} \rightarrow 0 \text{ as } \varepsilon \rightarrow 0,$
- (b) $||f^{\epsilon}(t, y)|| \leq m(t)$ for $(t, y) \in Q$,
- (c) $f^{\epsilon}(t, y)$ has continuous partial derivatives of all orders with respect to y_1, y_2, \ldots, y_n .
- 1. Let us denote by F(P) the set of all functions $f\colon P\to R^n$ satisfying the Carathéodory condition on P and let \tilde{f} be the class of all the functions of F(P) which are different only on a set of measure zero for fixed y. Let us denote by $\mathscr{F}(P)$ the set of all classes \tilde{f} . If we define the distance of two elements \tilde{f}_1, \tilde{f}_2 of $\mathscr{F}(P)$ as $\varrho_{\mathscr{F}}(\tilde{f}_1, \tilde{f}_2) = \|\tilde{f}_1 \tilde{f}_2\|_{\mathscr{F}}$, where $\|\tilde{f}\|_{\mathscr{F}} = \int_{t_0}^T \sup\{\|f(t, y)\|_{t_0}^2 \|f(t, y)\|_{t_0}^2 \|f(t,$

Let $r: [t_0, T] \times [0, \infty) \rightarrow R$ be a given function such that the following assumptions are fulfilled:

- (I) r(t, 0) = 0 for $t \in [t_0, T]$,
- (II) there exists a number $\vartheta \in (0, \infty)$ such that

$$\bigvee_{s=0}^{\infty} r(t,s) \leqslant \vartheta \quad \text{ for } t \in [t_0, T],$$

(III) for every $\varepsilon > 0$ there exists a number K > 0 such that

$$\bigvee_{s=K}^{\infty} r(t,s) < \varepsilon \quad \text{ for } t \in [t_0, T],$$

(IV) for every a > 0 and $u \in [t_0, T]$

$$\lim_{t\to u}\int_0^a|r(t,s)-r(u,s)|\,ds=0.$$

Denote by Φ the space of continuous and bounded functions defined on $(-\infty, 0]$ with the values in \mathbb{R}^n . With the metric $\varrho_{\Phi}(\varphi_1, \varphi_2) = \|\varphi_1 - \varphi_2\|_{\Phi}$, where $\|\varphi\|_{\Phi} = \sup_{t \leqslant t_0} \|\varphi(t)\|$, (Φ, ϱ_{Φ}) becomes a complete metric space. Finally \mathscr{H}_P will denote the metric space $\Phi \times \mathscr{F}(P) \times G$ with the metric $\varrho = \max(\varrho_{\Phi}, \varrho_{\mathcal{F}}, \varrho_{G})$.

We shall further need the following lemmas:

LEMMA 1. If $(\varphi, f, g) \in \mathcal{H}_P$ and r satisfies assumptions (I)-(IV), then equation (1) has at least one solution defined on $(-\infty, T]$.

LEMMA 2. Suppose $(\varphi, f, g) \in \mathcal{H}_P$, r satisfies assumptions (I)–(IV) and f is uniformly Lipschitz continuous on P with respect to g. Then there is a unique solution of (1) defined on $(-\infty, T]$.

The proofs of these lemmas are given in [3] and [4], respectively.

LEMMA 3. $(\mathcal{F}(P), \varrho_{\mathcal{F}})$ is a complete metric space.

Proof. Let $\{\tilde{f}_n\}$ be a sequence of $\mathscr{F}(P)$ such that $\|\tilde{f}_n - \tilde{f}_m\|_{\mathscr{F}} \to 0$ as $n, m \to \infty$ and let $f_n \in \tilde{f}_n, f_m \in \tilde{f}_m$. For every $\varepsilon > 0$ there is an $N = N(\varepsilon)$ such that

$$\int_{t_0}^{T} \sup_{y} \{ \|f_n(t, y) - f_m(t, y)\| \colon (t, y) \in P \} dt \leqslant \varepsilon$$

for $n, m \geqslant N(\varepsilon)$. Suppose $\{n_k\}$ is such that $n_1 < n_2 < \ldots$ and $n_k \geqslant N(1/2^{2k})$. Then

$$\int_{t_0}^T \sup_{y} \{ \|f_{n_k}(t, y) - f_{n_{k-1}}(t, y)\| \colon (t, y) \in P \} dt \leqslant 1/2^{2k} \quad \text{for } k = 1, 2, \dots$$

Taking $A_k = \{t : \sup_{y} [\|f_{n_k}(t,y) - f_{n_{k-1}}(t,y)\| : (t,y) \in P] > 1/2^k \},$ we have

$$1/2^{2k} \geqslant \int\limits_{A_k} \sup_{y} \left\{ \|f_{n_k}(t,\,y) - f_{n_{k-1}}(t,\,y)\| \colon \, (t,\,y) \in P \right\} dt \geqslant 1/2^k \mu(A_k) \, .$$

Then
$$\mu(A_k) \leqslant 1/2^k$$
. Let $A = \bigcap_{i=1}^{\infty} \bigcup_{k=i}^{\infty} A_k$. Since

$$\mu(A)\leqslant \mu\left(igcup_{k=i}^{\infty}A_k
ight)\leqslant \sum_{k=i}^{\infty}\mu(A_k)<\sum_{k=i}^{\infty}1/2^k=1/2^{i-1} \quad ext{ for } i=1,2,\ldots,$$

we have $\mu(A)=0$. Let $A^{\tilde{}}=[t_0,T] \setminus A$ and $A_k^{\tilde{}}=[t_0,T] \setminus A_k$. We have $A^{\tilde{}}=\bigcup_{i=1}^{\infty}\bigcap_{k=i}^{\infty}A_k^{\tilde{}}$. Then $t\in A^{\tilde{}}$ implies the existence of a number i such that, for every $k\geqslant i$, $\sup\{\|f_{n_k}(t,y)-f_{n_{k-1}}(t,y)\|\colon (t,y)\in P\}\leqslant 1/2^k$. Therefore

$$\sum_{k=i}^{\infty} \sup_{y} \left\{ \|f_{n_k}(t,y) - f_{n_{k-1}}(t,y)\| \colon (t,y) \in P \right\} < \infty \quad \text{for } t \in A^{\tilde{}}.$$

Then the series $f_{n_0}(t,y) + \sum_{k=1}^{\infty} [f_{n_k}(t,y) - f_{n_{k-1}}(t,y)]$ is absolutely and uniformly convergent on A independent of y. Let $f \colon P \to R^n$ be defined by

$$f(t, y) = \begin{cases} \lim_{k \to \infty} f_{n_k}(t, y) & \text{for } t \in A^{-}, y \in \mathbb{R}^n, \\ 0 & \text{for } t \in A, y \in \mathbb{R}^n. \end{cases}$$

The function f satisfies the Carathéodory condition on P. We shall show that $\|\tilde{f_n} - \tilde{f}\|_{\mathscr{F}} \to 0$ as $n \to \infty$. For $n, k \ge N(\varepsilon)$ we have

$$\int_{t_0}^T \sup_{y} \{ \|f_n(t, y) - f_{n_k}(t, y)\| \colon (t, y) \in P \} dt \leqslant \varepsilon.$$

Taking for fixed n

$$\Psi_{k}(t) = \sup_{y} \{ \|f_{n}(t, y) - f_{n_{k}}(t, y)\| \colon (t, y) \in P \},$$

we have $\|\tilde{f}_n - \tilde{f}\|_{\mathscr{F}} = \int\limits_{t_0}^T \lim_{k \to \infty} \Psi_k(t) \, dt$. In virtue of Fatou's Lemma we obtain

$$\int\limits_{t_0}^T \frac{\lim}{k \to \infty} \Psi_k(t) \, dt \leqslant \lim_{k \to \infty} \int\limits_{t_0}^T \Psi_k(t) \, dt \, = \lim_{k \to \infty} \|\tilde{f}_n - f_{n_k}\|_{\mathscr{F}} \leqslant \varepsilon \quad \text{ for } n \geqslant N(\varepsilon) \, .$$

Hence $\|\tilde{f}_n - \tilde{f}\|_F \leqslant \varepsilon$ for $n \geqslant N(\varepsilon)$. This completes the proof.

2. Now we shall prove that non-uniqueness of solutions of (1) is in some sense a rare case. Namely we shall prove the following theorem

THEOREM 3. Suppose r satisfies assumptions (I)-(IV). The set $\mathscr A$ of those $(\varphi, f, g) \in \mathscr H_P$ for which equations (1) has at least two deifferent solutions is of Baire's first category in the space $(\mathscr H_P, \varrho)$, where $\varrho = \max(\varrho_{\Phi}, \varrho_{\mathscr F}, \varrho_{G})$.

Proof. Let us denote by $\Delta(t, \varphi, f, g)$ the supremum of the numbers $y_1(t)-y(t)$, where y_1 and y_2 are solutions of (1) corresponding to (φ, f, g) . Let $\{t_{\tau}\}$ denote the sequence of points of $[t_0, T]$ dense in $[t_0, T]$. Then let $\Omega_{MNpq\tau}$ denote the set of those $(\varphi, f, g) \in \mathcal{H}_p$ for which $1^{\circ} \|\varphi\|_{\Phi} \leq N$, $2^{\circ} \|f\|_{\mathscr{F}} \leq M$, $3^{\circ} \|g\|_{G} \leq q$, $4^{\circ} \Delta(t_{\tau}, \varphi, f, g) \geq 1/p$.

We shall show that Ω_{MNpqr} are closed. Suppose $(\varphi_n, f_n, g_n) \in \Omega_{MNpqr}$ to be such that $\varrho[(\varphi_n, f_n, g_n), (\overline{\varphi}, \overline{f}, \overline{g})] \to 0$ as $n \to \infty$. It is easy to see that the functions $\overline{\varphi}$, \overline{f} and \overline{g} satisfy conditions 1°-3°. Furthermore, there exists a subsequence $\{(\varphi_{n_k}, f_{n_k}, g_{n_k})\}$ of $\{(\varphi_n, f_n, g_n)\}$ such that $\varphi_{n_k} \rightrightarrows \overline{\varphi}$, for $t \leqslant t_0$, sup $\{\|f_{n_k}(t, y) - \overline{f}(t, y)\|: (t, y) \in P\} \to 0$ and $\|g_{n_k}(t) - \overline{g}(t)\| \to 0$ as $k \to \infty$ for almost every $t \in [t_0, T]$. By 4° there exist functions $y_{n_k}^{(1)}$, $y_{n_k}^{(2)}$ satisfying the equations

$$y_{n_k}^{(i)}(t) = \begin{cases} \varphi_{n_k}(t) & \text{for } t \leq t_0, \\ \varphi_{n_k}(t_0) + \int\limits_{t_0}^t \left\{ \int\limits_0^\infty f_{n_k}(u, y_{n_k}^{(i)}(u-s)) \, ds \, r(u, s) + g_{n_k}(u) \right\} du \\ & \text{for } t_0 \leq t \leq T \ (i = 1, 2) \end{cases}$$

and such that

(2)
$$y_{n_k}^{(1)}(t_{\tau}) - y_{n_k}^{(2)}(t_{\tau}) \leq 1/p - 1/n.$$

From $\sup_{y} \left\{ \|f_{n_k}(t,\ y) - \bar{f}(t,\ y)\|; \ (t,\ y) \in P \right\} \to 0 \ \text{ and } \|g_{n_k}(t) - \bar{g}(t)\| \to 0;$ $k \to \infty \text{ follows the existence of } N(1) \text{ such that } \sup_{y} \left\{ \|f_{n_k}(t,\ y) - \bar{f}(t,\ y)\| : (t,y) \in P \right\} < 1 \text{ and } \|g_{n_k}(t) - \bar{g}(t)\| < 1 \text{ for almost every } t \in [t_0,T] \text{ and } k \geqslant N(1).$ Then for almost every $t \in [t_0,T]$ and $k \geqslant N(1)$ we have

$$\|f_{n_k}(t,\,y)\| \leqslant \sup_y \left\{ \|f_{n_k}(t,\,y) - \bar{f}(t,\,y)\| \colon \, (t,\,y) \,\epsilon \,P \right\} + \|\bar{f}(t,\,y)\| < 1 + m(t)$$
 and

$$||g_{n_k}(t)|| \leqslant ||g_{n_k}(t) - \bar{g}(t)|| + ||\bar{g}(t)|| < 1 + ||\bar{g}(t)||,$$

where m(t) is a Lebesgue-integrable function such that $\|\bar{f}(t,y)\| \leq m(t)$ for $(t,y) \in P$. Taking

$$\Gamma(t) = \max \{1 + m(t), m_{n_1}(t), \dots, m_{N(1)}(t)\},$$

$$H(t) = \max \{1 + g(t), g_{n_1}(t), \dots, g_{N(1)}(t)\}$$

we have

and
$$\|f_{n_k}(t)\| \leqslant \varGamma(t) \\ \|g_{n_k}(t)\| \leqslant H(t)$$

for every k = 1, 2, ... and almost every $t \in [t_0, T]$. Since

$$\begin{split} \|y_{n_k}^{(i)}(t)\| & \leqslant \|\varphi_{n_k}(t_0)\| + \vartheta \int\limits_{t_0}^t \sup_{s \geqslant 0} \left\| f_{n_k} \big(u\,,\,y_{n_k}^{(i)}(u-s) \big) \right\| du \, + \\ & + \int\limits_{t_0}^t \|g_{n_k}(u)\| du \leqslant N + q + \vartheta M \qquad (i = 1,2) \end{split}$$

and

$$||y_{n_k}^{(i)}(t_1) - y_{n_k}^{(i)}(t_2)|| \leqslant \vartheta \Big| \int_{t_1}^{t_2} \Gamma(u) \, du \Big| + \Big| \int_{t_1}^{t_2} H(u) \, du \Big| \qquad (i = 1, 2)$$

for $t, t_1, t_2 \in [t_0, T]$, i = 1, 2 and every k = 1, 2, ..., then by Arzela's theorem there are subsequences, say $\{y_k^{(i)}\}$ of $\{y_{n_k}^{(i)}\}$ (i = 1, 2), such that $y_k^{(i)}(t) \Rightarrow y^{(i)}(t)$ on $[t_0, T]$. For $t \in [t_0, T]$ and i = 1, 2 we have

(3)
$$y^{(i)}(t) - \overline{\varphi}(t_0) - \int_{t_0}^{t} \left\{ \int_{0}^{\infty} \overline{f}(u, y^{(i)}(u-s)) d_s r(u, s) + \overline{g}(u) \right\} du = \sum_{m=1}^{5} A_m^{(i)}(t),$$

where

$$\begin{split} &A_{1}^{(i)}(t) = y^{(i)}(t) - y_{k}^{(i)}(t), \\ &A_{2}^{(i)}(t) = \varphi_{k}(t_{0}) - \bar{\varphi}(t_{0}), \\ &A_{3}^{(i)}(t) = \int\limits_{t_{0}}^{t} \Big\{ \int\limits_{0}^{\infty} \left[f_{k} \big(u, y_{k}^{(i)}(u - s) \big) - \bar{f} \big(u, y_{k}^{(i)}(u - s) \big) \right] \bar{d}_{s} r(u, s) \Big\} \, du, \\ &A_{4}^{(i)}(t) = \int\limits_{t_{0}}^{t} \Big\{ \int\limits_{0}^{\infty} \left[\bar{f} \big(u, y_{k}^{(i)}(u - s) \big) - \bar{f} \big(u, y_{k}^{(i)}(u - s) \big) \right] \bar{d}_{s} r(u, s) \Big\} \, du, \\ &A_{5}^{(i)}(t) = \int\limits_{t_{0}}^{t} \left[g_{k}(u) - \bar{g}(u) \right] dt. \end{split}$$

It is easy to see that for $t \in [t_0, T]$ we have $\|A_3^{(i)}(t)\| \leqslant \vartheta \|\tilde{f}_k - \tilde{f}\|_{\mathscr{F}}$. Let us write $W_k^{(i)}(t) = ||\bar{f}(t, y_k^{(i)}(t-s)) - \bar{f}(t, y^{(i)}(t-s))||$ for fixed i = 1, 2 and $s \geqslant 0$. The functions $W_k^{(i)}$ are measurable on $[t_0, T]$ and such that $|W_k^{(i)}(t)|$ < 2m(t), where $m \in \mathcal{L}(t_0, T)$. Since $\lim W_k^{(i)}(t) = 0$ uniformly with respect to $s \ge 0$, then by the Lebesgue theorem we have $A_4^{(i)}(t) \to 0$ as $k \to \infty$. It is obvious that $A_1^{(i)}(t) \to 0$, $A_2^{(i)}(t) \to 0$ and $A_5^{(i)}(t) \to 0$ as $k \to \infty$. Passing to the limit in (3) we see that $y^{(1)}$, $y^{(2)}$ satisfy equation (1) and by (2) $y^{(1)}(t_{ au})-y^{(2)}(t_{ au})\geqslant 1/p, \;\; ext{whence} \;\; (\overline{arphi},\overline{f},\,\overline{g}) \, \epsilon \,\, \varOmega_{MNpq au}. \;\; ext{The sets} \;\; \varOmega_{MNpq au} \;\; ext{are}$ non-dense. For, suppose that $\Omega_{MNpq\tau}$ is dense in the sphere S_h with centre (φ_0, f_0, g_0) and radius h. Then $S_h \subset \overline{\Omega}_{MNpqr} = \Omega_{MNpqr}$. Note that for every $(\varphi, f, g) \in \Omega_{MNng\tau}$ and $\eta \in \mathbb{R}^n$ there exists a number $\alpha > 0$ such that equation (1) corresponding to (φ, f, g) is equivalent to (1) with (φ, g) f(Q,g), where $Q=\{(t,y)\,\epsilon\,P\colon\,\|y-\eta\|\leqslant a\}$. In virtue of Theorem 2 for f_0 and every $\delta > 0$ there exists a function $f^{\delta}: Q \to \mathbf{R}^n$ such that conditions (a), (b) of this theorem are fulfilled. Then $\max\{\|f^{\delta}(t,y)-f_{0}(t,y)\|;$ $(t,y) \in Q$ $< \delta$ for almost every $t \in [t_0, T]$. Taking $\delta < h/(T-t_0)$ we have $\|\tilde{f}^{\delta} - \tilde{f}_0\|_{\mathscr{F}} < h$. Then $(\varphi_0, f^{\delta}, g_0) \in S_h \subset \Omega_{MNpq\tau}$. Since f^{δ} is uniformly Lipschitz-continuous with respect to y, then for $(\varphi_0, f^{\delta}, g_0)$ equation (1) has a unique solution. Therefore $(\varphi_0, f^{\delta}, g_0) \notin S_h$. The identity

$$\mathscr{A} = \bigcup_{M=1}^{\infty} \bigcup_{N=1}^{\infty} \bigcup_{p=1}^{\infty} \bigcup_{q=1}^{\infty} \bigcup_{\tau=1}^{\infty} \Omega_{MNpq\tau}$$

completes the proof.

References

- [1] A. Alexiewicz and W. Orlicz, On a theorem of Carathéodory, Ann. Polon. Math. 1 (1955), p. 414-417.
- with a lagging argument, Ann. Soc. Math. Polon., Sér. I, 13 (1970), p. 256-266.
- [4] Some applications of the approximation theorem of Alexiewicz-Orlicz, Demonstratio Math. 7(1) (1974), p. 59-71.
- [5] W. Orlicz, Zur Theorie der Differentialgleichung y' = f(x, y), Bull. Acad. Polon. Sci., Sér. A (1932), p. 221-228

Reçu par la Rédaction le 7.6.1973