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The Orlicz type theorem for differential-integral
equations with a lagging argument

by MicHAL KISIELEWICZ (Zielona Géra)

Abstract. The purpose of this paper is to give the proof of some category theorem
concerning the differential-integral equations of the form

() =) for t<i,,
1 Y @ 0

o
y' () = [ f(t,yt—8))dsr(s, )+ g (1)
0 .
for almost every te {ty, T).

It is shown that non-uniqueness of solutions of (1) is in some sense a rare case.

The aim of this paper is to give a proof of some category-theorem
concerning differential-integral equations of the form

(1) y(&) = o) for ¢ <1,

0) = [ f{t: y(t—9)drt, 8)+9(t)
0
for almost every fe [t,, T],

where the integration is of a Riemann-Stieltjes type with respect to
g > 0 and ¢, 7, g, f are given functions. This theorem for ordinary equations
has been proved by W. Orlicz in [6] and for partial equations of the
hyperbolic type by A. Alexiewicz and W. Orlicz in [2].
By a solution of (1) we mean a function y which is continuous for
t < 1y, absolutely continuous for {, < { < T and satisfies conditions (1).
Let R denote the real line, and let R" be an n-dimensional linear
vector space with the normi |z|| = max(|z,|, [#,], ..., [@,)) for = (2, ,,
, #,). Let P denote the set in R"*! defined by P = {(t,¥): t, <t < T}
yeR"} and let Q@ ={(t,y)eP; |ly—7nl<a}, where neR"” and a> 0.
Let us denote by @ the Banach space of all Lebesgue- 1ntegra,ble func-

tions g: [y, T]—>R” with the norm |g|lz = f llg ()l ds and let Y r(t s) de-

note the variation of »(s, t) with respect to s =0.
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DeriNITION 1. A function f: P—R” is said to satisfy the Carathéodory
condition. on P if f(t, y) is measurable in ? for each fixed ¥ and continuous
in y for each fixed ?, and if there is a Lebesgue-integrable function m(2)
such that [[f(¢, )| < m(¢) for (¢, y)eP. )

DEriniTION 2. A funection f(¢, ¥) defined on the set P is said to be
uniformly Lipschitz continuous on P with respect to y if there exists a con-
stant L satisfying

IF (2, ¥2) —F (@ ¥ < Lilys — 94|
for all (¢,y)eP; i =1,2.

This is proved in [1].

TiroREM 1. If the function f: Q—R" satisfies the Carathéodory condi-
tion on Q, then there exist continuous functions f, such that

(1) Mt 9 < m (),

(ii) lim maﬁ{ﬂfn(t,y) —f6 )5 {8, 9)e @} =0

n—oo

for almost 6’061 Yy te [y, T].
As an immediate corollary of Theorem 1 we get the next themem

(see [4]):

THEOREM 2. Let the function f: Q —R™ satisfy the Carathéodory condition
on P. For every e > 0 and for almost every ite[t,, T] there exists a function
ff: Q—R" such that

(a) max {17, yy=f£(t, K W (2, y)e@}>0 as &0,

(b) llf (t, Pl < m(@) for (3,1 J)GQ, »

(¢) f(t, y) has continuous partial derivatives of all orders with respect
10 Y1y Yoy ooy Un-

1. Let ns denote by #(2P) the set of all functions f: P— R" satisfying

the Carathéodory condition on P and let f be the elass of all the functions
of F(P) which are different only on a set of measure zero for fixed y. Let -

us denote by & (P) the set of all classes f If we define the distance of two

Glements fnfz of #(P) as Q.V(fufz) = "fl fz”gn where ”f”.?r' = fsup{l]f
Yz (2,y) e P} dt, then (F (P) ,pg) is a metric space. The metric of (.5*‘ (Q )s 0%)

has the form g,.-(fl,f —zfsup{llfl(t ¥)—fot, Yl (8, ¥) e Q}dt.

Let »: [t,, T]1 %[O, oo)v—>oR”be a given function such that the following
assumptions are fulfilled:

(I) (¢, 0) = 0 for te [, T1,

(II) there exists a number #e (0, o) such that

Y r(tys) <@ for te[t, T,
§=0
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(III) for every & > 0 there exists a number K > 0 such that

Y #(t,s)<<e for te[ty, T'],
s=K

(IV) for every a> 0 and e [{,, T]

hmf lr(t, 8) —r(u, s)lds

t—*‘uo

Denote by @ the space of continuous and bounded functions defined
on ( — oo, 0] with the values in R", With the metrie ps(p1, ¢2) = llp1—@sllo,
where ]Iqall.p = sup le(®)l, (P, op) becomes a complete metric space. Finally

#'p will denote the metric space ® X (P) X G with the metric p= max(ge,

0% 0g)-
We shall further need the following lemmas:

LemvA 1. If (¢, f, 9)e #p and v satisfies assumpiions (I)—(IV), then
equation (1) has at least one solution defined on (— oo, T').

LevmMA 2. Suppose (¢, f,g)e #p, v satisfies assumptions (I)—(IV)
and f is uniformly Lipschitz continuous on P with respect oy. Then there is
a unique solution of (1) defined on (—oo, T'].

The proofs of these lemmas are given in [3] and [4], respectively.
Lemia 3. (F(P), os) is a complete metric space.
. Proof. Let {f,} be a sequence of & (P) such that |f,—f.ls—0 as

5, m—>oo and let f,ef,,fnef,. For every £> 0 there is an N = N (e)
‘such that

.
[ sup{iIfa(t, 9) —fully M)z (¢, y)e PYE <6
ty ¥

for ., m > N (&). Suppose {a;} is such that », < e < ...and n; > N(1 [2%Fy.
Then
T

[ syt 9) —Fa_, (85 D)2 (2, PPUSIEE for k1,2,
B ¥

Taking 4, = {t: SUD [Ufo (8 ) o l(t,.«m (t, ¥)e P1>1/2%}, we have

12> [ sup{Ifu,(ts ) ~Fm (4 DIz (3 9) PR 12" (Ay)..
Ak

Then u(4;) <1/2% Let 4 = M) (JA4,. Since

=1 k=i
0 )

pd) S p(Ud < D pldy < DI3j28 =12 for i =1,2, ...,

k=i k=1
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we have u(4) =0. Let A~ ={[t,, TINA and 4, = [f, TIN4,. We

o =]
have A" = [ J (N A4 . Thente A~ implies the existence of a number ¢ such
{em] Ke=g

that, for every % >4, sup{ilf,,(t, ¥y —fu,_ (¢ 9 (8, y)e P<1/2%.
Therefore

N sup{fa, () 9) —fap_ 0z (y)e Pr< o0 for te A"

kwi ¥V

Then theseries f, (t,y}+ 3, [fu, (8 Y) —Ffu,_, (¢, ¥)1is absolutely and uniform-
k=1
ly convergent on A~ independent of y. Let f: P—E" be defined by

hmfnk(t, y) for ted”, yeR",

f(t,y) =
for te A, ye R".

The function f satisfies the (arathéodory condition on P. We shall
show that ||f, —fll=—0 as n—+oco. For n, k > N (¢) we have

T

[ sun{lifulty ¥) —Fu, (8 W)z (¢, 9)e PrA<e
by Y

Taking for fixed »
Yi(t) = Sllp{"fﬂ(t, y)_fnk(t) l: (¢, y)e P},

-
we have || f,, — fllg = f lim ¥, (t)dt. In virtue of Fatou’s Lemma. we obtain

lo k—+o0

f lim ¥, (¢) dt < lim f v, (1) dt _hmuf,, falls < e for n > N(e).

) *oo Foooty
Hence | f,,— f lz< e for n > N(e). This completes the proof.

2. Now we shall prove that non-uniqueness of solutions of (1) is in
some sense a rare case. Namely we shall prove the following theorem

THEOREM 3. Suppose 7 satisfies assumptions (I)—~(LV). The set £ of
those (¢, f, g)e p for which equations (1) has at least two deifferent solu-
tions is of Baire's first category in the space (#p, o), where ¢ = max(gg,
2% 0a)-

Proof. Let us denote by 4(¢, ¢, f, g) the supremum of the numbers
¥,(t) —y(?), where ¥, and y, are solutions of (1) corresponding to (¢, f, ¢).
Let {t.} denote the sequence of points of [f,, T'] dense in [t,, T]. Then let
Qrnpe: denote the set of those (g, f, g)e s, for which 1° (plls < N,
2° Ifle< M, 3° lgle<gq, 4° A(t,,f,9) =>1/p.
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We shall show that Q,y,,. are closed. Suppose (g,, f,,,g;)e Q11 vpgs
to be such that g[(tpn, f,,, gn)s (@, f, §)1—0 a8 n—oo. It is easy to see that
the functions ¢@,f and § satisfy conditions 1°-3°, Furthermore, there

exists a subsequence {((p" s Frgy Gu)} OF {(@ny Fns G} such that ¢, 3@, for
1<, SUP {Ife, @5 ¥) f(t, Y (¢, y)e P}—>0 and [ig,, (¢) —F(¥)l| >0 as ko0

for a.lmost every te [4, T]. By 4° there exist functions ¢}, ¥ satisfying
the equations

Fay (1) Tor 1<ty

¥ L (8) = { @, (t0) + f {f oo (05 YN (w—3)) ds (%, 8) + g, (w)} due
. for h<t<T (1 =1,2)
and such that
(2) Yo () —y8 (t) <1/p—1/n.
From: SHP{IIJ%%(t, y)—F&, 95 (¢, y)e P}—>0 and |ig,, (8) —F()-0;
k— o0 follows the existence of N(1) such that s1.11,p {Ifn, (25 9) ~ft, ¥l

(t,y)eP} < 1and |ig,, (¢) —7(?)l < 1for almost every te [¢, T]and k > N (1).
Then for almost every e [#, T] and k> N(1) we have

1, (35 WIS SI:IP{IIfn,,(t, y)—F(t, P @&, 9) e Py + 5@, 9)I < 1+ m(2)
and
197, (N < 119, (2) — F @M+ G (DI < L4 g (21,

where m(t) is a Lebesgue-integrable function such that |f(Z, ¥)| < m(3)
for (t,y)e P. Taking

\
y I'(t) = max(1+m(t), My (B), <.y Mgy (t)),

H(t) = max (1+g(t)1 g,,l(t), caes gN(l)(t))
we have

fog, (1 < T'(2)
g, (D < H (2)
for every k =1, 2, ... and almost every te [#,, T']. Since

and

I (O <l (Zo)I + 2 f supllfnk(u Yoo (e — )| du +

+f|lyn,,(u)||du<N+q+a9M (i=1,2)
ty
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and

iy iy
Iy 8) gD I < 8| [ Dwyaul+| [ Hwde| (@ =1,2)
1y i

"

for ¢, t,,t,e [t, L], i =1,2 and every k¥ =1,2,..., then by Arzela’s
theorem there are subsequences, say {y%} of {yﬁ}}c} (¢ =1, 2), such that
Y @) =2y (#) on [ty, T]. For te[f, T] and ¢ =1,2 we have

o 5

(3) y®(t)— -[0, — {f %, y(i)('u,——s))ds')‘(u,S)+§{%)}d’"- = ZA('rfn)(t)f
5 m=1

where

AR @) =y (1) —yP(2),

i
A(zi) () = pr(to) — (to)a

¢
AD () f{f [ (2, YDy —s ) —f (1, ¥ (u— )] dgr (., s)} du,

‘0

AD (1) f { j [f(u ym u—s)) —;f_(u, ym(,u_s))] dsr(u,s)} du,
4P() = f [ge(w) — g (w)]dz.

It is easy to see that for te [f,, T'] we have 4D (1)] < 9|, —flls. Let
us write (1) = ||f(t, v (1 —9) —=f(t, ¥?(t—9))|| for fixed i =1,2 a.nd
8 > 0. The functions W{ are measurable on [f,, T] and such that | W}:’
< 2m(t), where me Z (1, T). Since lim Wi (¢) = 0 uniformly with respect

k=00

to ¢ = 0, then by the Lebesgue theorem we have A‘”( )—=>0 as k—oo.
It is obwous that AD({#)—0, AD()—0 and AP(t)—0 as k—oco. Passing
to the limit in (3) we see that y™, y® satisfy equation (1) and by (2)
yO(t) —y® (%) > 1/p, whence (,[,§)e Qaypee- The sets Qpypg are
non-dense. For, suppose that ;. is dense in the sphere §;, with
centre (¢, fy, go) and radius &, Then §; = Q.,,\,m, = Qirnpee- Note that
for every (¢, f,g)e Qnm age A1d 7€ R there exists a number a > 0 such
that equation (1) corresponding to (g, f, g) is equivalent to (1) with (g,
F1@, ), where Q@ = {(t,y)e P: |y — il < a}. In virtue of Theorem 2 for
fo and every & > 0 there exists a function f°: ¢ —R" such that conditions
(a), (b) of this theorem are fulfilled. Then 1nam{|lf" t,y)—folty W;

(t, y)e Q} < & for almost every te [t,, T']. Taking 6< h{(T—t,) we have
12 —follz <h. Then (g0, f°, go)e S, Q3/npge- Since f° is uniformly Lip-
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schitz-continuous with respect to ¥, then for (@,, f°, o) equation (1) has
a unique solution. Therefore (@0, °5 9)¢ 8. The identity

0K 0 ™ o

& = U U U U U 2ixper

M=1 N=lp=1 ¢=1 7=1

completes the proof.
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