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Regular and coregular mappings of differential spaces

by W. WALISZEWSKI (L6dZ)

Abstract. The concepts of regularity, coregularity, weak regularity, weak co-
regularity, in the category of differential spaces, are introduced and some of their
properties are examined. It is proved that the mapping (4), where % is the differential
structure induced from 2 by the function f is open and that every weak coregular
mapping is open. Some characterizations of differential structure induced by f (coin-
duced by f) are obtained and it is shown that if € is the differential structure induced
from 2 by f, then (4) is differentially regular and differentially coregular. It is stated
that regularity of mappings (4) and (26) and the coincidence of topologies induced
by ¢ and ¢’ on the set M imply ¢ = ¥’. Similarly, the requirement that mapping (4)
is coregular assures that 8o is 2. A certain theorem useful for an examination of co-
regularity of the natural mapping of an equivalence relation is proved.

1. Introductory remarks. The present paper is devoted to an
examination of some concepts of regularity and coregularity of mappings.
These concepts are equivalent (cf. Serre [4]) in the category of manifolds.
They are not equivalent in the larger category of all differential spaces.
The main aim of the paper is to give some properties and to point out
distinctions occurring between those related notions. First we recall the
concept of a differential space and some of its properties.

By a differential space (cf. R. Ciampa [1], S. MacLane {2], R. Sikorski
[6] and [6]) we mean the pair (M, ¥), where M is an arbitrary set and ¢
is a set of real functions defined on M closed with respect to localization
and superposition with all functions of class C* on the Cartesian spaces.
The set C is called the differential structure of this space. More exactly,
let us denote by 7, the weakest topology such that all functions of €
are continuous. For any subset A of M we denote by ¥, the set of all
real functions ¢ defined on 4 such that for any peA there exists a set
Bety with pe B and a function fe% satisfying the equality a|(ANB)
= B|(ANB). Closedness with respect to localization may be expressed
in the form ¢, = ¢. Denote by sc# the smallest of sets ¢’ such that
% c ¢’ and with the following property: if a,, ..., a, belong to €', where s
is any positive integer and ¢ is of class C*(R’), then the function

a M >p—>p(ay(p), -.., a(p))
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belongs to ¢’. Closedness with respect to superposition with all functions
of class C* on Cartesian spaces means sc¥ = €.

Let us consider an algebraic closure, i.e. an operation e which to
every subset of some set assigns a subset of this set in such a way that:

(i) € = a(¥);

(ii) if ¢’ = ¥, then a(¥’) < a(¥);

(iii) a(a(¥)) = a(%).

We prove the following lemma about two algebraic closures.

1.1. If a and b are two closures defined on the set of all subsets of the
set & satisfying for any subset € of & the inclusion

(2) a(b(0)) = b(a(0)),
then the superposition
(3) ' ¢—~b(a(¥))

of these operations is an algebraic closure and for any € — & the set b(a(%))
18 the smallest of sets €’ containing € and closed with respect to the operations a
and b.

Proof. It is easy to verify that the operation (3) is an algebraic
closure. Consider any subset ¥ of &. Then, by (2), we have

a(b(a(¥))) < b(a(a(¥))) = b(a(¥)) and b(b(a(¥))) = b(a(¥)).

The set b(a,(%)) is closed with respect to @ and b. If ¥ =« ¢’ < & and ¥’
is closed with respect to & and b, then
b(a(%)) < b(a(¥')) = b(¥) =¥,
which ends the proof.
As a corollary we have (cf. MacLane [2]):

1.2. For any set € of real functions defined on M the set (5¢%), i8
the smallest of the sets €' of real functions defined on M such that € < ¢’
and (M, €') is a differential space.

- Proof. It is easy to verify that the operations
€—%¢y and €—>sc¥
are algebraic closures such that
8¢(¥ ) < (5¢€) -
According to Lemma 1.1 the proof is finished.

The differential space (M, (sc®),) is called the space generated by
the set € of real functions. MacLane remarked that the differential space

N
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generated by ¢ may be obtained as above by means of two closures.
For the direct proof of the existence of this space see Sikorski [5].

Let (M,, ¢,) and (M,, ¥,) be differential spaces. The differential
space (M,, €,) X (M,, ¢,) generated by the set

[aoprl; ae fﬁl}u {aoprz; ae %2}

is called the Cartesian product of (3f,,%,) and (M,,%,), where
Pry(Uyy %) = u; for (uy, us)e My XM,, ¢ =1, 2.

We say that a function f defined on the set M and having values
in the set N maps smoothly the differential space (M, ¥) into (N, 2),
in symbols:
(4) f: (M, €)—~(N, 2),

iff for every fe¢ 2 the function fofe%. The mapping (4) is said to be a
diffeomorphism if f maps M one-to-one and onto, and

f—I: (N, 2)~(M, %).

This fact will also be written in the form f: (M, ¢)—(N, 2).
From the definition of the Cartesian product of differential spaces
it immediately follows that

1.3. The mapping
. f: (M, €)~>(My, €,) X (M, €5)
18 smooth if and only if
priof: (M, €)—>(M,, €.)
i8 smooth for i =1, 2. In particular, for 1 =1, 2,
Pri: (M, 6,) X (M, €2)>(M;, €)).

Now, we suppose that the sets M, and M, are disjoint. We shall
define the disjointed union (M,, €,)D(M,, ¥,) of the differential spaces
(M,, ¢,) and (M,, ¢,) as follows. Let ¥ be the set of all real functions «
defined on M,uM, such that «|M; and a|M, belong to ¥, and ¥,,
respectively. From the definition of the set ¢ it immediately follpws that
8c¥ = ¥. Let ae%, and pe M,. Then there exists a neighbourhood A
of p open in 7, such that a|4 = a’|A4 for some function a’e¥. Thus, there
exist functions a,,...,a, of ¢ and real numbers a,, b, ..., a,, b, such
that ped, = A, where

4o = o' [(a; bl < 4.

Then we have a|d, = a’'|A, = (a'|M,)|A,, where a;|M;e%; and

8
Al = m(ailMl)—l[(ai; bt)] = .A.oan c Aan.
i=1
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This yields a|M, e (€1)u, = %1 Similarly, a|M;e%,. Then 4, = €. There-
fore, (M, ¥) is a differential space called the disjointed union of (M,, %,)
and (M,, ¥,). The topological space of the disjointed union of these
differential spaces is the disjointed union of the topological spaces (M, ¢, )

and (M,, 74,). Analogously the disjointed union of an arbitrary set of
differential spaces may be defined.

Let us remark that the operation of producting leads from differen-
tiable manifolds to a differentiable manifold.

The verification of smoothness of a mapping is faciliated by the
following lemma.

14. If (M, ¥) is a differential space, f: M—N, 2' is a set of real
functions defined on N, then from the condition

(i) of Be @', then Bofe¥,
it follows that:

(i) if fescD’, then fofe¥;

(iti) if Be Dy, then Bofe%.

Then, the mapping (4), where (N, 2) is a differential space generated
by 2’, is smooth if and only if condition (i) is satisfied.

For the proof see [6].

2. The differential structure induced and coinduced by a mapping.

Let 2 be any set of real functions defined on a set N. For an arbitrary
function

(5) f: M>N

we may define the function f* on the set of all real functions defined on N
by the formula

(6) f*(8) = Bof.

So, the set f*[2] being the image of the set 2 under f* is a set of real
functions defined on M.

2.1. If (N, 9) is a differential space, then for every mapping (5)

(7) (M, (f*[2]n)
i8 a differential space such that
(8) f (M, (f* (2D )N, 2).

The set (f*[2])u i8 the smallest of sets € such that (M, €) is a differential
space and (4) i8 smooth.

The topology 7, q) of the differential space (7) coincides with the topol-
ogy induced from the topological space (N, v5) by (5).

The mapping (8) is open, i.e. for every set A open in T4 g, the set f[A]
18 open in Tg.
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Proof. From the inclusion f*{2] < (f*[2]), and the identity f*[2]
= scf*[2] it follows that the function f maps smoothly the differential
space (7) into (N, 2). Now, let us suppose that (4) holds. Consider any
real function ae (f*[21]),. Let us take pe M. Then there is a function
a’ e f*[2] and a set A e 1jeq) such that a|4 = a’l4, peA. Therefore, we
have a' = fof, where fe¢ 2, and A = f~'[B], where Be75. From (4)
it follows that a’'¢% and Ae7,. Hence it follows that ee%, = ¥. So
f*[2] = €. The proof of the third assertion of the lemma is obtained
by an easy verification.

For the proof of the openness of the mapping (8) take any set 4
open in 7juy. Let ge f[A]. Thus f(p) = q for some peA. Then there

exist functions a,, ..., a,ef*[2] and reals a,, b, ..., a,, b, such that
8

(9) peqai_l[(ai; b)]<= 4.
i=

The definition of f* yields the existence of functions 8,, ..., f,¢ 2 such
that e; = f;0f, ¢ =1,...,s. Hence, by (9), we get

pef () A7 (e Ba]] < 4.
So,

¢ = f(p)e Q B [(as; by)] < fIA].

Thus, the set f[A] is open in 7.
The differential space (7) will be called the space indueed from (N, D)
by the mapping (5).

2.2. If (M, €) is a differential space, then for any mapping (5)
(10) (N, f1[€])

is a differential space and the set f*~'[%] i3 the greatest of differential structures
9 such that the mapping (4) is smooth. ‘

Proof. From the definition of f* we immediately obtain the equality
sef*"'[¥] ="' [¢] = (f*'[¥¢])y. Hence, by Lemma 1.2, it follows
that (10) is a differential space. For any fef* ![¥] we have Bofe%.

Now, let 2 be a differential structure such that the mapping (4)
is smooth. Consider any 7¢ 2. Hence it follows that f*() = nofe®.
Thus 57¢ f*~'[¢]. In other words, 9 c f*"'[¥]. The proof is finished.

The differential space (10) will be called the space coinduced from
(M, ¥) by the mapping (5). The topology T 1f9] of the differential space
coinduced from (M, ) by (5) does not always coincide with the topology
coinduced by (5) from the topological space (M, 7). Below there is given
an example which illustrates such a situation.
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ExampiE 1. Let us set M = R x {0}U R x {1} and define the relation R
as follows:

pRq iff p,ge M and p' =q' #0, where p = (p', p?,q = (¢, ¢?).

It is easy to verify that R is reflexive, symmetric and transitive. Let f
be the natural mapping of R, i.e. the mapping (5), where N is the set
of all cosets of R and to each p of M the mapping f assigns the coset
f(p)e N such that pef(p). The topology coinduced by mapping (5) is
not a Hausdorff topology. It is easy to state that for every point of N
there exists a neighbourhood homeomorphic to R with usual topology.
Therefore, N with the topology coinduced by (5) is a T,;-space, i.e. for
any different points # and y of N there exists a neighbourhood U of
open in (M, r,)/R (= N with the topology coinduced by (5)) such that
y¢ U. Hence it follows that such a topology must not be a topology of
the form t,;, where 2 is any set of real functions defined on N. This yields,
in particular, thdt the topology 7*—114; Of the differential space coinduced
from (M, ¥) by (5) is different from the topology coinduced by (5) from
the topological space (M, 7).

By a direct verification we see that any neighbourhood of the point
a, = {(0, 0)} in the topology of (10) includes the point a, = {(0, 1)} of N.
That also shows the difference between the topology coinduced from
(M, 7¢) by (5) and the topology of differential space (10) coinduced by
the same mapping.

Now, we shall prove properties which characterize the differential
structure of the differential space induced or coinduced by the mapping (5).

2.3. If (N, 2) i8 a differential space, then for every mapping (5) there
exists exactly one differential structure € on M such that the mapping (4)
i smooth and for every differential space (M', €') and for every mapping

(11) g: MM
there is a smooth mapping

(12) g: (M',¢")~(M, %)
if and only if the mapping

(13) fog: (M, €)>(N, 2)

18 smooth. The differential space (M, €¢) coincides with the space (7).
Similarly, if (M, €) is a differential space, then for every mapping (5)

there exisis exactly one differential structure 2 on N such that the mapping (4)

is smooth and for every differential space (N', @') and for every mapping

(14) h: N—>N'
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there is a smooth mapping

h: (N, 2)~>(N', 2)
if and only if the mapping
(15) hof: (M, €)—~(N', 9')

18 smooth. The differential space (N, 2) coincides with the space (10).

Proof. Let us suppose that (N, 2) is a differential space and ¢
has the property mentioned, in the first part of the theorem and let a
differential structure ¥, has the same property, i.e. the mapping

f: (M, 6,)~>(N, 2)

is smooth and for every differential space (M’, ¥’) and for mapping (11)
the mapping

g: (M, €¢')~(M, %))
is smooth if and only if the mapping (13) is smooth. Hence it follows
that 7

id: (M, €)~>(M, ¢,)
is smooth. Then ¥, < ¥. Similarly, € = ¢,. Thus ¥ = ¢,. To end the
first part of the theorem it sufficies to prove that the differential space (7)
has the property in question. By 2.1, the mapping (8) is smooth. Let (11)
be any mapping for which the mapping (13) is smooth. In other words,

fofoge®’ when fe 2. Let ye f*[2]. Then y = fof, where fe 2. Hence
y0ge¥’. By Lemma 1.4 we get the smooth mapping

g: (Mr, %l)_*(M;'(f* [@])M)

The proof of the first part of the theorem is completed. The proof
of the second one is analogous.

As an immediate consequence of 2.3 we get

2.4. For every mapping (5) the following conditions are equivalent:
(a) The mapping (4) is smooth;

(b) @ is a differential structure contained in f*'[€];

(¢) % is a differential siructure containing (f*[21).

Similarly, for every one-to-ome and onto mapping (b) the following
conditions are eguivalent:

(a’) The mapping (4) is a diffeomorphism;

(b") @ coincides with f*~1[%];

(¢') € coincides with f*[2]. .

If M is an arbitrary set, then the set of all functions ¢, where
¢y(p) = ¢ for pe M, ¢ is any real number, forms a differential structure
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on M, the smallest one. The set of all real functions defined on M is also
a differential structure on M, the greatest one.

2.5. For any mapping (5) on M the set (f*[€])y_su; 18 the yreatest
of all differential structures on N —f[M]. The set f[M] as well as any subset
of N—f[M] is open in the topology vs—11¢.

Proof. Set 2 = f*~![¥]. Let y be an arbitrary real function defined
on N —f[M). Then the function defined by the formula

y(q), ~where ge N—f[M],
Yo(q) =

0, where ge f[M],
fulfils the equality (y,0f)(q) = 0 for qe¢ M. Hence, y,0fe¥. In other
words, yoef* '[4]. This yields

¥ = vol(N—f[M])e (f‘—l[(g])N—f[M]'

To prove the second assertion take ge N —f[M] and the characteristic
function of the set {g}. We have ye¢f*~'[¥] and

(@} = 27'(0; 2)]e 1154
3. Regularity and coregularity, weak regularity and weak coregularity.

Every differentiable Hausdorff manifold of class C* induces on the set M
of all its points the differential structure. If the induced differential
structures of such manifolds coincide, then these differentiable
manifolds coincide. Then, under the above assumptions we need not
make of distinction between a manifold and its differential space. We
introduce the concepts of regularity and weak regularity. These concepts
are there compared with the notion of differential regularity (called by
R. Sikorski [6] simply: regularity). Further, we shall be concerned with
the dual concepts of coregularity, weak coregularity and differential
coregularity.

A smooth mapping (4) is said to be regular at a point p of M iff there
are neighbourhoods U and V of points p and f(p) open in the topologies 7,
and 7y, respectively, a differential space (M,, %,), a point a and a diffeo-
morphism

(16) @: (U, €y) X (Mo, 60)>(V, 2v)
such that
(17) fIU = got,

where ¢ is the function defined by the formula
(18) i(u) = (u,a) for ueU.

A mapping which is regular at every point pe M is said to be regular.
A smooth mapping (4) is said to be weak regular at a point p of M iff there
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exist a neighbourhood U of p and a neighbourhood V of f(p) open in the
topologies 74 and 7,5, respectively, and there exists a smooth mapping

(19) o: (V, 2y)—>(U, %y)
such that
(20) flUleV and gof|U =idy.

A mapping which is weak regular at every point p of M is called weak
reqular. . '

We say that a smooth mapping (4) is coregular at a point p of M
iff there exist neighbourhoods U of p and V of f(p) open in the topologies
7¢ and 74, respectively, a differential space (¥,, 2,) and a diffeomorphism

(21) y: (U, gU)‘*U” Dy) X (Noy Do)
such that
(22) f1U =prjoyp.

A mapping coregular at every point of M is said to be coregular. A map-
ping (4) is said to be weak coregular at p iff there exist neighbourhoods U
and V of points » and f(p) open in the topologies 7, and 7, respectively,
and & mapping

(23) o: (V, 2p)>(U, €y)
such that
(24) o[Vle U, foo=id, and o(f(p) =0».

A mapping weak coregular at every point of M will be called weak co-
regular.

If in the definition of regularity we set o = pr,o¢~', then, by (16),
(17) and (18), we get (19) and (20). Similarly, setting in the definition
of coregularity

o(v) = v (v, Preyp(p)) for weV,
by (21) and (22), we get (23) and (24). So, we have:

3.1. If a mapping (4) is reqular (coregular) at a point p, then (4) is
weak regular (weak coregular) at this point. Every regular (coregular) mapping
18 weak regular (weak coregular). Kvery diffeomorphism is regular. The
superposition of two regular (weak regular, coregular, weak coregular) map-
pings 18 also regular (weak regular, coregular, weak coregular).

The inversions of the statements of the first part of above theorem
are not true in general. This fact is illustrated by the following example.

ExAMprLE 2. Let (M, ¥) be the natural differential space of the set

R (here R = M) of all reals. We set N = R X R. Let 2, be the union
of the set of all real C*-functions on R X R and the set of all functions y, ,
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defined by the formula

1, where q = (r,1),
xr.t(Q) =
0, where (r,t) #¢qe N,
where 7 is an arbitrary rational and ¢ is any positive rational number.
Let (N, 2) be the differential space generated by the set 2, of real functions
considered above. We set

f(z) = (x,0). for ze M
and

gy y?) =y* for (¥, y%)eN.
By Lemma 1.4 we get the smooth mapping (4) and the smooth mapping
(25) g: (N, D)~(M, C).

From the definitions of functions f and g it immediately follows
that gof = id, . Thus, we conclude that the mapping (4) is weak regular
and (25) is weak coregular at every point of the set R x {0}. If we would
suppose that the mapping (4) is coregular at some point p of M; then
there should exist a neighbourhood U of p open in 74, a neighbourhood »
of (p, 0) open in 7,5, & differential space (M,, ¢,) and a diffeomorphism
(16) such that (17) is satisfied, where ¢ is defined by (18) and a is a certain
point of M,. The diffeomorphism (16) induces a homeomorphism of the
topological space

(26) (U, ¢ U) X (Mo, 7¢,)

onto (V, t5| V). But this is impossible, because in the topological space
(V, 15| V) there exist open one-point sets, whereas any non-empty open
set in (26) must contain an open segment of the form (a; b) x {¢}, where
a, b, ¢ are some reals. The same argument leads to the statement that
the mapping (25) is coregular at no point of R x {0}.

3.2. Every weak coregular mapping i8 open.

Proof. Let a mapping (4) be weak coregular. Take any Ae 7y, and
put B = f[A]. Let ge¢ B. Then there exists 2 mapping (23) such that (24)
is satisfied, where pe Ue vy, qeVe1g. Set V' =" '[UNA]. Then o(q)
=pe UnA and V'ety. So qeV'. For any ze¢V' we have o(2)e UNA.
Hence, z = f (a(z))e B. In other words, V is contained in B. Therefore
Betgy.

If there is given a differential space (N, 2) and a mapping (5) we
may consider any differential structure on M such that the mapping (4)
is smooth. In particular, we may study connections between the differ-
ential spaces (M, ¥¢) and (M, ¥’) if f maps (M, ¥) as well as (M, €')
regularly into (N, 2). We prove the following theorem.
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3.3. If a mapping (4) and
(26) f: (M, %)~(N, 9)

are weal regular, then in order that € = €' it suffices that the equality
T¢ = Tg be satisfied.

Proof. Let us suppose that mappings (4) and (26) are weak regular
and 1y = T4 . Take any ae¥ and any pe M. There exist a neighbourhood U
of p open in 74, a neighbourhood V of f(p) open in 7, and a smooth map-
ping (19) such that (20) is satisfied. Hence we get

(27) aogof|U = ecidy = a|U.

From (19) it follows that the function aop maps smoothly (V, 2,) into
the natural differential space of the set R of all reals. In other words,
aope 2. Then there exist sets V; and V, open in v, such that peV,,
V,uV = N, and a function ne 9 such that n(y) = 1foryeV,and 5(y) = 0
for yeV,. Hence it follows that the function f defined by the formula

77(?/)“(9(3/))1 where 'y€V1
0, where ye N -V,

belongs to 2 and f|V, = aop|V,. According to (27) and (28) hence we
obtain the equality

Bof(TNfT[V1]) = el(Unf'[V,4]).

From the smoothness of the mapping (26) it follows that fofe%’. The
set U is open in the topology 74 . Therefore, the set Unf~'[V,] is open
in 74 . Thus ae¥y = ¥’. Then we get the inclusion ¥ = ¥’. Similarly,
¢' = ¥, which completes the proof.

It seems to be interesting that the regularity of mapping (4) does
not yield the equality € = ¢’. Moreover, the sets of all points of two
differential spaces may be identic, the regular mappings (4) and (24)
may be one-to-one but the differential spaces (M, ¢) and (M, ¢') may
differ topologically.

ExampPLE 3. Let N = RX R and 2 be the set of all real functions
of class C* on the plane R x R. We shall define a function f which maps
the open interval ( —oco; 4) into the set N. Set

(28) Bly) =

0, ' where z = 0,
l{z) =

1
exp(l—;), where 0 < <1.

It is easy to see that the function ! has derivatives of all orders (with
respect to (0; 1)), IM(0) =0, k =1, 2,..., and I(1) = 1. The function !

4 — Annales Polonici Mathematici 30.3
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is increasing in {0; 1). So, there exists the function m inverse to 1. Set
(29) r(@) =) (1—1""(1—x)) for e (0; 1).

The graph- of this function has an infinite order of tangency with the
straight line R x {0} at the point (0, 0) and with the line {1} X R at the
point (1,1). Now, we put

(30) my(s) =h7'(h(1)s) and my(s) =r(m,(s)) for se<0; 1D,
where '

h(x) =f(1+(r'(u))2)"’du for ze {(0; 1).
Next we set

L =(—00; 0)x{0}, 8 =f[<0;4)] and M =LuS,
where ‘ A

(r(1)s, 0) for s< 0,
(m(8), my(s)) for 0<s<1,
(31) f(8) =( (my(2—3),2—my(2—3)) for 1<s<2,
(—my(s—2),2—m,(s—2)) for 2<s< 3,
\(—my(4—3), my(4—3)) for 3<s< 4.

Let ¢ be the differential structure coinduced by the mapping
fi(—o0; 4)>M

from the natural structure of the open interval (—oc; 4). From 2.4 it
follows that the differential space (M, ¢) just defined is diffeomorphic
with the natural differential space of the set of all reals. Then (M, %)
is a differentiable manifold. It is easy to see, using (29), (30) and (31),
that f is a mapping of class C* of an open interval (j— oo; 4) into RX R
and f'(u) # 0 for ue (— oo; 4). Henece it follows that we have a regular
mapping
(32) id: (M, ¢)—>(N, 2).
Set

(M, ¢') = (L, €.)D(8, ¥s)-

The topology of’ (M, ¥) differs from that of (M, ¢’), because the
space (M, 74), a8 @& disjointed union of two non-empty spaces, is not
connected. Hence it follows-that (M, v, ) is not homeomorphic with
(M, t4), nor with the space induced on M from the plane R X R regarded
with the usual topology. On the other hand, the function f|(0;- 4) may
be extended to the periodic function f, (of period 4) having non-vanishing
derivative at.every point. Hence we conclude that the differential struec-
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ture ¥gis equal to (idg[2])s , where idg(z) = « for ¢ §,idg: S—N. Further,
it is easy to verify that idg maps regularly this differential space into
the natural space (N, 2) of the Cartesian plane R X R. It is evident that
id; regularly maps the differential space (L, ¢;) into (N, 2). Then we
get the regular mapping '

d: (M, ¢')>(N, 2).
As an immediate corollary from 3.3 we get
3.4. If a mapping (4) is weak regular and

Tg = Tre[a]y
then € = (f*[2))u-
3.5. If the mapping (4) is weak coregular and (5) is onto, then
P = [4].

Proof. From the smoothness of (4) it follows, by 2.4, that 2 is con-
tained in f*~'[#]. Let us take any Be¢f*~'[¥¢] and any g N. Then there
exists a point p of M such that ¢ = f(p). From the weak coregularity
of (4) it follows that there is a mapping (23) such that (24) is satisfied.
Hence '

BV = Boidy = (Bof)ooe Dyp.
So fe 2.

We shall say that the differential space (3, ¢), where M < N, is
reqularly (weak regularly) lying in (N, 9) iff the mapping (32) is regular
(weak regular). It is easy to verify that the differential space (R x {0}, €),
where € is the set of all real functions of class C* on R x {0}, is weak
regularly lying in the differential space (%, 2) defined in Example 2,
but it is not regularly lying in this space.

3.6. If the mapping (4) is regular (weak regular) and the mapping (5)
18 one-lo-one, then the differential space

(33) (F1M1, (f** [€Dsan)
18 regularly (weak regularly) lying in (N, 9).

Proof. From 2.4 and 2.5 it follows that the mapping
(34) f: (M, €)~>(fI M1, (F* 7 [€)ypan)

is a diffeomorphism. Hence, according to the second part of 3.1, we state
that regularity (weak regularity) of (4) yields the same property of the
mapping

(35) id: (fIM]1, (f* 7' [€Dsan) (N, ).

Now, we prove a generalization of 3.6.
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3.7. If a mapping (4) is regular (weak regular) and a mapping (34)
i8 open, then the differential space (33) is regularly (weak regularly) lying
in (N, 2).

Proof. From the regularity of (4) it follows that for every point
gef[M] there exist Ue 7y, Ve g, a diffeomorphism (16) such that (17)
is satisfied, where ¢ is defined by formula (18) and a is some point of M.
Setting ¢ = prop~! and

(36) V' =flU]
we obtain a smooth mapping (19) fulfilling (20) and a smooth mapping
olV': (V', 2p) (U, %y).

Hence it follows that for any eV’ we have f(o(v) ) —f(g(f(u )) =

= v, where v = f(u), ue U. Therefore f| U is a one-to-one function a,nd
0|V’ = (fI U)™". From the smoothness of (4) it follows that f*~'[¢] > 2.
Then (f*~![¢])y © P»-. This implies the smoothness of the mapping

(37) (F1O)7: (V' (£ (D) (U, $u).
Setting
(v, m) = o((fID) (v),m) for (v, m)eV’ x M,
we obtain the diffeomorphism
v: (V' (£ [€Dy) X (Mo, €0)>(V, D).

For any veV’ we have

(v, 6) = p((fIU)(0), a) = o[i((f17)~' (v)))
= (F1O)((f10) (v)) = v.

From the openness of (34) it follows that the set V' defined by (36) is
open in the topology 7*—14. This ends the proof of the regularity of
the mapping (35).

~ If the mapping (4) is weak regular, then for any point ge f[ M] there
exists a mapping (19) satisfying (20), where pe Ue 74y and ¢ =f(p)e Ve 75.
Hence, similarly as above, setting o’ = fop we get a smooth mapping

e': (V, Dp)~(V, (f* ' [€])p) p

such that o (v) = v for veV'. From the openness of (34) it follows that
the set V' defined by (36) is open in the topology 7, -1¢;. Therefore the
mapping (35) is weak regular.

Now, we give properties of weak regular (weak coregular) mappings
that have no corresponding ones in the category of all regular (coregular)
mappings.
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3.8. If a mapping (4) is weak reqular (weak coregular) at a point p
of M and

» f[Mlc N c N,
then the mapping

(38) f: (M, €)~(N', Bx)

18 weak regular (weak coregular) at p.
If a mapping (4) is weak regular (weak coregular) at p and pe M' < M,
then the mapping

NE (MI, Cu )N, D)
18 weak regular (weak coregular) at p.

Proof. Let p be any point of M. Then there exists a mapping (19)
satisfying (20), where pe Ue 7, and f(p)eVetg. Setting V' = VNN’ we
have f[U]< V', o of| U =idy, where ¢ = oV’ and

't (V' (2n)p) T, €v).

The mapping (38) is thus weak regular. The proofs of the other assertions
are similar.

ExaMpLE 4. Let (M, ¢) and (N, 2) be the natural differential spaces
of the sets R and R X R, respectively, and N = R x {0}u{0} x R. If we
set f(z) = (x, 0) for ze¢ M, we obtain the regular mapping of the form (4)
such that respective mapping of the form (38) is not regular at a point 0.

Let now, (M, ¥) and (N, 2) be the natural differential spaces of
the sets R x R and R, respectively, M = N’ and f = pr,. Then, we
obtain the coregular mapping of the form (4) such that respective mapping
fIM : (M, €5 )—~(N, 2) is not coregular at the point (0, 0).

It is not difficult to see that the mapping id: ({0; 1), €.,,)>(R, ¥),
where € is the natural differential structure of R, is not regular at the
points 0 and 1, however, the mapping id: (R, €)—>(R, ¥) is regular.

3.9. If the mapping (4) is weak regular, then for any mapping (11)
the mapping (12) is smooth if and only if (12) is continuous and (13) i8
smooth.

If the mapping (4) is weak coregular, and onto, then for any mapping
(14), b maps smoothly (N, 2) into (N', D') if and only if the mapping (15)
i8 smooth.

Proof. Let us suppose that (4) is weak regular, (12) is continuous
and (13) is smooth. Consider any a¢¥ and any point p' of M'. Setting
p = g(p’) we see that there exists a mapping (19) such that (20) is satisfied,
where U and V are some neighbourhoods of p and f(p) open in 7, and 7o,
respectively. Hence it follows that p e g '[U], ¢7'[U] is open in 7 and

glg~'[U] = idyoglgor[U] = gof| Uoglg™'[U] = go(fog)lg™'[U].
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Then we state that a|Ue%, and
aoglg™'[U] = (e|Tog)o(fog)lg™ ' [U]eBy—1p)-

So aoge¥y = ¢'. Thus the mapping (12) is smooth. The proof of the
second part of the theorem is an immediate consequence of 3.5 and the
second part of 2.3.

We will prove the following theorem useful for an examination of
coregularity of the natural mapping of an equivalence relation.

3.10. If a mapping (4) is smooth and the following conditions are
satisfied: '

(@) pry: (B, (%% @)Rf)—>(M, %), where E, i3 the set of all pairs (z,y)
of points of M suoh that f(x) = f(y), is weak coregular (coregular);

(b)  for every point p of M there exists a weak coregular (coregular) mapping
$: (U, €u)>(W, ¢w),
where pe U o> W, U 8 open in 1y, such that
U @NOW = {s(@)}  for we U;
(¢) there exists a set A open in T, such that
4] = »

and (4) i8¢ weak coregular (coregular) at every point of A;
then (4) ts weak coregular (coregular).

Proof. Let ¢ge¢ M. From (¢) it follows that f(q) = f(p), where peA,
A is open in 74 and f| A is weak coregular. According to (c) we may assume
that the set U, in condition (b), is contained in A. Let §': (U, ¢y)—
—~(W', €w), where ge U' > W', U’ is open in 7, be a weak coregular
mapping such that f'[{f(¥)}1nW’ = {s'(y)} for ye U'. It is easy to
verify that

ff1¥]) =pr,[(M X Y)NR;], where ¥ c M.
Hence, by 3.2, it follows that the sets
U, = Unf‘l[f[U']] and U, = Unf[f[U]

are neighbourhoods of the points p and ¢, respectively, open in 7,. We
set W, = WnU, and W, = W' NnT,. It is easy to see that

s[U] =Wy, &8'[U] =W, [fIW,]=F[Wl,
fIW, and f|W, are one-to-one. Moreover,

f1U, =fIWo0s|T, and flU, =f'|Wy08'|T,.
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2

Hence we get
(fIWe) " of|TUgopr,| Uy x Uy = 8'|Ugopry| Uy X U,.

From (a) it follows that the mapping pr,: (R, (¥ x @)Rf)-—>(.M , €) is weak
coregular. Thus, we have a smooth mapping

(F1We) ™" (FIWo], Dywg)>(Wo, ;).

Therefore, f| U, is weak coregular as a superposition of the weak coregular
mapping §'|U,, the diffeomorphism

FIWe: (Woy €m)(FIWo], Dyiry)

and the inclusion ¢: (f[W,l, 24w, ) (N, 2).
The same proof may be repeated if we consider coregularity instead
of weak coregularity.

4. Differential regularity and differential coregularity. A mapping (4)
is said to be differentially regular at the point p (= regular at p in the
book [6]) iff the differential

(df)p: (M, €)p~>(N,y D)yy)

of (4) at the point p, defined by the formula (df),(v)(8) = v(fof) for
Be D, is a monomorphism. A mapping (4) is said to be differentially regular
(differentially coregular) iff it is differentially regular at p (differentially
coregular at p) for every p of M.

4.1. If a mapping (4) is weak regular (weak coregular) at p, then it is
differentially regular (differentially coregular) at p.

Proof. If (4) is weak regular at p, then there exists the mapping (19)

satisfying (20), where pe Ue 74, f(p)e Ve 15. Hence
(dQ)/(p)O(dfl U)p = (didU)p: (U, Cu)p—>( v, Cu)p
is an isomorphism. Then
(df1U)p: (U, Cu)p>(V,y Dy
is a monomorphism. From the openness of the sets U and V in 7, and g,
respectively, it follows that there exist natural isomorphisms
3: (.M, g),,-—)( U, (gU)}p and j: (V, gy)f(p)é(N, g)f(p)

such that (df), = jo(df| U),04. This yields that (39) is a monomorphism.
The case of weak regularity is quite analogous.

We give below an example of a differentially regular mapping at p
-and a-differentially coregular one which is not weak regular and not weak
coregular.
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ExaMPLE 5. Set M = N = R. Let 2 be the natural differential
structure induced from 2 by the function f defined by the formula f(p) = p?2
for pe M. Then we obtain a smooth mapping (4) which, according to 4.2,
is neither differentially regular nor differentially coregular. If the mapping
(4) were weak regular at the point 0, then there would exists a mapping
(19) satisfying (20), where U = (—a; a), a > 0. Hence it follows that
the function f| U is one-to-one. This is impossible. If we suppose that (4)
is coregular, then it is open. Therefore, the set f[( —1; 1)] would be open
in the usual topology of the set 'R. But this set is equal to {0; 1).

4.3. For every differential space (N, 2) and every mapping (b) the
mapping (4), where € is the differential structure induced from (N, 2) by (5),
is differentially regular and differentially coregular.

If (M, %) is any differential space such that

(40) (f* I8 = 4,

then the mapping (4), where 2 is the differential structure coinduced from
(M, €) by (5), 18 differentially coregular.

Proof. Consider any differential space (¥, 2). Let (M, ¢) be the
differential space induced from (N, 2) by the mapping (5). Let p be any
point of M and let » be any vector tangent to the differential space (7)
at p. Suppose that (df),(v) = 0. Then v(fof) = 0 for every fe 2. In
other words, v(a) = 0 for every aef*[2]. This yields » = 0. So the map-
pingé(S) is differentially regular.

Now, let us suppose that (40) holds and take any vector w tangent
to the differential space (N, 2) at the point f(p), where 2 is the differential
structure coinduced from (M, ¥) by the mapping (5). Assume fof|4d
= p,of | A, where pedety and B, fyef*"'[¢]. Hence it follows that
BIf[A] = B1If[4]. According to 2.1 the set f[A] is open in 7,-14.
Therefore w(f) = w(f,). Take any a<¥. From (40) it follows that there
exist Bef*'[¥] and a set Ae¢ 71, such that ald = fof|A. So we may
define a vector » by the formula v(e) = w(B8), tangent to (M, €¢) at p
and such that (df),(v) = w. The linear mapping (39) is then onto. In
other words, the mapping (4) is differentially coregular.

To prove the coregularity of the mapping (4) in the situation of
the first part of theorem we remark that, in this case,

sl =l = 1ol = ¢.

Condition (40) is then satisfied. This ends the proof.

From the definitions of weak regularity, differential regularity,
weak coregularity and differential coregularity it immediately follows
that
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4.4. If a mapping (4) and a mapping
(41) g: (N, 2)>(P, F)
are smooth and a mapping
(42) gof: (M, ¢)—(N, 2)

is weak regular at p (differentially reqular at p), then the mapping (4) is
weak regular at p (differentially regular at p). .

If (4) and (41) are smooth and (42) is weak coregular at p (differentially
coregular at p), then (41) is weak coregular at f(p) (differentially coregular
at f(p)).

Example 2 shows that analogous statements are not true for the
concepts of regularity and coregularity.
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