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Stability and periodicity for linear differential equations
with periodic coefficients ()

by L. ErBe* (Edmonton, Canada)

Abstract. Various criterin are obtained which yield asymptotic stability or
instability for the linear differential equation L,z = &M 4 p, _12(0-V4 ... + poz = 0,
with p;(¢) real periodic of period w, in partienlar for the case n = 3.

1. Consider the n-th order linear differential operator L,z = o™ -+
+P, )8+ .. 4 py(f)x, where the coefficients p,(t) are real, con-
tinuous for ¢[00, w], and w-periodic. We shall he. concerned with estab-
lishing stability and instability criteria for the equation

(1) Lo =0,

and in particular for the case #» = 3, for which we shall also obtain solu-
tions of (1) which satisfy certain (possibly non-linear) boundary condi-
tions. The difficulty in establishing stability and instability criteria for
(1) lies, of course, in the difficulty of determining the roots of the Floquet
characteristic equation, i.e., the characteristic multipliers of (1), ([3],
p. 78-80).

In [13] (see also the references therein) it is shown how the stability
of (1) is related to periodic and multi-point de la Valleé Poussin-type
boundary value problems, (BVPs), and this, in turn, is closely connected
with the existence and sign of the corresponding Green functions. We
discuss the case n = 3 in Section 3 below after some preliminary results
in Section 2 concerning second order non-linear BVPs. For the case #n > 3
we obtain the conclusion by discussing the relation to recent work of
Hartman [7], Levin [11], and Coppel [4].

‘We recall that equation (1) is said to be disconjugate on an interval I
of the real line in case no non-trivial solution of (1) has more than n—1
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zeros (counting multiplicity) on I, and that the BVP

L,nm =0, lim=0,
where I; is 2 linear functional on 0"~9[a, b], 0 <1< n—1, has a Green
function G(¢, s) iff the only solution of the BVP is the trivial solution.
In this case, the solution () of the BVP

I’nm =f! lzm =0
may Dbe written as

b
u(t) = fG(t, s)f(s)ds.

We refer the reader to [11] for a recent survey of disconjugacy and
oscillation properties of (1) and a fairly up-to-date bibliography.

2. For the case m» = 3, the Ricatti equation associated with (1),
obtained by the substitution % = '/, is

(2) w = —3u — P’ — U — Py Ut —pyu— p,.

Disconjugacy ecriteria based on the relation between (1) and (2)
have heen developed in [9] and [6].

For convenience, we state Dbelow some results and definitions for
the general second order non-linear differential equation

(3) o’ = f(t, @, &),
where f is continuous for a <t b, |2+ |2']| < +oo. (See [10], [5], and
[12].)

A function aeC®[a, b] is called a lower solution of (3) on [a,d] in
case a’ > f(t, a, a’) on [a, b]. Likewise, a function feC?%*[a, b] is called
an upper solution of (3) on [a, D] in case B < f(¢, #, 8') on [a, b].

The funection f(t, #, ') is said to satisfy @ Nagumo condition on the set

E={ta):a<i<Dd, at) <2< (1)}, a,pfe0[a,b]

in case there exists a positive continuouns function 7(s), 0 < s << + oo
such that [f(¢, #, 2')| < I(|2"|) for all (7, #)eH and all |z'| < + oo, where

f 3ds > maxf(f)mina(t) —
g h(s) teI tel
with
3 — max | 21OV =A@ la@—p®)I |
] b—a b—a

The Nagumo condition ensures that a family of hounded solutions
of (3) have uniformly bounded derivatives and hence is sequentially
compact.
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If a(t), A(¢) are lowel .md upper solutions of (3), respectively, with
a(a) < B(a), a(d)< B(D), < A(t) on [a, b], we denote by & the class
of all continuous functmm g(a, 2') defined on [e(a), f(a@)]:x B which
are non-decreasing in o' and satisfy g(a(a), o’(a)) = 0, g{f(a), f'(a)) < 0.
Similarly, H will denote the class of all continnous functions %(w, ')
defined on [a(D), B(b)] X B which are non-decreasing in o’ and satisfy
I{a(d), @' (b)) < 0, 2(B(D), B'(B)) > 0.

For completeness, we now state the following theorems [5], [12].

THEOREM A [5]). Let a(t), f(t) be lower and upper solutions of (3),
respectively, with a(a) < f(a), a(b) < B(b), a(®) << B(t) on [a, b]. Assume
f(t, z, x') satisfies a Nagumo condition on the set E, and let g(x,a')eG
and h(z, 2")eH. Then there exists a solution »(t) of the BVP

(4) & =f(t, 2, 2), glea), s (a) =0 = h(z(d), o (b))

which satisfies a(t) < x(t) < B(t) on [a, b].
We shall also need the following theorem on periodic BVPs.

THrOREM B [12]. Let a(t), f(t) be lower and upper solutions of (3),
respectively, with a(t) < B@), a(a) = a(d), do'(a)=a’'(d), B(a) = B(b),
f'(a) < B'(b) and assume f(i,w,x’) satisfies a Nagumo condition on the
set E. Then there exists a solution xz(t) of the BVP

(3) o =fit, @, 0'), o(a) =o®), o) =a (b

which satisfies a(t) < a(t) < B(B)-

The existence of lower and upper solutions for (2) is disenssed in
[6] and [9].

3. For the equation
(6) Lyx = 3"+ p.&”’" +p0" +pyz =0,

where the p;(f) are continuous and periodic of period w > 0, the Floquet
characteristic equation is

(7) Aa—Azla",LAl;.—B =0’

where -,, 4, are given in terms of the fundamental system of solutions
of (6) 1y, Uy, g, with w(0) = §;, 0 <4, j < 2 as follows:

Ay = () + uy(w) + 13 (w),

U (@) Uy (w)

2y (@) %' (o)

1y (@) 1%y (@) Uy (@) Uy ()

~ lue) w@)| "

uy (@) 1z (w)

17
and B = exp(—owd), J =——J Da(2)dt.
(00
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We shall denote by 1,, %, 4; the roots of (7), i.e., the characteristic
multipliers of (G).

. In [13] various necessary and/or sufficient criteria are given for the
stability and instability of (6). In particular, a necessary condition for
asymptotic stability is J > 0 since we must have B = 2,1,1,< 1.

We will say that condition W holds for Lgz =0 ifforany 0 <a< w
the BVP
z(a) = &' (a) = 2(a4+w) =0, or

z{a) = x(a+w) =2 (at+w0) = 0;
(i) ZLyxz =0, 2(a)=w(lat+o)=wn(ct2w) =20

(8) (i) Lyz=0,

has Green functions.

Our first result is an existence theorem for solutions of a non-linear
third order BVP in which the coefficients are not assumed to be periodic
and which seems to be of independent interest.

TiroREM 1. Consider the differential equation
(9) Ly =2""+ a0 + 0,2+ a2 =0,

where the a; are continuous on [a, b]. Let a(t), f(t) be lower and upper solu-
tions, respectively, of the corresponding Ricatti equation

(10) w' = —3ul — gt —u®— a4 — ;U — &,

with a(t) < p(t) on [a, b]. Let g(=), h(x) be continwous functions on [a(a), f(a)],
[a(D), B(b)], respectively, such that

o' (a) 4 (a(@)? = glala)), o (B)+(a(®) < D(a(d)),
B'(a)+ (B <g(Blw), B ®)+(BO)=R(B(D).
Then lyz = 0 is disconjugate on [a, b] and there ewists a solution x(1)
1

of the form x(t) = w(a)exp([u(s)ds), with a(t) < u(t) < (1) on [a, d] and

(11)

satisfying

(12)

@(a) _ (w'(a) ) z'(b) _ h(.‘”'(”) )
z(a) "\ x(a) )’ o)  \ @) |

Proof. The fact that (9) is disconjugate on [a, b] follows from Theorem
3.1 of [6], for example. Applying Theorem A above with G(z, ') = &'+
+x2—g(x), H(z,s') = o' +2*—h(z), and using (11), we obtain a solu-
tion w(f) of (10) satistying «'(a)+ (w(a))® = g(u(a)), w () + (u (D)2 =

t

= I(u(b)). If #(2) is defined by () = 2(a)exp([u(s)ds), then calculation

shows that z(¢) satisfies (12). This proves the theorem.
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Remark. As an exmnple, if ¢, ¢a, d;, ds ave real constants satisfying
(@) +(a(@pP>ae@+a, fa)+(B@)<eap@te, o@)+abP<
< dl(a(b)) +dy, B0+ (BD))> d,B(D) -rdz, and a(t)< B(f) are lower
and upper solutions of (12), then there is a positive solution #(z) of Iy = 0
satisfying
2" (a) = 6,2 (@) +cz(a), " (b) = d,2'(b)+d.z(b).

Other linear and non-linear boundary value problems may be solved
similarly by the appropriate choices of the functions g(x), k() in Theorem
A and by finding the appropriate lower and upper solutions of (2).

THEOREM 2. Consider the differential equation

(6) Lyx = &' + pa" + 02" +pyz = 0,

where the p,(1) are periodic of period w > 0. Let a(t), B(t) be lower and upper
solutions of (2), respectively, satisfying

13) a(0) =a(w), «(0)=d(w), AO)=4F(w), F(0)<p(w)

with a(t) < f(@) on [0, w]. Then there exisis a characteristic multiplier 2,
of (6) satisfying

(14) exp ( fw a(s)ds) < < exp f B(s)ds)
0 0

and equation (6) is disconjugate on (— co, 4 o00). In particular, (6) has no
complex characteristic multipliers.

Proof. Theorem B implies the existence of a solution %(t) of (2) with
u(0) = u(w) w'(0) = 4’ (), a(t) < u(t) < B(¢) on [0, o]. Therefore, () =

exp([u(s )ds) is a solution of (6) with #(w) = ux(0), o' (w) = ua'(0),
"(w) = m;”(O), and g = exp(fu(s)ds) = 21 satisties (14). Bither a(0) <

%(0) or 4(0)< f(0); to he specrflc, assume a(0) < «(0). Then «(#), u(2)
may be extended periodically to the interval I, = [ —nw, nw] for each
# > 1 and we may apply Theorem A above (with suitably chosen auxiliary
functions) or Theorem 7.3 of [10] to infer the existence of a solution v,(?)
of (2) with a(t) <2, < %(), 2,(—nw) =v,(nw) = «(0), where a, %
denote the periodic extensions of ¢, #. By Theorem 3.1 of [6], it follows
that (6) is disconjugate on I, for each n > 1 and therefore L,z = 0 is
disconjugate on (—oo, + co).

Remark. In the above proof it is not necessarily true that a¢eC0®[I,]
but an analysis of the proof of Theorem 7.3 in [10], for example, shows
that the theorem is nevertheless valid in the above case.

We may now obtain a sufficient condition for the asymptotic sta-
bility of (6).
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PuEOREM 3. Let J > 0 and let theve emist lower and upper solutions
a(t) < B(@) on [0, w] satisfying (13) with f’ B)dt < 0. Assume also that
for each o = 0 there exists a Tower solution a, (t) of (2) with a,(t+ w) = a,(1)
and f a,(t)dt = ow and such that a, is not a solution of (2). Then Lyw = 0

18 di::co-njugate on (—oo, +00) and is asymptotically stable.
Proof. From Theorem (2) we infer the disconjugacy of (6) on ( — oo,
+ o) and the existence of a characteristic multiplier 0 < A, < 1. Since
there are no complex multipliers, it suffices to show that A,, A, satisfy
0 < Ay, ;3< 1 (which, in this case, is equivalent to B << 4;, 4,, 43<< 1).
Since (6) is disconjugate on (~—oo, +c0), we conclude that there are no
negative characteristic multipliers of (6). Suppose there exists a charac-
teristic multiplier, say 2,> 1. Then from Floquet theory, there exists
% solution 4 (8) = »(f) e”t of (6), p((+ w) = »(t), »(#) > 0, and g = Ind;/w >

= 0. Let z(t = exp/( f g, (1) dt), which we may write as z(t) = ¢(t)e* and
@(t) = exp(f(a (1) —Q)dt) Let

K = max 3 o(1) ‘P(to)
s<t<a (1) 9t

and define
(i) = Ky(t) —=2(t).

We note that »(f) =0 =»({j+w) =2 ({j+w) and »()>=0 for
ty <1< fy+w. Also Ly(r()) = — Lg(2(t)) = g(3) < 0. Since (6) is discon-
jugate on [fy, %+ w], it follows that the Green function G,,(f,s) for the
BVP Lyx = 0, x(t)) = x(l+ ) = &' ({, + ) = 0is non-negativefor 8, te[ty,
1y +- w]; that is, condition W holds. (See [1], for example.) Therefore, » (t)

lgt+o

= j' G42(t, 5)g(8)ds < 0, which implies »(t) = 0= Ly(2()) =0, a contra-
(llctlon of our assumption that a,(f) is not a solution of (2). Therefore,
we conclude that all characteristic multlphers satisfy 0 < ;< 1,7 =1, 2, 3.
Hence, (6) is asymptotically stable.

As simple corollaries we have

COROLLARY 4. Let J > 0 and let there exist a(t), f(1), lower and upper
solutions of (2) on [0, w], respectively, satisfying (13) and a(t) < B(t) on
[0, w]. If

{15) — [ padt< [ adt<fﬂdt< 0,
] 0

0

then (6) has at least two characteristic multipliers with 0 < A;, A, < 1.
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Proof. Inequality (15) ensures that there exists a characteristic
multiplier 7, with B< A, < 1. Hence, BJ/i; = 4,4, < 1 50 that one of
Jay Ay satisfies 0<< 2; << 1.

CorROLLARY 3. Let condition W hold and assume further that for each
@
o = 0 there exists an w-periodic lower solution ay(t) of (2) with [a, (@)@ = wp
0
and such that a, is not a solution of (2). Then there exists at least one charac-
teristic multiplier 2, with 0 < ;< 1.

Proof. The hypotheses imply that there are no real characteristic
multipliers satisfying 2> 1. Hence, since there must exist at least one
real positive multiplier, the result follows.

Remark. If o(g,t) = o*+ps02+p,0+p, satisfies ¢(o,?)> 0 (and
= 0) for all o > 0, then we may take a,(f) = ¢ in the above theorem and
corollary.

‘The next result gives a sufficient condition for instability for the
case J = 0.

THEOREM 6. Assume J = 0 and let there ewist lower and upper solu-
tions a(t), B(2) of (2) satisfying (13) with a(t) < B(1) on [0, w]. Then (6)
is unstable if either of the following conditions holds:

() [BWE< —[p.()@ = —o,
0 (]

®)  fa@®)d>o0.
0

Proof. Condition (a) or (b) implies the existence of a characteristie
multiplier 4, with 4, < B or 4, > 1. Now if A; < B, then B/4, = 2,43, > 1
so that either 4, or 1, i8 > 1. Hence, in either case we have instability.

Remaurk. If neither a(f) nor A(t) is a solution of (2), then the strict
inequalities in conditions (a) and (b) can be replaced by < and . Similar
remarks apply in Theorem 3 and Corollary 4.

The next result is a generalization of a result of [13].

TuroREM 7. Let J = 0 and let condition W hold. Assume that for each

pe[—dJ, 0] there evists an w-periodic lower solution a, of (2) with f a,(t)ydi
0

= wp such that a, is not a solution of (2). Then (6) is unstable.

Proof. The proof is similar to Theorem 3. Suppose that B<i<1
for some characteristic multiplier 4 and let ¢ = Indjwe[—J,0]. Then
¢

we have y(t) = p()e% p(t+w) = p(f), Lyy = 0 and z(l) = exp [a,(t)dt

: { t .
=p(t)e¥. Again, if K =max ? () = 9 (h) we conclude - that
1<t<to w(?) y(to)
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for »(1) = Ky () —=2(t) we have »(%) = »(fy+ o) =»'({,+0) =0, Lz» <0,
and »(?) = 0, which Decause of W yields a contradiction as in Theorem 3.

Tor the case J = 0, it is easily-seen that L,z = 0 is stable iff 1, = 1
and 2A,, A3 are complex, |,| = |43] = 1. Therefore, we have

THEOREM 8. Let J = 0 and assume that there exist a(t), f(3), lower and
upper solutions of (2), respectively, satisfying (13), with a(¥) < B(t) on [0, w].
Then (6) s unstable.

Proof. The hypotheses imply that (6) is disconjugate on (— oo, + o0)
and hence has no negative or complex multipliers. Therefore, since B = 1
= 1, A3, it follows that 1; > 1 for some characteristic multiplier. (Other-
wise, if 4, =1, ¢ =1,2,3, then any solution which vanishes once is
oscillatory, which would contradict the disconjugacy of (6).)

For the case J < 0, there always exists at least one unstable solu-
tion. By techniques similar to those above, one can obtain criteria which
imply that (6) has at least two unstable independent solutions. For example,
if there exist w-periodic lower and upper solutions a(?), B(?) satisfying
(13) and a(t) < B(t) on [0, w] and if

_.fpz(t)(lt> fﬁ(t)(zt>fma(t)dt> 0,

then we may conclude the existence of a characteristic multiplier 4, with

1 < A, < B. Therefore, 2,4, = Bf1; > 1 so that either 1, > 1 or ;> 1.

Again, strict inequalities may Dbe replaced by > if a, 8 are not solution.
Other criteria may be obtained similarly.

Remark. The above techniques yield criteria under which 1 is not
a characteristic multiplier of (6) and therefore they give sufficient condi-
tions for the unique solvability of the periodic BVP

(18) Lyp=f, w(0)—2(w)=2(0)—2(v) =2"(w)—2"(w) =0.

For example, in [8] it is shown that if a(?), f(¢) are continnous and
w-periodic, if a(t) # 0 and does not change sign and if 4"’ +a(t)x =0
is disconjugate on [0, w], then the BVP

a7 2"+ae)z=Ff, o(0)—z(w)=2(0)—2(0)=2"(0)—2"(w) =0

has a unique w-periodic solution. For a(?) > 0, this result can be deduced
from Theorem 7. For a(f) < 0, it is easy to show directly that the BVP
(17) (with f = 0) has only the trivial solution. Therefore, the conclusion
follows immediately.

We leave to the reader the formulation of additional criteria based
on these techniques.
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It is to be noted that if in the equation
(6) Lyp = &' L pa2’" -+ pra’ + por = 0

the p;(?) are not periodie, then one can infer the existence of a bounded
solution of (6) if there exist lower and upper solutions a(t) < (1) of (2)
on (— oo, +o0) with a, fe L;( — oo, + o). Furthermore, L,» = 0 is discon-
jugate on (— oo, 4-o0). Examples are easily contructed to illustrate
these remarks.

Finally, for the equation

1) Ly =3 +p, 12" V4 ... +pex =0,

where the P,’s are periodic of period w, if the roots of the equation
0a(es1) = @"+Ppa 0"+ o F1y =0

are all real and separated by constants,
po << 01(0) < gy € o) <o << (D) Sy

with pe< py < ...< g,, then the results of [4] (see also [7] and [11]),
imply that (1) is disconjugate on [0, + oo) and that there exists a funda-
) 7

mental system of positive solutions ¥,,...,¥, of (1) satisfying u, gj—’
1

’ ’
'14 '?
< < —?‘;i< e K —;ig Up. (For the case n = 3, we note that u;, u, are
2 n

lower and upper solutions, respectively, of (2).) It follows therefore that
) Ina,
the characteristic multipliers A, ..., 4, of (1) satisfy u; ;< -?‘ < gy

1<i<n Hence, if ;< 0, 0<i<<kand 0< 4, k+1<i< n for some
0 < k< n, then (1) has k& independent solutions which tend to zero and
at least n—(k-+1) independent unstable solutions.

Exavrres. 1. If —m < po(t) < 0 (but = 0), if p,(f) < 0, and if there

" 63 . .
exists a § > 0 with p,(f) = m;‘; on [0, w], then L, =0 is discon-

jugate on (— oo, 4+ o0) and there exist at least two characteristic multi-
pliers with 0 < 4;, 4, < 1 by Corollary 4. (In this case, { —¢, 0} are lower
and upper solutions, respectively, of (2).) It follows also that 1; > 1 by
the preceding remarks concerning the separation of roots of o(g, ?) by
constants.
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2. If Py, p1, po are such that py() = 0 on (—oco, +o0) and if there
exists a 4 > 0 such that

61 —06t—254+1
246

then L,z = 0 is disconjugate on (—oo, 4+ oo) and has a bounded solu-

<S[20—1)po (1) — (2 + 8)11(8) — (4 6)*po (8)],

1
tion. (In this case, 0, Ty are lower and upper solutions of (2), re-

+ 9
spectively.)

References

[1] N. V. Azebelev and A. B. Caljuk, On the question of distribution of zeros of
solutions of linear differential equations of the third order, Mat. Sb. 51 (1960),
p. 475-486 [English translation: AMS Transl. 42 (1964), p. 233-245].

[2] L. Cesari, dsympiotic behavior and stability problems in ordinary differential
equations, Springer, 1963.

[8] E. A. Coddington and N. Levinson, Theory of ordinary differential equations,
New York 1955.

[4] W. A. Coppel, Disconjugacy, Lecture Notes in Mathematies, Vol. 220, Springer,
1971.

[6] L. Erbe, Nonlinear boundary value problems for second order differential equa-
tions, J. Diff. Kqus. 7 (1970), p. 459-472.

[6} — Disconjugacy conditions for the third order linear differential equation, Canad.
Math. Bull. 12 (1969), p. 603-613.

[7] P. Hartman, Principal solutions of disconjugate n-th order linear differential
equations, Amer. J. Math. 91 (1969), p. 306-362.

{8] A. Hohrjakov, On a periodie houndary value problem for a differential equation
of third order, Mat. Sh. (N. 8.) 63 (105) (1964), p. 638-645. '

{91 L. Jackaon, Disconjugacy condilions for linear third order differential equations,
J. Diff, Equs. 4 (1968), p. 369-372.

[10] — Subjunctions and second order ordinary differential inequalities, Advances
in Mathematics 2 (1968), p. 307-368.

[11] A. Yu. Levin, Nonoscillation of solutions of the equation o™ + p, ()z—1 4 ... +
+pp(t)z = 0, Russian Mathematical Surveys 24, No. 2 (1969), p. 43-99.

[12] K. Schmitt, Periodic solutions of nonlinear second order differential equalions,
Math. Z. B8 (19867), p. 200-207.

[13] E. L. Tonkov and G. I. Yutkin, Periodic solutions and stability of a linear
differential equation with periodic coefficients, Diff. Urav. 5, No. 11 (1969), p. 1990~
2001.

"UNIVERSITY OF ALBLERTA

Regu par la Rédaction le 31. 5. 1973



