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All spaces in this paper are assumed to be compact and metric.
A continuum is a compact, connected metric space. A mapping f: X — Y
is a continuous function from X to Y. A mapping f: X — Y is said to
be confluent ([2], p. 213) if, for each subcontinuum K of Y and each com-
ponent C of f~}(K), f(C) = K. Whyburn [8] showed that monotone map-
pings and open mappings are confluent. If f: X — Y is a mapping of X
onto Y such that if ye ¥, C is a component of f~'(y), and U is an open
set containing C, then ye Int (f( U)), then f is said to be quasi-interior [6].
Clearly, every open mapping is quasi-interior. Lelek and Read [ibidem]
showed that every quasi-interior mapping is confluent. A confluent
(respectively, quasi-interior) mapping f: X — Y from X onto Y is said
to be irreducibly confluent (respectively, irreducibly quasi-interior) if there
does not exist a proper subcontinuum H of X such that f|H is a confluent
(respectively, quasi-interior) mapping of H onto Y.

It is well known [7] that if f: X — Y is a confluent mapping of a space
X onto a continuum Y, then there is a subcontinuum L of X such that
f1L is an irreducibly confluent mapping of L onto Y. In this paper it is
shown that an analogous statement cannot be made for quasi-interior
mappings. Also, conditions under which certain irreducibly confluent
mappings are monotone or irreducible are developed.

A mapping f: X — Y is said to be locally confluent [4] if for each
point ¥ in Y there is an open subset O of Y containing y such that f|f~!(0)
is confluent. It has been shown [6] that all locally confluent mappings onto
locally connected spaces are quasi-interior.

THEOREM 1. If f: X — Y 48 a locally confluent mapping of X onto
a locally connected continuum Y, then there is a subcontinuum L of X such
that fiL is an trreducibly quasi-interior mapping of L onto Y.

Proof. Since f is locally confluent, it follows that f is quasi-interior
and thus confluent. Hence, there is a subcontinuum L of X such that
f1L is an irreducibly confluent mapping of L onto Y. Since f|L is locally
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confluent, it follows that f|L is quasi-interior. If K is a subcontinuum of
L such that f|K is a quasi-interior mapping of K onto Y, then f|K is
confluent, so K = L. Hence f|L is irreducibly quasi-interior.

COROLLARY. If f: X — Y 48 a quasi-interior mapping of X onto a
locally connected continuum Y, then there is a subcontinuum L of X such
that f|L is an irreducibly quasi-interior mapping of L onto Y.

The following example shows that, in general, such a subcontinuum
L need not exist:

Example 1. Let p = (0,1), ¢o = (—1,0), and r, = (1, 0) in the
Euclidean plane E*. For each positive integer n, let ¢, = (—1—1/n, 0)
and r, = (1+1/n,0). For x,ye E?, denote the line segment joining z
and y by [z, y]. For z = (a, b)e E?, denote the reflection of z in the vertical
axis (i.e. the point ( —a, b)) by Ref(z). For each non-negative integer =,
let

I, =[p, q.] and Jn = [P, 7a].
Let
A = [qo, 7]
and
B={(a,b): —-1<a<1,b<0, and a*+b*=1}.
Let
0 (- -}
I=UI, J=UJ, and X =AuBuludJ.

na=0 n=0

Clearly, X is a continnum. Define an equivalence relation R on X by

B = {(z,»): ze X}U{(®,y): wel,,yed, for some non-negative
integer n, and y = Ref(x)}u
v{(y,x): vel,,yeJ, for some non-negative integer n,
and y = Ref(z)}u
v{(z,y): vre A and ye BNL(z)}u
v {(y,x): z¢ A and ye BnL(x)},

where L(x) denotes the line through p and Ref(x).

It is easy to see that R determines a lower semi-continuous decom-
position of X, and thus the natural projection f: X — ¥ of X onto the
quotient space Y = X /R is an open mapping. If L is a subcontinuum of
X such that f|L is a quasi-interior mapping of L onto Y, then there must
exist a positive integer n such that if m > n, then I,uJ,,c L. But L,
= (L\I,,,)u{p} is & proper subcontinuum of L such that f| L, is a quasi-
interior mapping of L, onto Y. Hence there does not exist a subcontinuum
L of X such that f| L is an irreducibly quasi-interior mapping of L onto Y.
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QUESTION. Can such an example be constructed with X hereditarily
unicoherent? (P 956) (A continuum is said to be hereditarily unicoherent
if the intersection of each pair of its subcontinua is either a continuum or
empty.)

A dendrite is a hereditarily unicoherent, hereditarily locally connected
continuum (cf. [8], p. 88). The following theorem shows that there is a class
of continua having the property that any irreducibly confluent mapping
from a continuum onto one of these continua must be monotone:

THEOREM 2. If f: X - Y s an irreducibly confluent mapping of
a continuum X onto a dendrite Y, then f is monotone.

Proof. Since Y is locally connected, f is quasi-interior. It has been
shown (see Corollary 3.1 of Lelek and Read [6]) that f is quasi-interior
if and only if f factors in the form f = hg, where g is monotone and % is
light and open. Thus, since Y is a dendrite, and h: ¢g(X) — Y is light
and open, there exists a dendrite D contained in g(X) such that hA|D is
a homeomorphism (see [8], p. 188). Hence

flg~'(D): ¢7"(D) > ¥

is the composition of a monotone mapping and a homeomorphism, and
is, therefore, monotone. Clearly, since f is irreducibly confluent, ¢g='(D)
= X, so f is monotone.

The following two examples show that neither hereditary unicoherence
nor hereditary local connectedness can be left out of the hypothesis of
Theorem 2.

Example 2. Let X and f be as in Example 1. Let H be the subconti-
nuum of X defined by H = AuBul,ud,. Then ¢ = f|H is an open map-
ping of H onto f(H) such that ¢ maps no proper subcontinuum of H con-
fluently onto f(H). Thus, g is an irreducibly confluent mapping of H onto
f(H) which is not monotone, even though f(H) is hereditarily locally
connected.

Example 3. In E? let
X ={a,1): -1<a<1}u{l,d): —-1<b<1}uy

.1 .1
u{(a,sm =) ): 1<a<2}u{(sm = ,b): 1<b<2}.

Let R be the equivalence relation such that

B ={(t,1),(1,t): —-1<t<1}uf{@,t),,1): —1<t<1}u
v{(z,2): ze X}.

Clearly, X and Y = X /R are arc-like continua, so Y is hereditarily
unicoherent [1]. Further, it is easily seen that the natural projection map-
ping f: X — Y is an irreducibly confluent mapping which is not monotone.
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It is known ([5], p. 171) that if f: X — Y is a mapping of a continuum
X onto a continuum Y, then there is a subcontinuum K of X such that
f1K is irreducible in the sense that f(K) = Y, but f maps no proper sub-
continuum of K onto Y. Certain classes of continua have the property
that any irreducibly confluent mapping onto one of these continua is
always irreducible. A continuum is hereditarily indecomposable if, for each
pair H, K of its non-degenerate subcontinua, HNK -+ @ implies that
H is contained in K or K is contained in H.

THEOREM 3. If f: X — Y s an irreducibly confluent mapping of a con-
tinuum X onto a hereditarily indecomposable continuum Y, then f is irredu-
cible.

Proof. Suppose, by way of contradiction, that there is a proper
subeontinuum L of X such that f(L) = Y. By a result of Cook ([3],
p. 243), f|L is confluent, which is the desired contradiction.

LeMMA. If f: X — Y 4s a confluent mapping of the hereditarily inde-
composable continuum X onto Y, then Y is hereditarily indecomposable.

Proof. Let H and K be non-degenerate subcontinua of ¥ such that
HnK #@.Let pe HNK and xe f~'(p). Let 4 be the component of f~!(H)
containing z, and let B be the component of f~'(K) containing x. Then
f(4) = H and f(B) = K. Further, since xe ANB, either 4 < B or B c A.
Hence, H ¢ K or K < H. Thus Y is hereditarily indecomposable.

The Lemma together with Theorem 3 immediately imply the following
theorem:

TirEOREM 4. An trreducibly confluent mapping f: X — Y from a here-
ditarily indecomposable continuum X onto a continuum Y is irreducible.

THEOREM 5. If f: X — Y is an irreductbly confluent mapping of a here-
ditarily unicoherent continuum X onto a dendrite Y, then f is irreducible.

Proof. Let f be an irreducibly confluent mapping from X onto Y.
By Theorem 2, f is monotone. Suppose, by way of contradiction, that there
iz a proper subcontinuum K of X such that f(K) = Y. Then, for each
ye Y, f Y (y) is a continuum. Thus, for each ye¢ Y, KNf~'(y) is a subcon-
tinuum of K. Hence f|K is monotone and thus confluent, which is the
desired contradiction. Therefore, f is irreducible.

A somewhat stronger result can be obtained if X and Y are both ares.

THEOREM 6. If f: X — Y is a confluent mapping of an arc X onto
an arc Y, and H is a subcontinuum of X such that f|H is irreducible, then
fIH 18 irreducibly confluent.

Proof. Suppose, without loss of generality, that X = Y = [0, 1].
Let H = [a, b] be a proper subcontinuum of X such that f|H is irreducible.
Suppose, by way of contradiction, that a¢f~'({0,1}). Then there is
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a ce (a, b] such that ce f~'({0, 1}). Hence, either f([a, ¢]) = Y or f([e¢, b))
= ¥, which is a contradiction. Thus aef*({0,1}). A similar argument
shows that be f~'({0, 1}). Clearly, f(a) # f(b). (Otherwise choose a point
ze (a, b) such that f(z) == 1 if f(a) = 0, or such that f(z) = 0 if f(a) = 1.
Then f([a,2]) = Y.) No generality is lost by assuming that f(a) = 0
and f(b) = 1.

Let g = f| H. Suppose, by way of contradiction, that ¢ is not monotone.
Then there is a. pe ¥ such that ¢~'(p) is not connected. Let A and B be
different components of ¢~ '(p), say A = [r,s] and B = [t,«] with
s < t. Clearly,

(s, t](\f—l({O, 1}) =09,

for if ze [s, ] and f(2) = 0, then f([2, b]) = ¥ which is a contradiction.
An analogous argument shows that

[s,t]n (1) = @.

Further, f([s, t]) is a non-degenerate subcontinuum of Y, say f([s, t])
= [v,w] with p<w <1 or 0 <v<p. For p<w, let x be an element
of [s,t]nf~'(w) and let C be the component of f~*([w,(w-1)/2]) con-
taining z. Since f is confluent,

f(C) = [’wy w;—l]

But this is a contradiction, since CNf~'(p) = @ implies that C < (s, t),
so f(C) < f([s, t])= [v, w]. A similar contradiction is reached if » < p.
Hence ¢ is monotone, and, therefore, confluent. Thus f|H is irreducibly
confluent.

Theorems 3 and 5 show that irreducibly confluent mappings onto
certain types of continua are irreducible. The following example shows
that this is not generally the case, even for relatively “mice” continua:

Example 4. In E® let p = (0,1), ¢ = (1,0), a = (1, —1), and
b =(1,1). Let

1 1. 1 _
U §+§b1ny—_1—,y tl<y < 2;.

X = [p,q]u[p,b]u[a,b]u{(w,sin 11 ): 1<w<2}u

Define an cquivalence relation B on X by
R = {{(,1), (t,1)): t=0}0{((t, 1), (1,1): t=0}u
v{(r,s): re[p, q] and se[p, ql}u{(r,r): re X}.
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Let Y be the quotient space X /R and let f be the natural projection
mapping from X onto ¥ = X/R. It is easily seen that Y is an arc-like
continuum and f is irreducibly confluent. It is not the case, however,
where f is irreducible, since

flip, o(X\[p, ql)) = Y.

The idea used in Example 4 can be modified to produce an example
of an irreducibly confluent mapping onto a dendroid (i.e., an arcwise
connected, hereditarily unicoherent continuum) which is not irreducible.
In each of these examples the domain of the mapping fails to be unico-
herent.

QUESTION. If f is an irreducibly confluent mapping from a heredita-
rily unicoherent continuum onto an arc-like continuum, then is f irredu-
cible? (P 957)

The following example shows that Theorem 6 cannot be generalized
to arbitrary dendrites.

Example5. In E*leta = (0,0),b = (1,0), b = (—1,0),¢ = (1, 1),
¢ =(-1,1), d =(2,0), and d' = (—2,0). Write

X =[d&,dlulb,c]ulb,e] and Y = [a,bluld,c]uld,d],

and define f: X — ¥ by f((x, y)) = (I=|, y). Then f is confluent. Further,
fl{d’, blu[b, ¢] is an irreducible mapping of [d’', b]u[b, ¢] onto Y which
is not confluent.

If f: X - Y is a mapping from a continuum X onto a hereditarily
indecomposable continuum Y, then X contains an indecomposable con-
tinuum ([5], p. 208). Thus, X has to contain uncountably many indecom-
posable continua, e.g., each component of the preimage of any non-degen-
erate subcontinuum of Y must contain an indecomposable continuum.
Thus, it seems reasonable to expect that the preimage, under an irreducibly
confluent mapping, of a hereditarily indecomposable continuum might
be hereditarily indecomposable. The following example, however, shows
that this is not the case:

Example 6. Let X be a hereditarily indecomposable continuum,
K a proper subcontinuum of X, and p and ¢ members of K such that K
is irreducible between p and q. Define an equivalence relation R on X by

R ={(p, 9, (¢, p)}v{(x, 2): ve X}.

Let Z be the quotient space X/R and let g: X -Z = X/R be the
natural projection mapping. Now define an equivalence relation 8 on Z
by

8 ={(z,w): 2e g(K) and we g(K)}u{(z,2): ze Z}.
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Let Y = Z/8 and let f be the (mnonotone) natural projection mapping.
Then fg is monotone, so, by the Lemma preceding Theorem 4, Y is heredi-
tarily indecomposable. Thus f is confluent ([3], p. 243). Further, fg is
one-to-one on X\ K, so X\ K must be contained in any subset of X which
is mapped onto Y. Hence, since K is nowhere dense ([5], p. 207), the only
closed subset of X which fg maps onto Y is X itself. Thus if H is a subcon-
tinuum of Z such that f(H) = Y, then ¢~'(H) = X, so H = Z. Hence f
ig irreducibly confluent. Now let U and V be open subsets of X such that
UNnV =@, with pe U and qe¢ V. Let L be the closure of the component
of U which contains p, and let M be the closure of the component of V
which contains ¢q. Then g(LuUM) = g(L)ug(M) is a non-degenerate sub-
continuum of Z with g(L)ng(M) = {g(p)}. Hence Z is not hereditarily
indecomposable.

REFERENCES

{1] R. H. Bing, Snake-ltke continua, Duke Mathematical Journal 18 (1951), p.
6563 -663.

[2] J.J. Charatonik, Confluent mappings and unicoherence of continua, Fundamenta
Mathematicae 56 (1964), p. 213-220.

[3] H. Cook, Continua which admit only the identity mapping onto non-degenerate
subcontinua, ibidem 60 (1967), p. 241-249.

[4] R. Engelking and A. Lelek, Metrizability and weight of inverses under confluent
mappings, Colloquium Mathematicum 21 (1970), p. 239-246.

{51 K. Kuratowski, Topology, Vol. II, New York 1968.

[6] A. Lelek and D. R. Read, Compositions of confluent mappings and some other
classes of functions, Colloquium Mathematicum 29 (1974), p. 101-112.

[7] D. R. Read, Confluent and related mappings, ibidem 29 (1974), p. 233-239.

[8] G.T. Whyburn, Analytic topology, American Mathematical Society Colloquium
Publications 28, Providence 1942.

LAMAR UNIVERSITY
BEAUMONT, TEXAS

Reg¢u par la Rédaction le 30. 3. 1974;
en version modifiée le 7. 8. 1974



