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Consider 2«3—, if this series converges absolutely and uniformly

for Rew = 1 + g, & >0, to & (w) say, then as 18 easy to see,
- \ |
y
S Y,
sl dln

converges absolutely and uniformly to {(w)ef {w} in the samo region.

Henee, since the argument is clearly reversible, it is plain that the
above argument Wﬂl prove the

THEOREM. IfZ——- converges  absolutely and wniformly for Rew
M,-—.

= 142,820, then zdmzm@/ 2 lw!ds (In the sense thal for & given = etther
both sides converge to the same value or both diverge.)
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Normal recurring decimals, normal periodic
systems, (4, &-normality, and normal numbers

by
R. G. SEONTIHAM (New York, N.Y.)

1. Introduction. In 1946, I. J. Good [1] gave a topological argument
{the traversing of a particular planar network) in order to construct what
he called “normal recurring decimals possessing normality of order »”
[1, p. 167], i.e. all sequences of + digits have normal frequency 107" in the
decimal. Then he says “If r is a given integer, the question arises whether
there are recurring deeimals possessing normality of order r. Any such
recurring decimal (in the base 10) must clearly have a period of at least

10". Our purpose here is to show that there are such decimalg with period o

107 for any given value of 7”. He also points out that the consiruction he
gives can be done in any base g.

In 1950, Korobov [2,3 and 4, pp. 64— —657 considered the normal
recurring decmnl's of Good from a dlfferent point of view and constructed
by & different method what he called a “normal periodic system” (still
essentially a normal recurring decimal of Good) which is a positive integer
onlg) that containg sequentially in ity representation in a base g all possible
n-tuples chosen from 0,1,...,4-—1. The integer g,(g) consisting of
g" +n—1 single digits is construeted in such & way that every m-tuple
from 00...0,00...1,..., g—1g—1...4 1 appears exactly once somewhere
in g,{g). For example, Korcbov [3, p. 31] gives the normal periodic system
of 284-3—1 digits in the hase 2, g(2) = L0001L0L110 which has each
3-tuple, 000,001, ..., 111 appearing exactly once in the sequence. Also
Korobov [2] proved in 1950, by a method different from Good’s, the
general existence of normal periodic systems g,{g). Tn essence, he gave
an algorithm for the construction of a normal periodic system.In [3,
§4, p. 361 Korobov develops a completely general algorithm which will
produce every such g, (g) for a given » and g. Other papers of Korobov
referenced in [4, pp. 64-65] studied the use of the g,{g) in constructing a
particular irrational whose distribution of fractional parts approached a
uniform digtribution.

The purpose of this paper is to show that the normal recurring decimals
of Good and the related normal periodic systems of Korobov are very



350 . R. G. Stoneham

special cases of the quite extensive and tfundamental (F, s)-normal
phenomenon [3] which exists in broad eclasses of rational fractions, In
[6], we constructed the first known class of transcendental non-Liouville
normal numbers from any rational fraction based on the (j, e)-normal
properties of rational fractions. We will show here that the construction
of the irrational « given by Korobov in [3, (18}, p. 49] is quite similax
to what we presented in [6, p. 242], i.e. the juxtaposition of (§, &)-normal
setg which Jeads fio a trangcendental non-Liouville normal nmmber. In
essence, the juxtaposition of normal periodic syswtems which we will show
here are (j, £)-normal sets will produce a normal number. That Korobov'y
construction leads to & normal nunber, follows from. Wall's theorem [12,
D. 110], ie. a is normal in the base g iff {ag®} for & = 0, 1, ... isx uniformly
digtributed. However, Korobov in [2, 3] and also in his other work did
not state that the construction with p,(g) produced a normal number
in the sense of Borel [see, for example, 2, Th. 5, p. 237].

o
Recently, we have shown that @(g,p) = J1/p"¢®" is the simplest
n=}
transcendental non-Liouville normal number [7, p. 422] where p is any

odd prime and ¢ one of its primitive roots that can be produced using
(j; £)-normality in the rational fractions. This result required some new
theorems [7] concerning the distribution of vesiues within the periods
of (j, e)-normal rational fractions.

- Furthermore, we will show that the results coneerning the (j, £)-nor-
mality in the rational fractions ean produce a great variety of periodic
sequences which closely resemble the normal recurring decimaly of Good
and the mormal periodic systems of Korobov. Therefore, the result of
Korobov where he congtructs an ivrational from normal periodic Hystems
is & special case of the construction in [6] which produces a normal number
from (j, z)-normal sets. Consequently, either aspect of the propevties
of the irrational constructed therefrom, i.e. the normality or the uniform
distribution of fractional parts follows from Wall’s theorem of 1949. In
Postnikov’s [4, p. 62, Th.] work of 1966, we find Wall’s theorem statod
and proved without reference, no doubt due fo the fack that Wall’s theorem
was in a Ph, D. unpublished thesis [12, p. 1107,

2. On (j, &)-normality. In [5, p. 2221, we gave a definition ol (4, &)-
normality so as to apply to the distribution of tho digits in the infinite
periodic representation of a rational froction Z jmoin some buse g. Lets
N (By, ¢} denote the number of occurrences of the block By congisting of
any combina-tion of § digits chosen from 0,1,..., g1 commencing in
any period of the representation of Z/m in the base ¢ and ’um.'mina.i-.ing in
ab %nost j—1 digits of the next period. Let # = .w,2,... be the Tenresen-
tation in the scale g and let X, denote the block of the first digity
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in @ where N (B;, X;) denotes the number of oecurrences of the block By
in X,. Therefore, we have .

DEFINITION. (j, ¢}-normal rational fractions. Let Z/m < 1 in lowest
terms have a periodie represenfiation that may or may not have a non-
periodic part in a scale g such that 2 < g << m. I for a given j and ¢ = 0,
every j digit sequence B; which occurs in the expansion is sueh that
(2.0) Lm [N (B;, X/ =1g') = ¥ (B, )] (m)~1g'| < »
then Zfm is (j, &)-normal in the secale g where w({m) = ord,,g.

Then we defined a uniform e-distribution for the associated discrete
approximately uniform distribution of fractional parts {Zg‘/m} for <
== 0,1, ..., w{m)—1 an [0, 1] which leads o a necessary and sufficient
condition for the (j, e)-normality of Z /m [5, Th. 2,p. 224] which is completely
analogous to Wall’s theorem for normal numbers.

~ In the application of thiz definition bere, we naturally prefer the
original view of Good [1, pp. 167-168] in that we shall consider the “normal
recurring decimals” as the periodic expansion of some rational fraction
with period ¢" requiring at most n—1 digits into the next period to com-
plete the set of all possible n-tuples. For example Good [1, p. 168], gives
for g =2 with period length 2° the normal recurring decimal Z/m
= .000000 .. (64 digits)...OOOlli 000000 (which we will show is (f, &)-nor-
mal in our studies) where we see that all possible 8-tuples B; for j =6
from 0 to 2%—1 appear exactly once in the periocdic sequence. Also, note
that we must take counts extending at most j—1 = 5 places into the

nexl period to complete all 6-tuples, i.e. 00111]0, 0111100, 111[000,
11 {0000, i|00000. In Korobov's normal periodic systems, he defines
a positive integer g, (g) of length g™ 4-n —1, which in the above case, would
be designated by gg{2) and consists of a total of 2°+6—1 digits. As
we said above, it is possible to identify more precisely the connection between
these special sequences and (f, £)-normality by using the original “recurring
decimal” concept of Good.

Bvery p,(g) of a normal periodic system of Korobov can be written
a8 @ periocdic representation in the base g of some rational fraction Z/m
whose period, is g® where the first n —1 digits of the next period are necessary
i complete the counts of exaetly one for.every n-tuple.

As a matter of faci, in 1964, we [9, pp. 2042057 called these par-
ticular blocks which extend over the end of the period “anomalous blocks”
for at mowt §—1 places. In our later work, we defined (j, ¢)-normality
[5, p. 222] over the full infinite periodic sequence rather than over one
period which was our eraphasis in [8]. _

Tn [5, p. 229], we found i possible to classify all rational fractions into
three Types A, B, and C according to the prime decomposition of m in Zim
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a8 related to their (j, s)-normal properties. These classifications came about
as a loglcal consequence of the existence or not of residue Pprogressions
[8, Th. 4, p. 227] which was a general property of the associated sequences
of reduced power residues necessary to prove the (j, ¢)-normality [, Ths.
b, 6, and 7, pp. 231~233] of the varions types of rational fractions. In
[5, p. 230], we discussed a particular kind of Type B, i.e,

(2.1) Zim = Zlg"+ Zlg ... = Zi(g"—1)

where the positive integer Z can he any prescribed sequence of 1 digits
in the base g 5o chosen to be (§, s)-normal or not. It ig precisely this Type
B rational fraction which will produce the normal recurring decimals of
Good or the normal periodic systems of Korobov. Let ug begin with an
example. Consider the rational fraction :

(2.2) 23/(2°—1) = 10111/(3° —1) = 60010111 |00. ..

which prod_uées a normal recurring decimal of Good where we have a count
of exactly ome for each of 000, 001,...,111 such that lin ¥ (B, p. )
Asoo

= 1/2%. The complete set of reduced power residues for 23 -2 == r;mod (2% —
—1) with period 2% are r, = 23, 46, 92, 184, 113, 226, 197, and 139 for
© = 0,1, ..., 7, resp. where the digits b, in 23/255 are given by the greatoest
integer b; = [2r;/(2°—1)]. Bach of the fractions 7;/(2°—1) for each ¢
produces a periodic sei of digits which will give a 03(2) of Korobov (or
a normal recurring decimal of Good) that is » cyclic permutation of the
digits in (2.2). Now there is also a completely distinet set of eyelic power
residues whose least positive residue can be obtained from the 2-adic
form of 23 = 10111 by a “mirror reflection”, i.e. 23 = 10111 (11101 = 29.
Using 29, we find from 29-2° == r, mod(2* —1) that 7, = 29, 58, 116, 232,
209, 163, 71, 142 for i = 0,1, ..., 7, resp.” Again these produce a set of
0a(2), each of which ave a eyelic permutation, but are distinet from suy
of those produced by 23.

Without loss of gemerality, one may begin an orderly search for
all such forms abovs for # == 3 by initially requiring only those Z contuined
in 255/2" <0 Z < 265/2° so that Z-2° would surely commence with exactly
3 zevos. From the set Z = 16,17,.., 28, ..., 29, 30, 31, one finds that only
23 and 2% produce normal recurring gz:quencuﬂ. Some of thoe Z in the range
can be quickly rejected since Z is relatively prime fo 2°—~1L = 8-3-17.
Others mugt produce the appropriate number of zevos and ones; in parti-
cular, no more that § consecutive ones. The 2 distinet sequences produced
by 23 and 29 also agrees with a result of De Bruijn [117] which states that
for the base g = 2, the number of what Korobov calls [3, p. 36] “esvential-

Ly distinet™ systems in g,(2) is 2" where » = 2% g or 5 = 29=1 5 |
which implies 2 distinet systems which cotrespond to 23 and 29. Thuy,
it appears that the statements made by Korobov in 3, p. 36, top]
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with reference to - systems being “distinct” or “essentially distinct™
actually refleet the arithmetic properties of the reduced power
rezidue systems.

However, our purpose here is not to elucidate how to generate systems
6. (g) by this congruence method for the Type B fraction Z J(g* —1) where
4 = g"* for n-tuple systems bubt to assume wo are given the construction
of Good or normal periodic systems by Korobov and study the connection
with (j, e}-normality for Type B. In the following theorem, we prove that
Zj(¢"—1) where 4 = g® i3 (j, &)-normal for J=12,...,n and ¢ = 0.
First, a few remarks. The count of the number of N(B;, g) contained in
the infinite periodic representation of Z/(g* —1) in the base g where B;
Is any j-tuple of digits from 0 o ¢ —1, 1 = g%, and F=1,2 ..., n;
ultimately depends upon the distribution of the fractional parts
{Z-g')(9" —1)} = r:f(¢*—1) on [0, 1] where § = 0,1,...,¢"—1 and Z-¢°
= r;mod (g* —1). From the example above, if Z = 23, then

23-2" = r;mod (2° —1) »r,/(2%~1) = 25/255, 46/255, ..., 139/255;
and thus due to the special construction of the integer Z based on the pro-
cedure of Good or Korobov, we wmust find ewactly one value of +,/(2°—1)
contained in every half open interval [4/2°, (a+1)/2%) for & = 0,1,...
+--; 22—1. Therefore, for j =3, we have N(B,, 2) = 1 which indicates
& count of one for each 006, 001,..., 111 appearing in one period of
23/(2°—1) and at most, 2 digits of the next period.

Therefore, in general, comsider {Z-g"/(g"—1)} =r/(s*—1) for ¢
=0,%,...;2~1 = ¢"—1 on- [0,1]. The requirement that there De
exactly one of each n-tuple B, from 0 to ¢*—1 whose Lst digit commences
somewhere in ome period and may terminate in at most n—1 places
of the next in the infinite periodic sequence of Z/(g"—1) with period
4 =g¢", implies that every halt open sub-interval [a/g™, (6-+1)/g") on
[6, 1] for & = 0,1, ..., ¢"—1 containg exactly one point. Thus, N (B,, g)
=1, for every n-tuple B,, and consequently, the uniformity in the =
sub-intervals implies N(B,_,,¢) =g in [a/g""Y, (a+1)/g"") for & — 0,
1 Y L, F N(Bsy 9) = ¢"7 in [afg’, (a+1)/¢%) for § =1,2,...,n.
¥ N(B;, X;) denotes the number of oceurrences of the j-tuple B; in the
Ist ¢t digits of the vepresentation of % Hg"—1) in the Dase g, we have
proved ‘ :

Tuwoxem 1. If the rational fraction Z[(g* —1) of Type B with period
A= g" has o representation in the base g such thai the infinite periodie se-
quence is a normal recurring decimal of Good or contains o normal periodio
system of Korobow, then Z[(g* —1} is (§, &)-normal with

{2.3) %imN(Bj, Xt = N(By, 9)jg" = 1/g’

Jor i =21,2,...,n and & = 0.
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Tet us be more precise about the relation between the normal per-
jodic systems of Korobov, normal recurring decimals of Good, and our
Type B rational fraction. In Korobov [3, p- 35, eq. (16}'], he defines the
1st g* digits dydy ... d; = on(g) where 4 = g" to be a “System” then
it we repeat the flrst n~1 digits of g,{g), we have his so-called “normal
periodic system™. Therefore, if we write _
24) g —1) = dalaer @y @adydoy e =-0(0) Q) -
we have all 3 forms in one statement. The rational fraction g,(g)/(¢" 1)
with period w(g?—1) = 1 = g"is our Type B, the set of digits 7 7 PR
is Good’s normal recurring decimal, and g, (g) is the first " digits in Koro-
bov’s normal periodic system where he will add on n—1 digits of & juxba-
position repetition of g,(g) [see 3, p. 35, eq. (15) or (17)].

3. A transcendental non-Liouville normal number. In this section,
we prove that one may construct a transeendental non-Liouville normal
number from the normal recurring decimals of Good, the normal periodic
systems of Korobov, or our particular Type B rational fraction.

The construction is similar to that of Korobov in [2, or 3, p. 49,
eq. (18)], however there are a number of new features in the proof we
give here in that the proof depends upon the (j, s)-normality of the Type B
rational fraction g, (g)/(g" —1) and also we will show that the irrational
produced by the construction is a transcendental of the non-Liouville
type similar to our result in [6, p. 247, Th. 2].

Let gi(g) @; 0:(g) denote @; repetitions of the wel of g dlglts in eilg)

then we write in juxtaposition
(3.0)  aleh(9), n)

= .01(9) 0101(9) €:(9) 82 03(0) - €n 1 (§) Ba 1 00 1(9) €0 (9) o (9) B,
where B, iz the 1st » digits into the kth repetition of g, (g) with 07
< g We distinguish 2 cases for k, i.e. Oase 1 where 1<C k< a,, Case
2 where & = a,, and the g, i8 any sequence of inereasing positive integors
such that lim a;—co. Now Cage 1 has been written in (3.0), and if we have

e
Case 2, then the block B, congists of the 1t » digits into the 1st writing
of g\ (g) with 0< 7 < g™, Le. we have joined complebe sots of g1(g),
Coa(), oens onlg) vepeated oy, 8y, ..., &, times, resp.

Let N(t, «, B;) denote the number of occurrences of the block By
in the 1st ¢ digits of a{g,(g), n}, and N{B;, o:{g)), the number of occur-
rences of the bloeck B; commencing in one period of g;(g) and terminating in
at most j -1 places of the next g;(g). We define for Case L (it will serve
for Case 2 as well with a slight adjustment),

Tl

B I=(Y wN(B,, cile)) -+ V(B cule)) -+ N (By, v} b
i=1

icm

Normal recurring decimals, ... ' 35

5
where
. fi—1
(3.2 t :2 a;q kg™ v
qe=1

and N (B;, r) denotes the number of occurrences of B in the set of r digits
into the (k41)st repetition of g, (g). Accounting for anomalouns blocks
across the end of g;(g) and 0ia1(g); .-, ete., we have [6, p. 243, (2.5)]

{3.3) N (ty a, Bt ~I| S nlf~1)ft< n(j—1) a,_ g™

sinee it iy clear from (3.2) that t > a,_,¢* " Thuﬁ a8 n—co (even for a con-
stant &, ), we hawve

(3.4) Um [N, a, B)t—I] =0

which implies that - :

{3.5) limN({t, a, B))ft =limlI.
f—oa =00 .

From this point on, we may follow the argurments in [, pp 244—246
Lemma 2, thmugh (2. 32)] where now we have Z, /m* 1eplaeedby oi(g) g™ ——1)
with 7; == ¢* and (m’) replaced by wlgh—1) =i, =g, In this way,
we will arrive aft (mmﬂar to 6, p. 246, (2 21), (2.22))

(3.6) limI = th( 2y o)) /g™ = 1)

. =00
where we have made use of the fact that o) (g)/(¢* —1) is (j, &)-normal as
shown in Theorem 1, (2.3). Also, (3.6) holds for all j = 1,2, ... and there-

fore, the comstruction of a in (3. 0) is a normal number [6, p 239 (1 0}]
for q = 11]1101(9n(g) n}.

For the transcendental non-Liouville nature of ¢, due to the, simi-
larity of the arguments, ¢ will be & non-Liouville [6, Th. 2, p. 247] tran-
scendental if there exist 2 positive constants, such that

(37) d << a,n+1g"+1/8(n, g =< g
where § and # are independent of #. We define
e
(3.8) 8(n, g) = Z aq" .
g=1

We have proved the following theorem:

THROREM 2. The irrational o construcied in (3.0) is a tronscendental

non-Liouville normal number if there ewists 2 positive consmms independent
of n such that

kA
where = 2 agt.

feal

8 < "8, g) < B 8(n, g)
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As-an illustration of this theorem, suppose a; = 4, then we find (we
can actually carry out the sums in this case!)

(8.9)  fpong™tY 80, §) = Gupng™ g In(g—1) =11+ g) /(g 1)
(g—11*+(g—1)*/n

- (g —1
—D—pm g

a8 —>00

since Z igt = (¢"*'[n(g —1)—11+ 9) /(g —1)% Therefore, it is clear thab

2 pom’ﬁwe constants can be chosen for n sufficiently large such that
§< g—1 < f since g is a positive integer = 2.

Tn [7, Th. 7, (4.1}], we have discussed in considerable detuil the conse-
quences and J:ebfrlctmm of the repetition sequence a; in relation to the
existence of the positive constants 8 and g which this theorem requires
for the transcendental non-Liouville nature of these irrationals produced
by & juxtaposition construction of (f, e)-normal sets.

4. Normal recurring decimals of Good and (j, ¢)-nermality. Apparently,
it has not been clearly recognized yet in the literature that our results
concerning (§, &)-normality in the rational fractions [5-9] show that Good’s
original question [1] in 1946, ie.... “the question arises whether there
are Tecurring decimals possessing nommhty of order r”... is amswerod
very broadly in the affirmative. :

These results [5-97] give the classification and study of all rational
fractions into three basic Types A, B, and C which may or may not have
“pormal recurring” expansions or ave (f, s)-normal (in our language)
and have sn approximately tmiform discrete distribution of the fractional
parts {Zg'/m} om [0,1] for ¢ =10,1, ..., o(m)—1L = ord,g—L. These,
and many other results, in essence, are the study of normal recurring se-
quences in the sense of Good which we have shown occurs extensively in
the periods of broad clagses of rational fractions. We have only recently
seen the conmection of our {4, el-normal studies and the normal periodie
systems of Korobov.

Since it appears awkward to (*on%uut, in a goneral way, nmmﬂ,]
recurring sequences either by the topological method. of Good, 1he algorith-
mic procedure of Korobov, and to determine the Z in the Type B wbional
fraction Z[(g*—1) where 1 = ¢*, let us show some exanples which are
easily set down and whose general digtribution properties ave cusily de-
seribed that elosely resemble the desired normal recurring decimals or
normal periodie svstems of Korobov.

One diffienlty in the algorithmic methods of Korobov presented in
[3, Method A(p. 32), Method A,{p. 33), Method A,{pp. 36—40)] is fhat all
of these require & “hmmen decision”, Le. looking back on what one hag
“written down so far” and produee such snd such an n-tuple which “has
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not been written before” [3, Method A, p. 32]. Also in [3, Method Az, p.

-337, we find a “rule” which requires a “human decision”, he says, ...

“if there is no such digit 6, (i.e. if any value of 4., ## 6,,,...7. Clearly,
this shows that the construetion of a normal periodic system requires
the type of decision we just described. Now what we have just pointed
out in the procedure of Korobov is not intended to be a criticism of the
work, but we wish to emphasize a mathematical point, It is not surprising
that this is necessary for this particular Type B since as we g2id in [5, p.
2307... “An interesfing case for Type B shows that we may construct
rational fractions of Type B which may or may not be (j, s)-normal”... ,i.e.
be a normal periodic system or not. In the topological procedure of Good,
one proceeds avound. & particular network and wrifes the normal rectorring
sequence as determined by the ecircuit [1, p. 169] and to this extent is
“gomputational”. However, in the example we now present of Type
B(and earlier with Z = (23 or 29)/(2° —1)), the sequence of digits in the
expansion are determined by a congruence and also, one can give precise
inequalities which hold over the whole period in relation to the observed
and expected frequencies of j-tuples. Thus, we can stave that 23/(2%—1)
is a normal recurring decimal (or it contains @ normal periodic gystem).
On the other hand, it can be proved [9, p. 201, (1.5)] that if p is any odd

-prime, and g, a primitive root modp?, then Z/p < 1 In lowest terms is
(i, e)y-normalforallj =1,2,...,

og,pland & = 2/(p—1)+1/(p —1L)g?, i.e.
(4.0) IN (B, ¢)/(p~1)—1[g | <& =2/(p 1) +1/(p —1)g.

For example, & cage which contains al#ost a normal periodic system
of Korobov (or a normal recurring decimal) is p = 19 with g = 2. Thus

(4.1) 1/19 = .000011010111100101|00001101. ..

contains all 4-buples from 0 to 2* —1 at least once. In fact, every 4-tuple
has o count of one except the blocks 1010 and 0101 which appear twice
(naturally one completes the counts over the end of the period and at
most, 3 digits into the next repetition). For the calculation, one computes
the residue distribution 2 = r;mod 19 where each digit b; in 1/19 is given
by b; = [2r,/19] where each digit b, 18 in a 1-1 correspondance with the #;
which for 7 == 0,1, 2, ..., p —2 appear in a seattered or “random” order.
In this, no “human decision” is envolved with respect to what residue
or digit in the expansion is to appear next, but nevertheless, when the
complete pariod has heen set down, we do know some general inequalities
about the relative frequencies of the j-tuples.
The (f, ¢)-normality illustrated in the ahove example of Z/p™ for
>1 where p is an odd prime and g, a primitive root mod p2, also holds
when g is not a primitive root, i.e. only (g, p) =1 and » is sufficiently
large [see B, p. 233, Th. 7]. Finally, we have found [5, p. 233, Th. 6] (4, £)-
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normality in rational fractions Zjm << 1 in lowest terms where m is o
general composite and (g, m) =1, i.e. if w(m) = ord,,g, then

(4.2) [N (B, gYwlm) —1lg'| < & = Djm

where D /m can be arbitrarily small (i.e. D is fixed for a given set of primes
n m and the exponents of those primes in m can increase indefinitely)
for j =1,2,..., [log,m[D]. Therefore, many recurring decimals exigt
in the rationals which meet the “question” posed by Good in 1946 whose
distribution properties can be completely described.

5. Final remarks, normal numbers, ete. In all these reﬁults, it iz
interesting to note, for example, that we can prove that in the full period.
of, say, 1/10687 which has 10686 places in the period since 10 ig a primitive
root that any j-tuple for j ==1,2,..., [log,,10687] = 4 will appear in
the period of 1/10687 with certainty with a frequency of [10687 /1077 or
[10687/10°]4-1. But, we cannot say, precisely where some particular
choice of digits, say, 7648 will make its first appearance, i.e. if

(5.0) 1/10687 = .G000935BT.. (7648)... b. ..

then, we know 7648 will appear once or twice ab most, but we cannot
predetermine its Ioeation.

Deep underneath what we are diseussing here, is the difficult, unsolved

problem of proving that some given irrational like =, “e”, or V2 is normal
or not in some base. Borel proved that almost all real numbers are absol-
utely normal (ie. normal in every positive integer hase = 2) where the
non-normal numbers have measure zero [11, p. 1037, but this existential
result does not help in any way to prove that a given irrational is normal
in any base.

Apparently, we can answer the analogous question in the rationals
[6, pp. 234 (bottom)—235], i.e. determine those rationals which are (J, e)-
normal or not and show that the frequencies with respect to particular
blocks have properties analogous to what one would expect in & normal
number. By this we mean to say that in a normal number we can say that
all possible j-tuples will occur with a relative frequency in the Iimit of
1/g? _for all 4, but we cannot say where a prescribed block will oecur.
~ In the case of the rationals, recently in [7], we hawve been able to
Improve. on our (j, s}-normal results over a wholo period, and prove
that prescribed j-tuples will appear somewhere within a hlock of digity
within the period of rational fractions of Type A and B of length slightly
greater than the square root of the period length. Also, in [8], we showed
that there exists in the rationals, & precise dual of Borel’s result, i.e. there
also .exists ‘what we called “absolute (4, e)}-normality” wheve a given
fract;on3 Is fB, e)-normal in a bounded consecutive set of positive integers.
§=49,..,8. . ’
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In 1928, L. E. J. Brouwer [5, p. 234] stated what he thought was
an “undecidable” proposition, i.e. to prove that the block 0123456788
will oecur somewhere in the infinite sequence of digits of = when rep-
resented in the base 10. Of course, this wonld be decided if it could be
shown that = is 2 normal number. _

In forthcoming paper, [10], we submit the mathematical details of
& vesult that we first mentivned in [5, p. 2351 related to the (4, &)-normality
of the sequence of nth partial products of the Wallis infinite produet which
permits us to make & small advance on the Brouwer conjecturs in relation
tio = By applying our results in [7], we can narrow down the oceurrence
of the block 012345678% to a block of digits slightly greater the square
root of the period length of the sequence of rational approximations
that result from the xth partial products.

Addendum

After completing the foregoing paper, we came across 2 considerable
number of references in [13, pp. 120-121] publighed in a book by S.K.
Stein in 1963 which show that the construction of normal recurring deci-
mals of Good and the normal periodic systems of Korobov have been stud-
ied in a wide variety of forms and coneeptual views by a number of
authors for over 80 years.

There is an extensive discussion in [13, Chap. 9, in particular, see
the summary on p. 117] with a historieal background of various technigques
that have been used fo generate mormal periodic systems. The earliest
result of & general type which we have examined in this reference material
iz a paper of M. H. Martin [14] in 1934. We find [14, p. 859], “Let us
congider the »" permutations of n different symbols e, &y, ..., ¢, taken
r at a time with repetitions allowed. Can a sequence of these symbols
be constructed such that each of these n” permutations is found exactly
once as a subsequence of r consecutive symbols in this sequence?”

‘We can translate the notation of Martin’s paper into that of Korobov
if we identify the « different symbols e, e,, ..., ¢, with the g symbols
0,1,2,...,0~1 where ¢ =0,6, =1,...,6, = g=~1 (other orders of
the identification could be chosen as well). Therefore, the sequence for
which Martin gives a general algorvithmic eonstruction for any g and #
is a norma] recurring decimal of Good or g,(g) in Korobov’s notation if -
we further identify “r” in Martin with “»” in Korobov. Thus, Martin’s
“problem in srrangements” paraphrased producing a normal periodic
system would read “Let us consider the g” permutations of g different
symbols 0,1, 2, ..., g1 taken » at a time with repetitions allowed. Can
a sequence of these symbols {digits!) be constructed such that each of
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these g permutations is found exactly once as & subgequence of # consecn.-
five symbols in this sequence??” _

Furthermore, Martin gives an example [14, p. 859] for g =23 n
=2, y" = 3% of length ¢"+n—1 = 32421 = 10 digits which i the
normal periodic system g,(3), i.e. Martin gives e, 6383636361 €58,6, |0,
= 022120110 |0 which confains exactly once each of 00, 01, 02,10,11,
.-y 22 in sequence. We then proceeds to give a gencral algorithm for the
construction of a class of g,(g) and a theorem [14, p. 862 which shows
that the algorithm produces the desired properties of mormal periodic
system. All of Martin’s techniques for the algorithm and proofs fellow
closely the style of Korobov, i.c. combinatorial, arrangements, selections,
etc. rather than topological in the sense of Good.

We might also mention Lere that since the original work of Martin,
Good, de Bruijn, etc. in 1946 that a fairly large literature [15, pp. 128-141,
in particular, p. 129, and p. 131, Th. 15 (de Bruijn’s, i.c. the number of
possible g,(2) is 2”7 ~™) ] has grown in relation to the applications of normal
periodic systems in base 2. Most significant is in electronic logical design
[15, Chap. VI, Nonlinear shifi register sequences] where the binary confi-
guration in groups of n consecutive digits in the sequence of length 2”4
+#7—1 can be nsed to sense information at sources identified with, 0,1,2,
" .ov, "1 represented in binary form. The unique feature being that each
souree is tested (or requested for information!) only onee with no duplica-
tions. Apparently in combinatorial theory, we frequently see g,(2) culled
a “de Bruijn” sequence [16]. -

We see that the result of Martin in 1934 gives a general angwer to
the question raised by I. J. Good 12 years later in 1946, and to which
Korobov gave in 1951 a completely general algorithm to produnce all
possible g, (g). ) :

Recently, we have lesrned that de Bruijn’s result [LL] for g =2
was anficipated by Flye-Ste-Marie [17] in 1894 -who gave the same result
a8 @ solution to a combinatorial problem in arrangeinents,

In 1986, de Bruijn and van Aardenne-Ehrenfost [18] generalized
the result of Flye-Ste-Maric and de Bruijn for hase 2 and proved thatl the
number of distinet normal recurring deeimals enl{g) of Type B as stated
in Theorem 1 of this paper for any base g = 2 is given by (s /g™ An
~ easily available proof of this results was given by J. FL. van Lint in 1973
in [20, p. 84, Th, 9.1.3]. :

H. Fredricksen [19] has made a detailed study of most of the known
literature for de Bruijn sequence algorithms for base 9.

Finally, we emphasize that (2.3) of Theorem 1. in this paper shows
that, henceforth, the definition of (j, &)-normality in the rationals must
include the case & = 6. Accordingly, we have introduced thig requiremaent
in the basic definition. :
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