ACTA ARITHMETICA XXVIII (1976) ## An asymptotic formula in additive number theory bγ - P. Erdős (Budapest), G. Jogesh Babu and K. Ramachandra (Bombay) - 1. Introduction. In his paper [1], Erdős introduced the sequences of positive integers $b_1 < b_2 < \ldots$, with $(b_i, b_j) = 1$, for $i \neq j$, and $\sum b_i^{-1} < \infty$. With any such arbitrary sequence of integers, he associated the sequence $\{d_i\}$ of all positive integers not divisible by any b_j , and he showed that if $b_1 \geq 2$, there exists a 0 < 1 (independent of the sequence $\{b_i\}$) such that $d_{i+1} d_i < d_i^0$, for $i \geq i_0$. Later, Szemerédi [4] made an important progress on the problem, showing that θ can be taken to be any number greater than $\frac{1}{2}$. In this paper, we study this sequence from a different point of view. We study the number N(n) of solutions of the equation n = p + d, where p is a prime and $d \not\equiv 0 \pmod{b_j}$ for any j. In fact we derive an asymptotic formula for N(n), when $b_1 \geqslant 3$. We also study N(n) when the condition $(b_i, b_j) = 1$ is dropped. **2.** In what follows, we let C_1, C_2, \ldots denote positive absolute constants and let C be a positive constant. p, q with or without subscript, always denote primes. THEOREM 1. Let $2 \le b_1 < b_2 < \dots$ be a sequence of natural numbers with the properties $(b_i, b_j) = 1$ whenever $i \ne j$ and Then the number N(n) of solutions of the equation n = p + t, where p is a prime and t is a natural number not divisible by any b_i , is given by $$(2.2) N(n) = n(\log n)^{-1} \prod_{(b_j, n)=1} (1 - (\varphi(b_j))^{-1}) + o(n(\log n)^{-1}).$$ Remarks. If either $b_1 \ge 3$ or if n is even then N(n) is asymptotic to the main term in (2.2). Similar remarks apply to Theorem 2 below, which can be proved along the same lines as Theorem 1. Also it easily follows from the prime number theorem for arithmetic progressions and the sieve of Eratosthenes that if $(b_i, b_j) = 1$ and $\sum_{i=1}^{\infty} \frac{1}{b_i} = \infty$ then $N(n) = o\left(\frac{n}{\log n}\right)$. THEOREM 2. Let l be any non-zero integer. Under the assumptions of Theorem 1, the number $N_1(x)$, of primes p not exceeding x such that p+1is not divisible by any bi, satisfies $$N_I(x) = x(\log x)^{-1} \prod_{(b_j, l)=1} \left(1 - \left(\varphi(b_j)\right)^{-1}\right) + o\left(x(\log x)^{-1}\right).$$ 3. Proof of Theorem 1. We denote by ν , natural numbers not divisible by any b_i , and by d all finite power products $\int \int b_i^{c_i}$ where $e_i^{c_i} = 0$ or 1, and we write $h(d) = (-1)^{\sum i_j}$. We begin with Lemma 1. We have $$\sum r^{-s} = \zeta(s) \prod (1-b_j^{-s}) \quad \text{ and } \quad \prod (1-b_j^{-s}) = \sum h(d) \, d^{-s}.$$ Proof. The proof follows from the fact that every natural number m can be written uniquely in the form $$m = \left(\prod b_j^{a_j}\right) \nu$$ ($a_j \geqslant 0$ are integers). This can be proved in the following way. Define a_i as the greatest integer such that b_a^{aj} divides m. This gives existence and the uniqueness is trivial. LEMMA 2. The two series $$\sum (\varphi(b_j))^{-1}$$ and $\sum (\varphi(d))^{-1}$ are convergent. Proof. Let B_1 be the set of those b's which are primes and let B_2 be the set of the remaining b's. Clearly, the number of b's in B, not exceeding x is less than \sqrt{x} . Thus (2.1) implies convergence of the first series. Convergence of the second series follows from convergence of the first series and the identity $$\sum (\varphi(d))^{-1} = \prod (1 - (\varphi(b_i))^{-1}).$$ LEMMA 3. Let N'(n) be the number of solutions of $n = p + t', \quad t' > 0, \quad t' \not\equiv 0 \pmod{b_i} \quad \text{for every } b_i \leqslant \log\log n.$ Then $$N'(n) = n(\log n)^{-1} \prod_{(b_i, n)=1} (1 - (\varphi(b_i))^{-1}) + o(n(\log n)^{-1}).$$ Proof. Let d' denote a product of the form $\prod b_i^{e_i}$, where $e_i = 0$ or 1 and $b_i \leq \log \log n$. By Siegel-Walfisz theorem (see [3], Satz 8.3, p. 144) and by Lemmas 1 and 2, we have $$N'(n) = \sum_{n=p+t'} 1 = \sum_{p+md'=n} h(d') = \sum_{\substack{p+md'=n \\ (d',n)=1}} h(d') + \sum_{\substack{p+md'=n \\ (d',n)>1}} h(d') = \Sigma_1 + \Sigma_2.$$ Note that, if d(n) denotes the number of divisors of n, then $$\Sigma_2 = \left| \sum_{\substack{p+md'=n \\ (d',n)=p}} h(d') \right| \leqslant \sum_{\substack{p \mid n}} \sum_{\substack{d' \mid n-p \\ (d',n)=p}} h(p) \leqslant \sum_{\substack{p \mid n}} d(n-p) \leqslant n^{1/2} \log n,$$ since $|h(d')| \leq 1$ and $d(n) \leq n^{\varepsilon}$ for any $\varepsilon > 0$. $$\begin{split} \varSigma_1 &= \sum_{(d',n)=1} \left(\frac{h(d')}{\varphi(d')} \frac{n}{\log n} \left(1 + O\left((\log n)^{-1} \right) \right) \right) \\ &= \frac{n}{\log n} \left(\sum_{(d,n)=1} \frac{h(d)}{\varphi(d)} \right) + o\left(\frac{n}{\log n} \right). \end{split}$$ Thus $$N'(n) = \Sigma_1 + \Sigma_2 = n(\log n)^{-1} \prod_{(b_i, n) = 1} (1 - (\varphi(b_i))^{-1}) + o(n(\log n)^{-1}).$$ This completes the proof of the lemma. LIMMA 4. There exists a function $\eta(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0$, such that the number of primes $p \leq n$ satisfying $$n-p \equiv 0 \pmod{b_i}$$, for some $b_i \in (n^{1-s}, n]$ is less than $$(\eta(\varepsilon) + o(1))n(\log n)^{-1}$$, for every $\varepsilon \in (0, \frac{1}{4})$. Proof. First note that the number of composite b_i 's not exceeding n is at most $n^{1/2}$. For a fixed $b_i \in (n^{1-\epsilon}, n], n-p \equiv 0 \pmod{b_i}$ has at most $(n/b_t) < n^e$ solutions. Thus the contribution of the composite b_t 's is less than $n^{1/2+s}$. To complete the proof it, thus, suffices to show that the number of solutions of $$n \equiv p \pmod{q}, \quad n^{1-\epsilon} < q < n, \ q \text{ prime},$$ is less than $$(\eta(\varepsilon) + o(1)) n (\log n)^{-1}.$$ In other words we have to prove that the number of solutions of n = p + aq, p, q primes not exceeding n and $a < n^s$ is less than $$(\eta(\varepsilon) + o(1)) n (\log n)^{-1}.$$ First note that the number of solutions of $$n = p + aq$$, $a < n^{\circ}$, $(a, n) > 1$ and p, q primes not exceeding n An asymptotic formula in additive number theory is less than $$\sum_{a < n^{\varepsilon}} \sum_{p \mid a} 1 \ll n^{2\varepsilon} = o\left(n (\log n)^{-1}\right),$$ since $\varepsilon < 1/4$. Now for a fixed a < n' and (n, a) = 1, the number of primes q < n, for which n - aq is a prime, by Lemma 1.4 of [2], if C_2 is a sufficiently small constant, is less than $$\begin{split} C_1 \frac{n}{a} \prod_{2$$ Thus summing for all $a < n^s$, (a, n) = 1, we immediately obtain that the number of solutions of $$n-aq=p$$, $a < n^{\epsilon}$, $(a, n) = 1$ and p, q primes $(\leqslant n)$ is less than $$\eta(\varepsilon) n (\log n)^{-1}$$. Now the lemma follows easily. To complete the proof of Theorem 1, it is enough to show, in view of Lemma 3, that $$N(n) - N'(n) = o(n(\log n)^{-1}).$$ To show this it will clearly be sufficient to show that the number of solutions of $$n = p + R$$, $R > 0$, $R \equiv 0 \pmod{b_j}$ for some $b_j > \log \log n$ is $$o(n(\log n)^{-1}).$$ First observe that if $b_i \leq n^{1-\epsilon}$ ($\epsilon > 0$, small), then the number of primes $p \leq n$ with $n \equiv p \pmod{b_j}$ is, by Brun-Titchmarsh Theorem (see [3], Satz 4.1, p. 44), less than $(C_{\epsilon}n/\epsilon\varphi(b_i)\log n)$. Thus the number of primes $p \leq n$ for which $n \equiv p \pmod{b_i}$ for some $b_i \in (\log\log n, n^{1-\epsilon}]$ is less than $$(C_s n/s\log n) \sum_{b_i > \log\log n} (\varphi(b_i))^{-1} = o(n/s\log n).$$ Now the theorem follows from Lemma 4. 4. If $(b_i, b_j) = 1$, for $i \neq j$, is not assumed, it is easy to give a sequence $2 < b_1 < b_2 < \dots$ for which $$\sum_{i=1}^{\infty} (\varphi(b_i))^{-1} < \infty,$$ but there is an infinite sequence $0 < n_1 < n_2 < \dots$ so that the number of solutions of $$n_i = p + t$$, p prime, $t > 0$ and $t \not\equiv 0 \pmod{b_j}$, for all j, is $$o(n_i/\log n_i)$$ as $i \to \infty$. We define $b_1 < b_2 < \dots$ as follows. Suppose $\{n_i\}$ be an increasing sequence of natural numbers tending to infinity sufficiently fast and $\varepsilon_i = (\log \log n_i)^{-1}$. Now take the b's to be the integers of the form $$n_i - p$$, $p < (1 - \varepsilon_i) n_i$, $i = 1, 2, ...$ Clearly the number of $$n_i = p + t$$, $t > 0$, $t \not\equiv 0 \pmod{b_i}$, for all i . is less than $$(s_i + o(1))(n_i/\log n_i) = o(n_i/\log n_i).$$ Since we have $$\sum_{p < (1-e_i)n_i} \frac{1}{\varphi(n_i - p)} < \frac{C_6 n_i}{\log n_i} \frac{\log \log n_i}{\varepsilon_i n_i} = \frac{C_6 (\log \log n_i)}{\log n_i}$$ Thus $$\sum_{i=1}^{\infty} \left(\varphi(b_i)\right)^{-1} \leqslant \sum_{i=1}^{\infty} \sum_{p < (1-\epsilon_i)n_i} \left(\varphi(n_i-p)\right)^{-1} \leqslant C_6 \sum_{i=1}^{\infty} \frac{(\log\log n_i)^2}{\log n_i} < \infty,$$ if $n_i \to \infty$ sufficiently fast. It might be possible to construct a sequence $2 < b_1 < b_2 < \dots$ of integers such that $\sum b_i^{-1}$ is convergent and for which $$n = p + t$$, pprime, $t > 0$, $t \not\equiv 0 \pmod{b_i}$, for all i , has no solution for infinitely many n. But we are unable to find such a sequence. On the other hand, if B(x), defined by $$B(x) = \sum_{b_i \leqslant x} 1,$$ is not too large, then the condition $(b_i, b_j) = 1$, for $i \neq j$, is quite unnecessary. In this direction, we have the following Theorem 3. Let $3 \le b_1 < b_2 < \dots$ be a sequence of integers such that $$(4.2) B(x) = o(x/((\log x)^2 \log \log x)).$$ 5 - ACTA Arithmetica XXVIII. 4 Then $$N(n) > Cn(\log n)^{-1}.$$ Proof of Theorem 3. Let, for any $k \ge 1$, N(n, k) be the number of solutions of n = p + t, p prime, t > 0 and $t \ne 0 \pmod{b_j}$, for all $j \le k$, and let A(n, k) be the number of solutions of n = p + t, t > 0, $t = 0 \pmod{b_j}$ for some j > k. We need the following lemmas. LEMMA 5. For every $k \ge 1$, there exists n(k) such that $$N(n, k) \geqslant C_7(n/(\log n)(\log k)), \quad \text{for all } n \geqslant n(k).$$ Proof. Since each $b_i \ge 3$, either $b_i \equiv 0 \pmod{2^2}$, or there exists a prime $q_i' \ge 3$ such that $b_i \equiv 0 \pmod{q_i'}$. Let l(k) be the number of distinct primes in the set $\{q_i'\}$. Let these be denoted by q_i , $i = 1, \ldots, l(k)$. Note that, N(n, k) is not less than the number of solutions of $$n = p + t$$, $t > 0$, $t \equiv 0 \pmod{2^2}$ and $t \equiv 0 \pmod{q_i}$ for all $i \leq l(k)$. This latter number solutions, by Theorem 1, is not less than $$egin{aligned} \left(1- rac{1}{arphi(4)} ight) \prod_{i\leqslant l(k)} \left(1- rac{1}{arphi\left(q_i ight)} ight) rac{n}{\log n} + o\left(rac{n}{\log n} ight) \ &\geqslant rac{1}{2} \prod_{i\leqslant k} \left(1- rac{1}{p_i-1} ight) rac{n}{\log n} + o\left(rac{n}{\log n} ight) \ &\geqslant rac{C_8}{\log k} rac{n}{\log n} \quad ext{for all } n\geqslant n(k), \end{aligned}$$ where p_i is the *i*th odd prime number and n(k) is a sufficiently large integer. This completes the proof of Lemma 5. LEMMA 6. We have (4.3) $$\sum_{k>k} (\varphi(b_i))^{-1} = o((\log k)^{-1}).$$ Proof. By (4.1), (4.2) and by partial integration, we have $$\begin{split} \sum_{t \geqslant k} \left(\varphi(b_t) \right)^{-1} & \ll \sum_{t \geqslant k} \frac{\log \log b_t}{b_t} = \int_{b_k}^{\infty} \frac{\log \log t}{t} \, dB(t) \\ & = \frac{1}{t} B(t) \log \log t |_{b_k}^{\infty} + \int_{b_k}^{\infty} \frac{B(t)}{t^2} \left(\log \log t - \frac{1}{\log t} \right) dt \\ & = o\left((\log b_k)^{-2} \right) + o\left(\int_{b_k}^{\infty} \frac{dt}{t (\log t)^2} \right) = o\left((\log b_k)^{-1} \right) \\ & = o\left((\log k)^{-1} \right). \end{split}$$ LEMMA 7. There exists a k_0 such that, for every $k \ge k_0$, there exists $n_0(k)$ satisfying $$A(n, k) \leqslant \frac{C_7}{2\log k} \frac{n}{\log n}$$ for all $n \geqslant n_0(k)$. Proof. Since the number of solutions of $n \equiv p \pmod{b_i}$ is, by Brun–Titchmarsh theorem for $b_i \leqslant \sqrt[n]{n}$, less than $(C_n n/\varphi(b_i) \log n)$, thus, for any $k \geqslant 1$, the number of solutions of $$n=p+t$$, $p \leqslant n$, $t \equiv 0 \pmod{b_j}$, for $b_i \leqslant \sqrt{n}$ and $i > k$ is less than (4.4) $$C_{\mathfrak{s}} n (\log n)^{-1} \sum_{i>k} (\varphi(b_i))^{-1}.$$ By Lemma 6, there exists a k_0 such that for $k \ge k_0$, (4.4) is less than $$\frac{C_7}{10\log k} \frac{n}{\log n}.$$ Let, next, $b_j > \sqrt{n}$. By Brun-Titchmarsh Theorem the number of solutions of $$n \equiv p(\operatorname{mod} b_j), \quad p \leqslant n,$$ is less than $$\left(C_9 n/\varphi(b_j)\log \frac{n}{b_j}\right).$$ So, if $s \ge 1$ and $2^s < \sqrt{n}$, then the number of solutions of $$n \equiv p \pmod{b_j}, \quad \frac{n}{2^{s+1}} < b_j \leqslant \frac{n}{2^s}, \quad p \leqslant n,$$ is less than (4.6) $$B(n/2^s)C_{10}\frac{2^s}{s}\log\log n = o(s^{-1}n(\log n)^{-2})$$ as $n\to\infty$. Here we used (4.2). Since, for each $b_j \in (n/2, n]$, there exists at most one prime $p \leqslant n$ such that $n = p \pmod{b_j}$, the number of solutions of $$n = p \pmod{b_j}, \quad p \leqslant n, \ b_j \in (n/2, n]$$ is less than $$(4.7) B(n) = o(n/((\log n)^2 \log \log n)).$$ By summing (4.6) over s and adding (4.7) to the result, we get that the number of solutions of $$n \equiv p \pmod{b_j}$$, for some $b_j \geqslant \sqrt{n}$, $p < n$ is $$o(n(\log n)^{-1}).$$ Now the lemma follows from (4.5). To complete the proof of Theorem 3, first note that for any $k \ge 1$ $$(4.8) N(n) \geqslant N(n, k) - A(n, k).$$ Now the theorem follows immediately from (4.8) and Lemmas 5 and 7. Without much difficulty we could obtain an asymptotic formula for N(n) even if we only assume $$B(x) = o\left(\frac{x}{\log x \log \log x}\right).$$ We hope to return to this problem on another occasion. ## References - [1] P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta Arith. 12 (1966), pp. 175-182. - [2] J. Kubilius, Probabilistic methods in the theory of numbers, Transl. of Math. Monographs, Amer. Math. Soc. 11 (1964). - [3] K. Prachar, Primsahlverteilung, Berlin 1957. - [4] E. Szemerédi, On the difference of consecutive terms of sequences defined by divisibility properties II, Acta Arith. 23 (1973), pp. 359-361. MATHEMATICAL INSTITUTE HUNGARIAN ACADEMY OF SCIENCES Budapest, Hungary SCHOOL OF MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH Colaba, Bombay 5, India Received on 20, 4, 1974 (562) ## Some remarks on L-functions and class numbers by S. CHOWLA (University Park, Pa.) and J. B. FRIEDLANDER (Princeton, N.J.) § 1. Let d denote the discriminant of the quadratic field $K = Q(\sqrt{d})$, and let χ denote the associated real primitive character. c_i will denote a positive computable constant. We simplify matters slightly by assuming |d| > 4 so that K contains no complex roots of unity. Dirichlet's formulae now give for the class number h(d), $$h\left(d ight) = egin{cases} rac{\left|d ight|^{1/2}}{\pi}L(1,\chi) & ext{ for } d<0\,, \ rac{d^{1/2}L(1,\chi)}{2\logarepsilon} & ext{ for } d>0\,, \end{cases}$$ where ε denotes the fundamental unit of K. Hecke [5] was the first to connect the magnitude of $L(1, \chi)$ with the question of the existence of real zeros of $L(s, \chi)$ near s = 1. For those d < 0 for which no such zero exists he was able to give a good effective lower bound for h(d). Recently, Goldfeld [4] has given a simple proof of the celebrated theorem of Siegel [8]. His argument is easily modified to give a simple proof of Hecke's result. Furthermore, if we let a be fixed with $\frac{1}{2} \leq a < 1$, then an affective lower bound for $L(1,\chi)$ (depending on a) can be given under the assumption $L(a,\chi) \geq 0$. In particular, we have: (A) Let $\frac{1}{2} < a < 1$ and assume $L(\alpha, \chi) \ge 0$. Then, there exists $c_1(\alpha)$ such that $$L(1,\chi) > c_1(a) |d|^{a-1}$$. (B) Let $\delta > 0$ and assume $L(\frac{1}{2}, \chi) \geqslant 0$. Then, there exists $c_2(\delta)$ such that $$L(1, \chi) > c_2(\delta)(\log|d|)^{2-\delta}|d|^{-1/2}$$. It is to be noted that the bound gets progressively better as α increases, approaching the Siegel bound as α approaches 1.