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An asymptotic formula in additive number theory
by

P Bwnds (Budapest), 6. Jognsir BArU and K. RAMACHANDRA
{Bombay)

1. Introduction. In his paper [1], Erdos introduced the .sequeuce‘s
ol positive integers by < by << ..., with (b;, b;) =1, for ¢ = §, and Ib;*
< oo, With uny sueh arbitvary sequence of integers, he associated the
sequence {d;} of all positive integers not divisible by any b;, and he showed
that il b, > 2, thove exists » 0< 1 (independent of the sequence {b;})
such that d; . -—d < df, tor i 2 4,. Later, Szemerédi [4] made an important
Progress on ﬂm problem, showing that § can be taken to be any number
greater than. § ' ‘

In this ;mpm‘, we study this sequence from a Qifferent point of view.
We study the number N(n) of solutions of the equation n = p +-d, where
P18 a prime and 4 £ 0(modd;) for any j. In fact we derive an asymptotic
formula for N(n), when b, = 3. We also study N (n) when the condition
(byy by) =1 is dropped.

2. In what follows, we let €y, C,, ... denote positive abgolute constants
and let ¢ be a positive constant. p, g with or without subseript, always
denote primnos. :

Trmorsm L. Let 2 < b1<b < ... be a seguence of natural numbers
with the propevéies (by, by) == 1 whmewr i 9§ and

3
2. Tl oo,
(2.1) jgf bil<

- Then the number N(n) of solutions of the equation n = p %, where p 4s

@ primo and +is a nebural number not divisible by any by, is glven by

(2.2) N(n) = a(logn)~™ l] 'L e (i (B5)) ™) - 0 {n (logm) ™).
[ I :
Romuarks, I cither by 8 or if n is even then N (m) is asymptotic
to the main term in (2.2). Sinwilar remarks apply tio Theorem 2 below, which
can he proved along the same lines as Theorem 1. Algo it eagily follows from.
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the prime number theorem for arithmetic progressions and the gleve

at if (b, b)) =1 §——: then N{n) == )
of Eratosthenes that if (b;, b;) — Land 2% co then N (n) O(Ing,)

TuzorEM 2. Lot 1 be any non-zere inleger. Under the assumptions of
Theorem 1, the number N,(#), of primes p not a.m('cdmg w sueh thm P+l
8 not divisible by any b;, samfw?

T ()

(bj: fjel

Ny () = o(loge)” )+o(m(]0gm)"‘1).

3. Proof of Theorem 1. We {enctie by » natural numbers not divis-
ible by any b;, and by @ all finite power products []bj where ¢; = 0 or 1,
and we write h(d) = (—1)™. We begin with

Levyva 1. We have

—8
[]a-e

vt =] [a—b*)  and = Y h{d)d~.

Proof. The proof follows from- the fact that every natural number
m ¢an be writben uniquely in the form

M = (Hb}’“f)w

This can be proved, in the following way. Define e, an the greatest integer
such that 87 divides m. This gives existence and the uniqueness is trivial.

Lumya 2. The two sevies
D lp(@)
are convergent.

Z(rp(bj))“l and
Proof. Let B, be the set of those s which are primes and let B,
be the set of the remaining bs. Clearly, the number of ¥’ in B, not

exceeding o iy less than V. Thus (2.1) implies convergence of the firgt
series. Convergence of the second series follows from convergence of the
firgt series and the identity

= [ [ {1 —(pg}.

Mg

Lompraea 3. Let N (n) be the number of solutions of
n=p+t, >0, ¢ 20 (modd) for every b, < loglogn.
Then ‘ ’

I —(py )7} +o(n{logn)™).

(b )=l

(ay 2 0 are integers).

N'(n) = n(logn)™

Proof. Let & denote a product of the form [ b, where ¢; = 0 or
1and b, < loglogn By Siegel-Walfisz theorem (see [3], Satz 8.3, p. 144)
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and by Lemmas 1 and 2, we have

¥y = D 1= 3 M= 3 w@)+ 3 W) =E+5
nanii’ ptmd = Pmd=n pLmd =n
{d, m) =1 {d', n)>1

Note that, it d(n) denotes the number of divisors of », then

Zy = 1 a(d’)j < 2 2 < Zd(n_;p) < n'*logmn,
Dol e, v dle—-p Din
(@', m)ep (@' n)m=g

sinee |h(d')] =< 1 and d(_n) < »° for any &> 0.

)ﬁ (h =~ (1 -0((103:%)"1)))

(d, = ) logn
o h(dy )
~ Togn ((dé fp(d)) +-"(Iogfn)'
Thus

N'(n) = Zy-+Z, = n{logn)™*

n (1 —(:p(bi))“l) +o(n(logn)™?).
{bzymy=1

Thin completes the proof of the lemma.

Lemma 4. There ewists a function n(e)->0 ag g0, such that the number
of primes p < n salisfying ‘

n—p = 0(modb), for some b;e (0¥, n]
s less than

(n(e) +o(L))n(logn)™,  for every se(0 ,‘ 3.

Proof. First note that the number of composite b’s not exceeding
n 1§ at most #M%. For a fixed be (n'~°, n], n—p = 0(modb,) has at most
(nfb;) << w* solubions. Thus the contribution of the composite b’s is less
than #Y2+% To complete the proof it, thus, suffices to show that the number
n o= p(modyg), »'"°*<g<n, g prime,
is less than :
(n(e) o (L)) ndogn)t.

In other words we huve to prove that the number of solutions of

s -t og
is less than

1, ¢ primeg not excoeding # and o << n®

(n(#) 0 (1)} n(logn)™
Trst note that the number of solutions of

o= pdag, a<n', (o,%)>1and p,q primes not exceeding n
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iy less than

Z 2 1L € n® = o(n(lug;%)—]):

a<n® PlE
ginee &< 1/4. '
Now for o fixed 4 <’ and (n, a) = 1, the number of primes ¢ < n,
for which % — ag is a prime, by Lemina 1.4 of [2], if €, is a sufficiently small
constant, is lesz than

o L0 T =5) <ok 1L [=31] 6 5)

2<n<nly s<pcnle L

< _O,Ll::i (togm* | [ (1 I —}9)

e PN

Thus summing for all a<1f'a‘, (@, n) =1, we immediately obtain
that the number of solufions of

n—ag = p, m'< n’, (&, m) =1 and p, q primeﬁ'(g )

is less than
| n{&)n(logn)™.
Now the lemma follows easily. _
To complete the proof of Theorem 1, it is enough to ghow, in view of
Lemms 3, that _ _ ' '
F(n)~N'(n) = on{logn)™Y.

To show thig it will elearly he sufficient to show that the number
of solutions of

7 =p+k, E>0,R =0(modd) for some by > logloga

is

o{n(logn)™").
First observe that if b, < n*"* (& > 0, small), then the number of primey
Psn with # = p(modl,) is, by Brun-Titchmarsh Theorem (roo [§],
Satz 4.1, p. 44), less than (05%/6(}5(&;)10@%). Thus the number of primes
P < n for which n = p(modh,) for some bye (loglogn, n**] s lows than

(Osnjslogn) 2 (@(b))™" = o(mfelogn).
by=loglogn :
Now the theorem follows from Temma 4.
4. If (b, b)) = 1,for 4 % 4, is nob assumed, it is easy 1o give o sequence
2<b < by< ... for which

[==]

2/ plbd) ™ < oo,

i=1
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but there iy an infinite sequence 0 < Ry < My <,
of solutions of

.- 80 that the number

#y = p+t,  p prime, i >0 and ¢ = 0(modd;), for all 7,

o(n;/logn)  ay oo,

We define by <2 by <7 ... ag follows. Suppose {n;} be an inereasing se-
quence of natural mmmbers tending to infinity smfficiently fast and &
== {loglogn,;)~". Now take the b to be the integers of the form

M=y P<{l—g)n,,

Clearly the number of

i=1,2,...

. Wy =Pt T>0, § 0(modd;), for all j,
i less than

{e+0(1)) (n;/logmg) == o (n;/logn,).
Hince '
(4.1)

woe Liave

p{m) 2z -Cgm{loglogm)~?,

Osn; loglogm,

S __ Gg(loglogm;)
p<immging p—p) " logn,  gn, logn, .
Thus '
o0 o T
I G B W . \ 1 (loglog m,)?
D@7 3 3 fom-p) SO D) A < o,
i=1 DS A R ) fe=l

il m-+o00 sufficiently fast. :
It might be possible to construct a sequence 2 by << b, << ,.. of
integers such that 3b;* is convergent and for which
%o pelty,  pprime, $3>0, 4 s 0(modd,), for all 4,

has no golution for infinitely many n. But we are unable to find such
& ROGUOney. :
On the other hand, i B(w), detined by

i3 not 500 large, (hen the condition (g, by) = 1, for 4 54, is uite unnecess-
ary. In this direetion, we have the following

Tumowim 8. Let B < by < by<< ... be a sequence of infegers such that
(4.2) B(m) = o(m/ ((]o'gm)ﬂloglogw)).
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Then
N{n) > On(logsn)!

Proot of Theorem 3. Let, for any k2 1, N(n, k) be the number
of solutions of % = p+1t, p prime, t >0 and § # G{modd), for all j =k,
and let A (n, k) be the number of solutions of n = p 1,1 > 0, 1 =2 0(modd;)
for some § > k. We need the following lenimas.

TaMMA 5. Wov every ke 1, there catsts n(k) such that

Nn, k) = G,,(*n, [ogn)(logk)},  for all » (k).

Proof. Since each b, = 3, either b, = 0(mod 2%, or there exists wprime
g = 3 wuch that b, = 0(modg;). Let [(k) be the number of distinet primey
in the set {g;}. Let these he denoted by ¢, 7 = 1, ..., 6(1.".).. '

Note that, ¥(n, k} is not less than the number of solutions of

moe pt, 40, #==0{moed2®) and # == 0(mody;) for all 4= T(k).

This latter number solutions, by Theorem I, is nob less than

1 1 7 -n-
(1————) I l(l—— v 4o =
: p{4) ittty (g / logwn 0gn

W W
( j) ~1./ logn logn

(JB He

= « for all »za(k),
lng!c logn '
where p; is the #th odd prime number and »(k) ix @ suificiently lavge
integer. This completes the proof of Lemm.n 5,
Levma- 6. We have
W -
(4.3) Dp))*
il

P] oof., By {1.1), (4.2) and by partial integration, we have

= of(logh) ™).

1 loglogh, f‘n loglogt
e e e T " (al)’ t
< >{ (#)

i

fg‘; ((P(_bt))_l

el ' i

T R B R
mEV-B(t).I‘Ug‘logtv]% ol f g loglog - ln,t_"l bt

[
o

(f [(M)) of(logbe) )

= o{(logh,)™”

= o{(logk)™").
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Leamta 7. There exists a Ky such that, for every ¥ = ly, there eists
o (k) satisfying

An, k) = _ROL- »

2logk logn Jor all n = n, (k).

Proof. Since the nunber of solutions of # = (mod ;) is, by Brun—

Titchmarsh theorsm for &, « an, ess than {(Cymfp(b,) Yloga), thus, for any
I = 1, the namber of .solmmn,s of

o= Pty @ for #, << Va and =k

ig less than

Ny & sz 0 (mod by,

(4.4) Ga%(log%)“lz (D).

e
By Lemma 6, theve exists a %, sueh that for & 2= by, (4.4) is less than
(4.5) LG

THogk Ingfrr,

Let, next, b > Vi By Brun~Titchmarsh Theorem the number of
solations of

B o= p(modd,), p<n,

( oo (b log ”’)
bj

So, ezl and 2° < l/fn, then the number of solutions of

is lesy Than

9?
r) a4

n=p(moddy), ——r b = Ny

n){s H
is less than

28
(4.6) B (/2% (‘“, ~loglogn = ofs™'n(logn)™?) as - n-—sco.
], there exists wt-most one
* p{mod dy), the number of selutions of

Hoere we used (1.9, Since, for each Bie(nf2,
prime p =y sech that # -

foce plmoddy),  pag bie ()2, 0]
is less than

(4.7) Bn) == o(a?, Al hww,)31(‘){;‘10;;;‘411,)).

By summing {1.6) over § and adding (4.7) to tle result, we get that the
numhber of solutions of
Vi, p<m

n g2 p(rodh;), for somo by =
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is
o(n(logn)™").

Now the lemma follows from (4.3).
To complete the proof of Theorem 3, first note that for any k=1

(£.8) . Nz N, k) -4, k).

Now the theorem follows immedintely from (i1.8) and Lemmas 5 and 7.
Without mueh diffienlty we could obtain an asymplotic formula
for ¥ (n) even il we only assume :

m
B(z) = o (—___.._,,__ )_

logzloglog "

‘We hope to return to this problem on another oceasion.
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Some remarks on IL-functions and class numbers
by

5. Cuowra (University Pavk, Pa.)
and J. B. FRIEDLANDER (Princeton, N.J.)

§ L. Let & denote the discriminant of the quadratic field K = Q(I/E),
and let x denote the associated real primitive character. ¢; will denote
a positive computable eonstant. We simplify matters slightly by assuming
i2] > 4 so that K contains no eomplex roots of unity. Dirichlet’s formulae
now give for the clasg number #(d),

ap

__;,,mj;(l, ¥y for d <0,

B for d>0,
where ¢ denotes the fundamental unit of 7.

Hecke [5] was the first to connect the magnitude of L(1, y) with the
question of the existence of real zeros of L(s, y) near s = 1. For those
&< 0 for which no such zero exists he was able to give a good effective
lower bound for h(d).’

Recently, Goldfeld [4] has given a simple proof of the celebrated
theorem of Siegel [§]. His argument is easily moditied to give » simple
proot of Heeke's result. Furthermore, if we let ¢ be fixed with t=ta<d 1,
then an affective Jower bound for L(1, y) {(deponding on «) can be given
under the aysminption Lia, x) > 0. Tn particular, we have:

(A) Lot 4 < o< 1 and assume, Lia, g) 3= 0. Then, there emists oy (a)
sueh that '
Ll ) > e a) |1
(B) Lot 5 >0 and assume L(}, x) 22 0. Then, there emists 6,(8) such
that :
L (L, 2) > 0o(8) (logd* " 1d| .

Tt is to be noted. that the bound gets progressively better as « increases,
approaching the Siegel ound as o appreaches 1.



