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Introdaction. In this paper we give a general treatment of certain
ajspeets of the arithmetic theory of quaternary quadratic fo_rms. Althoug_h
we will concenfrate on eclass number questions, our hope is that the
framework provided here will alse be suitable for the treatment of other
arithmetic guestions, for example, those pertaining to modular forms
- of “Nebentypus™ We do not employ the classical language in our dis-

cussion of quadratic forms. Rather, we adopt the terminology and view-
e Bk D der - Ampes pe ‘poit of Bichler’s fundamental work [4]. Thus we begin with a sogulas
e de I'éehange and of the exchange des Austausches quadratic véctor space ¥ of dimension four over an algebraic number field
. k (a quaternary space over &, in our terminology). The group of primary
© ACTA ARITHMETICA interest to us will be 8*(V), the _group of proper gimilitudes, rather than
: the special orthogonal group O*(V).” Accordingly, the elass number we
consider here will be the number of similitude classes in an idealcomplex
([£], p- 87). We 86t 5§ our madn problem the determination of the number
of gimilitude classes in an arbitrary idealcomplex £ of maximal lattices of
V. Our vigwpoint throughount iz to interpret the arithmetic of the guat-
ernary space V in terms of the arithmetic of its second Clifford algebra OF.
This viewpoint enables us to reduce the main problem, in most cages, to

Les autcurs sont prids d'envoyer leurs manuserits en denx exemplaires that of determining thé class number H of a unigue idealcomplex ¥ from
The authors are requested to submit papers in two copies . each ¥V, namely, the idealcomplex containing the maximally integral lat-
g}iﬁf&fe’;Tfﬂfﬁgﬁ;?,’fnﬁﬁl ﬁ;:iiiuﬁ% e‘;;l;:‘aixgmﬂ;fn;:ﬁ;:ﬂﬁ;b1;12 o tices of V. The precise gtatement and dgtails of proof are given in § 3.

' , PONTERApES If the digeriminant D(V) of V is a square in %, then ¢} = AaY,

where U is & quaternion algebra over k. In this case J is the only ideal-
' complex of maximal lattices and H is the number of classes of normal
- ideals of . In my disgertation [16] I derived a formula for H in the case

where k = @, the field of rationals. For this reason the square diseriminant
case is not of major interest to us here. However, in order to provide 2 uni-
fied approach, we will mention the square discriminant case several times,
pointing out how it parallels the nonsquare diseriminant case.
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Tf D(V) is not a sguare in &, then 0 = Wz, where A is a guaternion
algebra over &, and K — k{VD(V)). In this case there are infinitely many
idealcomplexes of maximal lattices of V (§ 3, Proposition 7). However,
replacing ¥ by a suitable similay shace, if necessary, we may assume that
8 = 3, except if K is a subfield of the Hilbert class field of %, in which
case we must also consider those £ which contain p-maximal lattices of
V, where p is,a prime of %k which remains prime in K. In § 4 we show,
under the assumption that & has class mumber 1, that A is equal to a certain
“peneralized type number” associated to e, As a simple application,
we give in § 5 an elementary proof of the Minkowski-Siegel formula for
definite quaternary spaces over Q. If, in addition to % having class number 1,
we assume that V, is isotropic for every finite prime p of %, then H = 4,
‘the type number of Eichler orders of level d in Wy, where & is the produet

~of all finite nonsplit primes of A which remain prime in K. Using the Sel-
berg trace formula, we derive elementary formulas for #, (§ 6, Theorems
1, 2) assuming & == @ and the fundamental unit of K has norm —1. These
formulas were announced earlier in [18],

Interpreting our lattice-theoretic results in the language of quadratic
forms, we then obtain elementary formulas for the number of classes of
positive definite integral quaternary forms with discriminant dg, where
A is the discriminant of a real gunadratic extension K of Q having a funda-
mental unit of norm —1 (§ 6, Corollary 1 to Theorem 3). In the special
case where Jx is a prime (§ 6, Corollary to Theorem 1) this result also
follows from results of Peters [14] and Tamagawa (nnpublished) and can
also be found in the paper of Kitaoks [8]. The nature of our formulas
suggest that class number questions for quaternary forms are “veducible”,
in some sense, to class number questions for binary forms. It wonld be
desirable to establish such a relation between quaternary forms and binary
forms directly. In particular, one might then have & method of constructing
representatives for classes of positive definite quaternary forms which is
more effective than the usnal reduction theory technique (cf. [21]).

§ 1. Quaternary spaces. In this section % denotes either a global
or local field of characteristic + 2. A quaternary space over k is an ordered
pair (V, q), where V is & vector space of dimension four over % and gVl
is & quadratic mapping. When there is no danger of confusion we will
denote (V,q) simply by V. The symmetric bilinear form B associgted
to ¢ is defined by:

Blo, w) = glo+w)~qg(v)~g(w), v, weV.

We assume that B is nondegenerate, so that det[B(v;, )] 0 for any
bagis {o;} of V over &, 4,j =1,2,3, 4 Let &* denote the mulfiplicative
group of non-zero elements in %, (5*)* the subgroup of squares of &*.
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The coset of det[B(«,, o;)] in k% /(5%) is independent of the choice of basis
{v;} of V over k. We call this coset the diseriminant of V and denote it
by D(V). Whenever it is convenient, we will feel free to identify D{V)
with any of ity coset representatives.

A similitude o of V is a linear automorphism of V satisfying g{o(v))
= #,4(v} for every ve V, where a,¢ k* is independent of ». The number
&, is called the norm of o and is deneted accordingly by #{c). The simili-
tudes of V form a subgroup of GL(V) which we denote by S(V). An or-
thogonal iransformation of V is a similitude of V7 having norm 1. The group
of all orthogonal transformations of ¥ will be denoted by O(V). If & i
a similitude, then det(o) = Lu(c)2 We say that ¢ is proper or imgproper
according as the plus sign or minus sign holds. In particnlar, an orthogonal
transformation ¢ is proper if and onty if det(o) = 1. We denote the groap
of proper similitudes by S*(V) and the group of proper orthogonal
transformations by OF (V).

We proceed now to classify the quaternary spaces over % up to
similarity. As the existing literature on this subjeet is inadequate for
our purposes, we will have to draw upon results contained in some un-
published lecture notes of Tamagawa. Our classification depends on an iso-
metry classification of quaternary spaces over % which represent 1.

Let us denote the Clifford algebra of ¥ by Cp. We recall that ¢
is a graded associative algebra of dimension 16 over % and ¥ may be re-
garded as the subspace of homogeneous elements of degree 1. The multi-
plication in ¢y is ‘uniguely determined by the condition o® — g(v) for
all we V. The subspace of ¢} spanned by all homogeneous elements of

- even degree is a subalgebra of dimension 8 which we denote by 0.

Let @, @, @, @, be an orthogonal basis of V over & and put
& = @myDyw,. Then 22 = D(V) and the center K of Of is given by
K =k+ke. It D(V)is a square in &%, then K ~ i@k If DT} is not
a square in k*, then K s E(YD(V)), & quadratic exteusion of .

Notation. For any associative ring B with 1 let B* denote the
muyltiplicative group of all invertible elements in 5.
. The Clifford group I'y of V is the subgroup of 0% of all ¥ such that
V9™ = V. We put [} = I'ynOF.To each ye Iy we associate o,e O(1)

- by setting o,(v) = yop~, ve V. Then the homomorphism Yo, NMEaps

Ty onto O(V) and I'f onto G*(¥). The mapping defined by v,... vys,...0,,
Y1y .00y Upe ¥, gives an involution of €y which we denote by a—a*. One
can easily show that I'; is the set of all ye 0F such that aa*e B (cf. [4],
p. 32). )

In the remainder of thiz sectiom we will assume thak ¢ represents
1. Then we can choose the orthogonal basis @, 24, #,, #, with glz) = 1.
Let %A be the set of all elements in CF which commute with @;- Then 9
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is & subalgebra of OF with Dasis 1, & = &0, p == L3y, v = Dy, satisfying
the relations: - :

A2 = —glm)g(es), u* = —q(@)g(a), = g{w)y = —ul.

In other words, % is & quaternion algebra over k. The restriction of the
ihvolution a—sa* to U is the canonical involution of 9% We regard U as
8 quaternary space over & with qua,c'tmtlc mapping equal to it reduced
norm mapping N, defined by N (a) = aa®, ae . Tt i3 clear that OF = U,
where W = W@ L

We must dmtmgulqh between the cases where D(¥) is or is not & square
in k. First suppose D(V) is & square in &, Then K = ke, + ke, and (852
= o, +e,, Where e,, e, are the orthogonal idempotents of K. One easily
verifies the following relations

a‘lel = 6350], .wleg = 61501.

Define 2 linear mappi_ng p: U—Cp by (&) = (&6, + EXeg)ary, £l
Tt is easy to see that g(£)* = @(&). Thus the homogeneous components
of ¢(&) are symmetric and of odd degree. This implies that ¢(£)e V fm
every £e . Furthermore, one can easily show that qlo(8) ) = p{&)* = N ()
for &e U It follows that ¢ is an isometry of U onto V. Let ¥ be an element
©of (5. Then y = a6y fes, @, B, and yy" = N(a)e, - N(B)e,. Hence
I}y is the set of all ae, + e, with «, fe A* and ¥ (a) == (ﬁ) Furthermore,
if Eeil[ and y = ae,-- Pege I, then yp(&)y™" = g(adp™

ProrosiTioN 1. Let V be o quaternary space over k whwh reprosents. 1.
If D{V) 45 & square in k, Then

(a) V is isometric to & quaternion algebra A over k' ihe quadratio map-
ping on W being its reduced norm N.

(b) The proper ovihogonal transformations of U are call the mappings of
the form &->aff™, where a, fe W and N(a) = N (f)-

{e) The 199 oper similitudes of U are all the mappings of the form 5)—>a§ﬁ,
where a, feW*.

Proof. To prove (¢} we note fqut that the mapping &esadp, a, fe A
is certainly a proper similitude of norm N (a)N (8). Suppose @ 18 a proper
gimilitude of A. Choose ye A* such that N('y) = #(¢). Then y " age O (),
g0 there exist «, fe* such that y~e(£) == aff™" for all fe A Then
o€ = (pa) £ f01 all Eed

Remark. It is ewdent that the improper orthogona.l tramsformations
are of the form &—saf™871, a, B W*, N(a) = N (8), and the improper simili-
tudes are of the form &—af'f, a, fe U™,

Now suppose D) (V) is not a square in k. Then K o= Ic(]/l) W, & quad-
ratic extension of k. Let a-+d be the conjugation automorphism of I over &.
The quadratic mapping ¢ extends uniquely to a guadratic mapping on
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Ve = Ve, K and it is easy to see that Oy, == Gr®kK Thus conjugation
on K extends to a k-automorphism a-»a of Oy having Oy 25 its algebra
which
commute with @,. Since D(¥g) is a square in- K, we have OVK = Wy +
-9 6, where ¢, €, ave the orthogonal idempotents of the center of of .
Furthermore, we have an isometry ¢: Ug—Vgx defined by ¢(§)
= (&6, + £ &)@, . The restriction of @t to ¥ then gives an isometry of ¥ onto
o k-subspace W of Wz We nobe that ¢(&) = ¢(£*). Since V is the subspace
of Vg of all elements fixed by the econjugation, we must have W =
{&e Wy |E* = £}, the quadrati¢ mapping on W being the restriction of .

Tiet ye C’VK We have already seen that y e FV if and only ify = ae; +
+ fey, where o, fe A and N{a) = N(f). From V Te0p it is easy
to see that ye I'f if and only if ye I'f, and y =§ = fie, +de,. It follows
that ye I3 if and only i y = ael+aez and N( a) = N{a) = N{a) = 0,
which s to say N(a)ek*; in this case, yp(&)y " = p(afa™)

“PROPOSITION 2. Let V be a quaternary space over k which represents 1.
Suppose D(V) is not a square in k and put H = k(l/D(V ). Then

() There is a wnigue quaternion algebra U over b such that V is iso-
metrie to the quaternary space W = {Ee Ug| T = &}, where E->E" is the
canonical involution, E—E is the emtension of the conjugation on K,
and the quadratio mapping on W is the restriction of the reduced norm N
of Uy

“(b) The proper orthogonal tramsformations of W are ail the MEDPINGS
of the form Esafa™, where ve Wi omd N {a)e B*. '

Proof. The uniqueness of ¥ (up to k-isomorphism) follows from the
following observation. Let &’ be any quaternion algebm over k, K any
quadratic extension of k. Then W' = {f«¥Ugx| E = £} is & qua.tema.ry
space with nonsquare diseriminant D(W'), = k(YD(W")}, and .
#,¢ W' ig any element representing 1, then ' is Ts-lsomorphlc to th(, sub-
algebra of O commuting with @,.

Remarks. 1. From (b) of Proposition 2 we -o'bta.in a one-to-one cor-
respondence between quaternavy spaces ¥V over & with nomsquare dis-
criminant representing 1 and ordered pairs (N, K), where Wis & gquaternion
algebra over k and K is a quadratie extension of k. If & is & number field,
this may be viewed as a global analogue to the well-known local ehjsm-
fication of quadm.tm gpaces by their diseriminants and Witt invariants.

2. We note that Proposition 2 is valid in the square diseriminant
case if we take conjugatiom to be (a, f)—(f, a) on Wg = UBA. Then

3, (b of Proposition 2 correspond to (a), (b) of Proposition 1.

" 3. The 1mp10per orthogonal transformations of W are the m&ppmgs
of the form Esaf*a™’, where ae Uy and N(a)s k.
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To determine the proper similitudes of W we proceed as follows.

By K-linearity and the fact that Wy = U, any oe 8% (W) can be nnigquely
extended to an element of 8*(y), which we also denote by o. In this

- way 8t (W) can be identified with the subgroup of §* (M) consighing
of all ¢ such that o(W) = W. Suppose se §*(W). Then (¢) of Proposition
1 implies that o (&) = aff fo_rua.ml_l ¢ Uk, where a, fe WE. Then for every
§e W we must have aff = (aff)* = F'F'a" = F*&a”. Taking & =1, we

see that a”'B" = (@"pN Thus (@' N a8t = £ for all feW.
By H-linearity, the latter must be true for all &e Wy, Bince My is central -

simple over K, we must have a"8~! = ¢™'¢ K*, i.e. § = oa*, ¢c K. Then,
for every &e W, o(&) = cata* = (gaéa™)* = tata®. Tt follows that cek*.

- We conclude that any proper similitude of W must be of the form. Ersoata”,

there oe k*, ae Ax. Conversely, any such mapping i3 a proper similituade;
In fact, if ngy: K->k iy the norm mapping, ¥(caéa) = Ny (6N (@) NV (&).
This proves ‘

Proposrvion 3. Let V be as in Proposition 2.

{(a) The proper similitudes of W are oll the mappings of the form E—soata™
where oe B* and ae L. ' ’

(b) The norm of the proper similitude E—seata™ is N (6N ().

_ Rema.r.ks. 1. A gimilitode &—voala® is an orthogonal transformation
J_f and only 1f g (0N (a)l = 1. By Hilbert’s Theorem 90, the latter is true
if: and. only if eN(a) = b/b for some b < K. Putting § = ba, we see that
N(B) = ngys,(b)o™ e k™ and cafa” = SEB~1 This agrees with (b) of Prop-
osition 2. : .
_ 2. Proposition 3 is valid when D(¥) is a square in % if we take (a, 4}
H(‘B,a) as the c(?qjugation on g, so that ng;(a, b) = ab, a, be k*.
Then (a) of Proposition 3 corresponds to (¢) of Proposition 1.
3.*T*he_improper similitudes of W are the mappings of the form
frcal™a’, where ce k™, ae UL,

Let us identify V with the subspace W of Uz For (e, a)e k* xAE
:[.et.t,u(c, @) be the similitude &-—>cada®. Then y: kX XUAX -8+ (V) is o sur-
jective homomorphism with kernel {(e, ) e B )X H*| gy (@) = 6™}, the
graph of (mg,)™", which we denote by I'(k* X I0%),

COROLLARY. Let V be & quaternary

space over L representing 1. Lt
K = EY.D(V)) if D(V) is not & square in by K = kebif D(V) is o square
un . Let U be the quaternion algebra uniquely associated to V' as in Lrropo-
sition 2. Then. there i o natural 18omorphism '

(1) BHV) o b xUR/ (kX < I¥).

§2. Local considerations. In this section we agsume that & ig

| . : an
a-lge_bra.lc number field. Let o be the ring of integers

of &, p & prime of %
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(finite or infinite). If p is finite, we identify it with the prime ideal
of o uniquely associated to it. We denote by k, the completion of &
with respect to p. If p is finite we let p, denote the ring of in-
tegers of k.

Let V be a quaternary space over k representing 1. Put 7, = F @,k,.
Then the quadratic mapping g on ¥V extends uniguely to a quadratic mapping
on ¥V, for each prime p of k. We denote the extended form also by ¢. It is
clear that Oy, = Cp@®;ky, C}‘p = U} &k, Furthermore, if K is the center
of 0%, then K, = K @k, is the center of G'!,;p; if A is the quaternion algebra
agsociated to 7 in the manner of §1, then %, = @, k, Is the quaternion
algebra associated to V, and O',*;p = Ug, = U @k, = Wy @y, K. The
conjugation a—a on Ax extends by k,-linearity to a ky-auntomorphism
of QIKP which coincides with the one ecoming from K. ‘

First suppose .D (V) is a square in k,. Then, according to (a) of Prop-
osition 1, we may identify V,, with 2[,. Since %, is a local field, there are
only two possibilities for 2,. Either A, = M (2, k,} or A, = the unique
division algebra of dimengion 4 over k,. In the former case we say that
9, i3 split or p is a split prime of U; in the latter case we say A, is nonsplis
or p is & nonsplit (or ramified) prime of . The standard properties of the
Hilbert norm residue symbol imply that the set of nonsplit primes of A
is a finite set with an even number of elements.

Now suppose D( V) is not a square in k,. Then, since K, = k,(V.D(V))
is a quadratic extension of k,, it must split %, g, = M (2, K,). We know
from § 1. that, for a fixed K,, the quadratic spaces V, with &,(VD(V,))
== K, are in one-to-one ecorrespondence with quaternion algebras %,
over k,, V, being identitied with W, = {#¢ g | & = &}. To obtain a reali-
zation of a given V, as a k,-subspace of M (2, K), it suffices to find a
ky,-embedding of the corresponding %, as a subalgebra of M(2, K ), for
we would then have M(2, K,) = KU, = QIEP:- ' '

The fact that %, is split by K, implies that %, has a basis {1, 4, u, »}
where A% = ¢ye kY, u* = D(V}, du =v = —pd. ' S

We can then embed 9, into M (2, K,) by

0 1 VB 0 0 ,—I/D(V)]
(2) I’H'L)p Oj’ "’[ 0 MI/D(V)]’ 1”_}Icpl/l”)(V) o |

Thix amounts to identifying 9, with. the ky-subalgebra of M (2, K,) of all
elements of the form : '

. .
(8) [ y]’ where 2, y¥¢ K,.

p

¥ ®
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We note that 2, will be split or nonsplit according as the norm residue
symbol (¢,, D(V)), =1 or -1, respectively. One easily checks that the
conjugation induced on M{2, K,) by this embedding of 2, is given by

@ w 0'1’
(4) [ y] [ ’ ]-, &, Y, %, we K.
_ ¢ W 6,y B

Tt follows that

&
(5) o V, = [[H_%y d]| ay de Ty; yeffa,],

the quadratic mapping being the determinant -

(6) y] —sad+ ¢, y7.

[—pr d

In particular, we fee that V, must be isotropic of index 1 if D(V,) is not
a squave in &,. We enumerate the various possibilities for V.

(1) If U, is split, we may take o, = 1 and then
: e[ 7] e
(7) =y 4 ‘a,dekp,yer.

(2) If 2 is nonsplit and p is infinite, then kp =R, K, = C and we
may take ¢, == —1. Then

® Vo =112 a, ac ks ye .
7d

(3) If A, is nonsplit, p is finite a.nd K, is unramified over k,, we may
take ¢, = m, 2 generator of p. Then

- " a‘ y-
(9) V, = o a [ @y de by ye Ky -
{4 ) If A, is nonsplit, p is finite and K, is rawitied ovor k,, wo may
take ¢, == w,, any unit of %, such that (up,D{V)) s w1, Then
10) R ] [ '
( =] g g | @y dety; ye i,

We recall that two quadratic spaces (V, ), (¥, ¢') of the same di-
‘mension are said to be similor, written ¥V ~V’, if there is a linear map
J: V=V and an element aek* such that ¢'(f(v)) = ag(v) for all vs V.
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One can easily show that ¥~V implies (F o GF, ([1], p- 157, paragraph 12
(a)). For quaternary spaces over a number field % the converse is true.

Prorogrrion 4. Let V, V' be quaternary spaces over a %umbea field %.
Then Vo~V if and only if OF ~ CF..

Proof. Multiplying each quach:ntm mapping by a suitable scalar,
we may assume that V, V' both represent 1. If (%, 07 are k-isomor-
phie, then they must have the same center K. Let 9, %' be the quatern-
ion algebras uniguely associated to V, V', respectively. Then Up = Ay
implies that A, = A, for all primes p which split in K. For such p, V, is
isometric to A, and ¥ is isometric tio A,. Henece V,, Vy are isometric for
all p which split in K. For all other p it is evident from the preceding dis-
cussion that V,~V,. We conclude that ¥~ V7, bv the Hasse principle
for similarity ([13], Theorem 1).

§ 3. Maximal lattices and class numbers. et & be an algebraie number
field or a non-archimedean local field of characteristic == 2 and let o denote
its ring of integers. Let ¥ be a guaternary space over k.*A laftice L in V
ig a finitely generated o-submeodule of V having rank four. Given a lattice
Lin V, geb

L¥ = [pe V| B(», L) < o}.

Then L¥ is  lattice in V, called the dual of I, and L¥¥ = L. The dis-
eriminant A(L) of L iz defined to be the fractional ideal [L¥*: L] of o (of.

[2], p. 10). If I happens to be a free p-module, then

A(L) = (det [B(v;, v)]),

where {v;} is an o-bagis o L, 4, j =1, 2, 3, 4.
Suppose L is .a lattice in 7. The fractional ideal of o spanned by the
set of all g(v), ve I; iy called the norm of L and ix denoted by n(L). Set

= {ve V] B{v, L) =« n(L)}.

The reduced discriminant A'(L) is defined to be [L':L]. Tt is clear that
A'(L) is an integral ideal of o. If I is a free p- module, as in the local case
for example, then

AY(L) = {det: [u(L)"“B(wi, wl),
wheve {v;} is an p-hasis of L. It iy clear from this remark that our definition
of reduced diseriminant is the same as the one found in [4].

A lattice Lin V is dntegrol it (L) is an integral ideal; it is masimally
integral i, in addition, it iz not properly contained in another integral
lattice. A lattice L is maximal if it is not properly contained in another
lattice having the same normo; L is {-maximal if L iy maximal and n{L)
= {, o fractional ideal of o. Since ¢ represents 1 locally, it is eclear that
a maximally integral lattice is nothing more than an p-maximal lattice.
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We say that two lattices L, M in V ave similer, and write L~Jf,
if oL = M for some oe 87(V); if o can bhe taken from O (), then we say
tha,t' L, M are equivalent, and write L =< M. The group of all proper sim-
ilitudes, respectively, proper orthogonal transformations, which map
a lattice L onto itgelf will be dencted by 87 (L), respectively, O+ (L).
We call the elements of S* (L)} the wnits of L and the eloments of Ot (L)
the orthogonal units of L.

From now on we suppose that & is a number field. Tf I is o laftice
in V, then L, = L®,p, is a lattice in V for evely finite prime p. It ix
clear that the following relations hold:

(I’:ﬁ:)n = (.I’p)#s

ALy) = 0, (L), n(Ly) = nym (L),

(L) = (Lo)s  A'(Ly) = 0,4'(L).

Furthermove, it iy clear that T is integral <« L, is integral for all finite p,
L iy maximal < I is maximal for all finite p, and L is maximally integral
<> Ly is maximally infiegral for all finite p.

Two lattices L, 3 in V are in the same class it T ~ M, in the same
similitude -clags it L~M; they are in the same genus if L, = M, for all
finite p, in the same 1dewlcomlem if Ly ~ M for all finite p; i of; I8 in the
genus of M for some o< 87(V), then L, M are in the same similitude
genus. The basie finfiteness theorems for quadratic spaces state that each
genus decomposes into a finite number of classes and each idealecomplex
decomposes into a finite number of similitude classes ([4], p. 79).

Let ® be a genus of lattices in V and @, the similitude genus containing
. Then the number of similitude classes represented in G isx the same
a5 the number of similitude classes in &,. However, the number of classes
in @ may he greater than the number of smuhtude clasges represented in
®. The precise relation between these two numbers ig given in [14], § 2.
In particular, it k& = Q, the field of rational numbers, then these two
numbers coincide if g has signature = 0.

The collection of maximally integral lattices in ¥ forms a genus
which we denote by M (cf. [12], p. 240). We denote the commeon digcriini-

nant of all the lattices in M by A. Then M can also be deseribed a6 the set
of all integral lattices in V¥ having diseriminant 4. Let 3 denote the ideal-
complex containing M. We can also describe I as the set of all maximal
lattices having reduced discriminant A (ef. [4], p. 87). The class numbers
ol interest to s will be H, the number of classes in 9, and F, the number
of similitude classes in J. The number of gimilitude genera in J can. he
exprossed in- terms of the number of ambiguous ideal classes in K (cf.
[14], § 2, Satz 6). In particular, if &k = Q and ¢ haq gignature == 0, then J
decomposes into g* similitude genera, where ¢* is the number of strict
genera of K. Unfortunately, if ¢ is definite, the various similitude genera

icm
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need not have the same number of similitude classes, so that the most
we can say about the relation of H, to H in the case k& = Q, g definite,
is that H,< H, with equality < ¢" = 1< X has prime diseriminant.

We proceed now to classity the maximal lattides in ¥ locally. We may
assume that V represents 1. Our first step is to classify the maximally
integral lattices in V. Sinee the maximally integral lattices arve all locally
equivalent, it is enough to exhibit one maximally integral lattice M, for
each finite prime p of k. As usual, we must consider various cases.

Notation. Let O denote the ring of integers in &'; for a finite prime
p of k, let ©, = T@,0, denote the ring of integers in E_’

1. D(V) is a square in T,.

“{a) I ¥, is isotropic, then Vy =, = M (2,
M, = M(2, op). : .

(by I V, is anisotropic, then ¥, =9, = the unigue guaternion
division algebra over &, and we take M, = 0,, the maximal order of %,.

2. D(V) is not & square in k,, K, = k,(VD(V)).

a) If 9, is split, then

o
V, =
¥ l_m.w_

a
[ y]}a,deo‘,,yeﬁpl
—7 4

is maximally integral in ¥,. Suppose not. Then there is an integral lattice
L, > J.lf[‘,,l}p v M. Take ve Ly, v¢ M,. Then

k) and we may take

’ a, ek, yer].
We claim

(11) M, =

.QJ = 7 d s a,dekp,ys_lfp.

Suppose either ¢ or ¢ is not in o,. By SymmetTy, we. sy assurge agdDo,.

Put
o ¥
W = N
~y d+1

Then we L, but N(w) = N (vH adoy, a contradiction. Hence a; den,,
which 11nplles ye Oy, since D, = {ye K| yFen,}- -
(b) If %, is nonsplit, then

. . [ & ¥ ~
() V, = __d!a,dekp,ye_ﬁp

o
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it X, is unramified over k,, where w i3 & generator of », and

(i) v, ﬂl[_ﬂ ]| o, dekp,?jel"fl

if I, is ramified over k,, where u, is a unit of &, such that (1, D V)} = —1.

Accm dingly, rem%onmg exactly as in 2{a ) we may take

(12) (iy M, = [ l‘a (leop,’ljebp}, :
_"‘“ﬂ’l
[ B ‘ a y‘ *
(13) aiy M, = g d L4y deny, ¥ Oy

_ Suppose that @ is an order of a quaternion algebva over a local or
global number field. The level (Stufe) of @ is defined to be n(0¥)~'. By
an Wiehler order we mean an order of a quaternion algebra over a loeal
or global number field having square-free level (cf. [6], p. 130). Suppose
D(V) is not a square in %, so that K s a quadratic extension of k. Let
p be a finite prime of k which splits in K. We say that an Oy-order £(p)
of g, = WM, is an Hickler order if it iy Dy-isomorphic ‘ro an orvder

. of the fmm 0, ®0,, where 0,, 0, are Eicller orders of U,.

Let 4 be an O-lattice of Wg. Wor any finite prime p of & we put 4,
= A®DD = AR,0,, an Oylattice of Ap . We say that a lattice A of
QIK is symmetric if A% = Z1; gimilarly, o lattice A(p) of Q[K is symmetrie
if A(p) A(p). It is clear that a lattice A of Wy i hymmcmo <Ay 18
symmetnc for every finite prime p of %,

Lesviva. For any finite prime p of & there emists an Eichler order £(p)
of _QIK,, -such that Q(p) is symmelric and M, = Q{p)NV, is a maximally
integral Tattice in V. The order Q(p) is mazimal exoept if p ramifies in A
and remaing prime in I,

Proof. 1. D(V)isa %qua.reml‘f Then Wy, = W, @Ay, Vi = {(&, &

£e Wyt We take 2(p) = M(2,0,)®H (2, 0,) for case 1(a) and Q(p) = pQ
@ 0, for case 1 (h). For cases 2 (a) and 2 (h) (H) we take £(p) = M (2, D))

Tor case 2(b) (i) we take
| 0, O,
Qp) = [ . J
O, Oy

Let 9y, ..., p, be the finite primes of & which ramify in 2 but remuin
prime in K; let gy, ..., gy be the finite primes of % which ramify in 2 but
split in K (i.e. the anisotropic finite primes of ¥). Pub 6 = p,...p ... -
By an Eichler order of A of level & we will mean one of levels 8D.

icm
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Prorostrron 5. Suppose V represents 1 and D(V) 4s not & square in
k. Then there emisis a symmetric Bichler order Q2 of g of level & such thai
M = QNV is a magimally integral lattice in V.

Proof. Let @ be an arbitrary Eichler order of %z of level 4. Then,
for almost all p, B, = &, and (#NV), = P,nV, is & maximally integral
lattice in V. At the finitely many exceptional primes we replace @, by
the order Q{p) of the preceding lemma. We then let Q be the unidue
order of Ak such that £, = Q(p) for the exceptional p and £, == &, for
all other p. )

At this point let us determine the diseriminant 4 of & maximally inte-
gral lattice M in V. It is enough to compute the local diseriminant A(3,,)
for each finite prime p.

1. D(V) is & square in &,. Then M, can be taken as a maximal order
in 9, so A(DM,) is just the usual discriminant of the quaternion algebra

A,, namely
' 0 it is split
T R 15 R 0 b e
p i A, is nonsplit.

2. D(V) is not a square in k,. Denote the discriminants of K, K,
by /JK, AK, rvespectively. Let {m,, #,} be an o,-Dasis of O, and {a), w,}

ity dual ba,szs, Le. trg g, () = 0,4, 1 =1, 2, where o T : K=k,
is the trace mapping. ‘1‘01 eases 2(a) and 2(b) (i) we have

M, = ?]- ‘ .CB deD,, ys D
: . € ) &
P up,_ a :' e Y Pl |

where 1, is a unit of o,. Thus an o,-basis for M, is given.by

10 00 0 o 0 &
leol” lo1] |-wz o] |[—wmo]

The dual of this basis with respect to the bilinear form B is given by

00 10 IR TR 0 u},‘lﬁé
o1 Joef |- o [ |—a 0

Tt follows divectly that A(M,) = AK:: = Agn,. For case 2(b) (i) we have

“ g -
M, =H—7@ d]| a,flenp,yebpl, _

where (7} = p.
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10 00 0 ] | 0
ool o) |~am of |—am o0

is an py,-basis for I, and

o0 10 ¢ a'zm] [ 0 '@
o1’ Joo] |-« o [ |- o

is ity dual basis. Hence 4 (M) = p?dx = p% Wehave proved the following:
ProposrTioN 6. Let V be o quaternary space over & representing 1.
Let A be the discriminont of the genus M of mawimally integral lattices in V.
(a) If D(V) is a square in %, then 4 = (q;...
the anisotropie finile primes of V.

(b) If D(V)is not & squarein b, K = Ta(l/l) (_V)), and W is the quaternion
algebra over k associated to V, then 4 = Ag 82, where dx is the diseriminant
of K and & is the product of all finite primes of k which ramify tn 9 but not
in K. .

We now complete the local classification of maximal lattices in V
by exhibiting & representative M, for each local stmilitude class of ma.mma,l
lattices in. Vp, where p is a :Emlhe prime.

If D(V)is a square in %, then every element of I, 18 the norm of aprop-
er similitude. Hence every maximal lattice in V, is similar to & maximally

integral lattice. Thus we may take M, = a maximally integral lattice
in V,,. L D(V) is not a square in k,, then we must distinguish between the
cases K, ramified over k, and K, unramified over ky. It K, i ramified
over iap, then (b) of Propoﬂtmn 3 shows that some prime element 7 of
k, is the norm of a similitude. If follows that every maximal lattice in
V is similar to a maximally integral lattice M,. If K, is unramitied over
kp, then the elements of &y which are the norms of 51m111tudefa are thoge

Then

-

-

ar)?y where qyy <., gy are

having even p-order. Hence every maximal lattice is similar either to

& maximally integral lattice or to a maximal lattice of norm P.
It 9, is split, then it i easy to verify that

. a
(1) , ‘[_ny ME]| @, (ienp,yEDp]

i p-maximal, where #is a prime element of Ky. It in clear that 4 (M) = p~
If % is nonsplit, then we take

(186) J.?![p ;”—m@ d]] a,denp,?jeﬁp].
From A'(M,) = o, it follows that M, musb be p-maximal ([4], p. 50).
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Summarizing, we have shown:

ProvosirioN 7. Let V be a gquaternary space over k represeniing 1.
Let qy, ..., qp be the anisolropic finite primes of V.

(a) If D(V) i a squm"c in k, then V has o wnigue idealcomples of
mawimal lattices 3, the set of oll mazimal lattices of reduced diseriminant
(- qp)*

(b) If D(V) is not a square in k, then for every fimite set Py, ..., Pe
of primes of k& which remain prime in K = k(l/bm) there is & (unigue)
idealoomplen of mazimal lattices in V having reduced diseriminant

Ag (oG (P1--- Do)
Boery mozimal lattice of V lies in one of these idealcomplemes.

We see that Agz(q;...qp)*% is the “smallest” reduced diseriminant of
maximal lattices in V¥, hence the “smallest™ reduced diseriminant of all
lattices in V. Accordingly, it is natural to call Ag{q,...q;)* the fundamental
diseriminant of V, denoted by A,. Then Proposition 4 can bhe rephrased
as: V ~ V' if and only if D(V) = D(V'), 4y = Ay, and T, V, have
the same Witt index for every infinite prime p of %. _

I V, V' are quaternary spaces which are similar by a mapping
f: V—V', then f gives a one-to-one correspondence between similitude
clagges and idealcomplexes of V and those of V’'. In particular, since f
preserves maximal lattices and reduced discriminants, f must take an
idealecomplex of maximal lattices in V to the idealcomplex of maximal
lattices in V' of the same reduced diseriminant. Suppose { is an idealcom-
plex of maximal lattices of V. Let A’ be the reduced diseriminant of L.
We can choose Le £ such that I, is either maximally integral or p-maxi-
mal for every finite prime p. Let § denote the set of finite primes p for
which I, is not maximally integral. If § has an even number of elements,
let %' be the quaternion algebra over k obtained by taking 9, different
from A, for all pe §; if § has an odd number of elemients and at least one
prime 1 of % (finite or infinite) ramifies in K, then let A’ be the one obtained
by changing %, for all pe SU{x}. Then the quaternary space V' associated
to A is similar to ¥ and its maximally integral lattices have diseriminant
A'. Thus if at least one prime of % ramifies in K, then for purposes of
studying similitude classes of maximal lattices, there is no loss of gener-
ality in restricting ourselves to the idealcomplex J of V¥, provided we let
V vary. However, if every prime of & is unramified in X (i.e. K is a subfield
of the Hilbert class field of %), then there exist idealcomplexes of maximal
lattices which are never mapped to I by any - similarity mapping. Such
an ldealcomplex will be called intransigent. We note that intransigent
idealcomplexes exist only if % has even class number. To study similitude

classes of intransigent idealcomplexes we need only consider those having
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reduced discriminant A/p}, where p, is a finite prime of & which remaing
prime in & and ramifies in 9. Such an idealcomplex contains & lattice
M such that B, is maximally integral for p = py, but

' ey ‘
an | Mpﬁ”m,,@ d]ﬁzde%wfeﬁno}’

where (7) = py. Then M, = Ag Vo where

1) 4, ~ [ﬂs:)po D,,D] _ [Dpo Dpo} lo 1
a0y, Oy, D, Op, |l 0
a left ideal of M(2,0,,). We note that A, is symmeatric. Then Proposition
5 can be 1eformulafoed f_or intransigent 1de£hlcomplexe,s to read: There exista
a symmetric lattice A with left order of level 8/p,, such that M =An ¥V
is & p,maximal lattice of V. Because of this formal resemblance,
and in order to simplify our notation, we extend the uxe of 3, H by permit-
fting them to denote, respectively, an intransigent idealcomplex, and the
nuimber of similitude classes therein. Consistent with Proposition 5,
we let @ denote the left order of A. Note that, although A is symmietric,
£ is not.

§ 4. The relation of H to a gemeralized type mumber. In this section
we determine the local groups of units 87 (M) for a maximal lattice M
in ¥ and use thig information to relate H to a certain generalized type
number associated to the guaternion algebra Us.

According to our digcussion in § 3, we may assume that either (1) I
is maximally integral, M = Qn7V, where £ is a symmetric Eichler order
of A of level 8, or (2) M is po-maximal, M = ANV, where 4 is & symmetric
lattice whose lett order £2 is an Bichler order of level §/p,. Furthermore,

- by throwing the primes which ramify in K or 2 into the exceptional seb
mentioned in the proof of Proposition 5, we may assume that M, 2,, 4,
- for these p are in the standard forms given in (17), (18}, and in the proaﬁ
of the lemma preceding Proposition b.
Let p be a prime of . By 1Jhe corollary to P’r opomtmn 3, we have

8F(Vy) =k XWE [I (B < F).

I p is a finite prime, let U,, U(D,), U(L,) denote the unit groups of
Dpy Oy £y, respectively. If p is infinite, pub o, =k, Oy = K, 2, = Uy,
and let Uy, U(D,), U(&,) denote &, I, Az, rospectively. Pub

I{U, X U(Dy)) = {(e; @)e Uy X UDy)| myg e (@) = ¢
Then
Up X U(2) NIy X EZ) = I(U, % U(D,)).

“
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Hence we have a natural embedding
Uy x U(Q) (T, x U{D,) = 87 (V).

Lmyra. Let Q, M be chosen as in Proposition 5 or ils analogue for
wntransigent idealcompleres. Then

Up % U(Q)1(Uy x U(D,)) = §F(I1,).

Proof. Let wue Uy, e U(.Q,) Suppose M, is makuna.lly integral.
Then M, = Q,NV, = ’ma.Q g nV = we(2,NV, }s == usMa Now sup-
pose M, is p- mfuxmnl Then M, = QINV,, Wher

IT = .
w 0
We note that 2% = II~*Q, 7. Then &< U (%) and
M, = QIINY, = ueQ,IINT, = uell D} AV, = udIG5E" NV,
= weQ IIE NV, = ue M.
Let @ be an Eichler order in a quaternion algebra U over a local
or global number tield k. The normalizer N(0) of @ is defined to be the

group of all ae A* such that ale™ = @. If & is a global number field

and p is & finite prime of %, then

1 if @, is of level o

(19) (o) U@ =, o "
2 it @, is of level p.

In the case where @, is of level p, the non-trivial coset moc’l?&" U{@,) can
be represented by a generator I7 of the unique two-sided pume ideal of
¢, (cf. {61, §2).
We proceed to determine coset representatives for
(T X T(R) T (U, x U(D))NS* (M),

Notation. Suppose a,bel), a, fe ﬂl§p.' Then (@, a) = (b, ) wil
mean -

(wb“,_a,&“l)e Dk x K.
1. D(¥)is a square in %,. Then
Vp = {(‘E: §*H 56‘%}, Mp == {(5! E*H e mp}r

where 0, is a maximal order of %,. From .(_2; = 0, and .Qan; = Jf, we
deduce 2, = O,@0,. Suppose (¢, a)e k) xﬂlép and yp(e, a)e ST(AM,) (cf.
Oorollary, Proposition 3). Then a = (8, y), 8, ye %, and

M, = ecaM,a* = {eﬂ(ﬂpy*®cy@pﬁ*)an.

2 — Acta Arithmetica XXTX.1
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Thus Gﬂ@p'y = 0,, which 1mplleﬁ By " e M(0y). According to (19), if U,
is split we may asgume By ey, ie. ﬁ,yel". Then. ¢80,y" _cﬂy@
== @),, which implies 0 = (f8y) Y lu, we U, Hence (¢, a) = (4, 1)e Uy X U(Q)
We conclude that

SHM,) = T, X U(R2)/ DU, xU(D o)}

il %, is split, If 9 is nonsplit we hanre the additional possibility o = (II, II),

¢ =N{ID™, whwh gives
[8F(3,): U, x U(Q,)[ (T, x U (Dy)]] = 2.

2. D(V} is not a square in k.
eky ¥ QIK Multiplying (¢, ) by 2 suitable element of I’(l xlf o) We nay

fiake ae Q Lot m be a prime element of O,. If @, = DM(2,0,), then,
multlplymg a on Fhe left by & suitable unit of .Q ([6], p. 132), we may as-
sume that

n %
(20) a=|, ol @i=z0

where se D, is reduced mod« . If, on the other hand,

P = )
70 O
then we have the additional pessibility

' 0 oAl
where  is reduced mod "+, For the sake of smlphelty we write n = nKp,,ﬂp

in the ensuing discussion.
(a) Suppose %, is split and K, is unramified over f,. Then

oy N
M, = H_g d]' w‘, fle np,yeDyl

cand - £, is o waximal order of Q[Kp = M(2, E,). We caim that &,
= M{2,0,). Put 4, =0,M,, an D,lattice in W, Then £, o Ay,
M(2,0,) = 4,.
A{dy) =0, (M) =D,
Hence 2, = A, = M(2,
(22) '

o)l e ][ 0 as — An () — o (4 +Fy) Ao + oty
¢ 0 2| —7 a|| —= - =0 —(A5E + A ) d® :

Turthermore,
= A(Q,) = A(M(EZ, Dw))-

Oy,). Taking me k,, we have

Suppose that caldl,& == M, (e, a)

icm
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It follows immediately that on™ = ue U,. Taking y = 0,8 =0,d =1,
we see that =™ [n(x). Since x is reduced mod:z’ this 1111131168 ¢ = 0. Then
e’ e U,, which shows that ¢ =j and (¢, a) = (6n%, 1)(a™%, a) = (u, 1}.
‘We conelude thab

BT (M) = U, x U(2,)/ (U, xU(D,)).
(b) Suppose K, is ramified over k,. We may assume that I, 2, are
in the standard forms '

a ¥y '
M, = g d | @, de 0y, Ye Dpl, e Uy,

and £, = M (2, 0O,). Following the same argument as in 2

: (a) (but using
n{m)t, n(m)! instead of 7*, a*), we deducs once again that

SH(M,) = U, x U(2,)/T{U, x U(D,)).

(¢) Suppose A, is non@phﬁ and K, is unramified over %,. Let = be
& prime element of D,

(iy M, is maxunally integral. We take M,, £, in the standard forms

@ o, D
M, = Y ]a,denp,‘yebp, Q, =" 7*.
—my d aly Oy

' ﬂ'i T i
Ifa= ) A reduced mods", then

0
at w o 7 0
(23) ¢ . v .
¢ &)} —af &) | —a¥ A
' an™ — dan (@) — 2+ (27 4 Ty) dﬂ’m+ar’+’y
=¢ .
—a(ddE+ 2y - dat
As before, we have en® = we U,. This implies #¥|an(z), l.e. 7%~ |n(z).
However, n(2) has even p- 01der Hence we must have a*/ !fn(m), which
shows that @ = 0,1 = j, and (¢, a) = (u, 1). B

.0 A ,
If g = [”Hl i reduced 11"10(1_9_.1"'“, then

(24) 0 a yl[ o —a!
B [ ] .
. . :,1:.1+1 5 _ﬂg—j d ___J_L.'&-I-l 7 :

-
i+J'+1y)

Y At + ottty ’
. —w{date + =

a7+ dn () + 7 (my +ay) |
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Then en®* = we U, and ="'|n(z), which implies ) (). Hence
@=0,i=7j and (¢, a) == (un"", I), where

Il = .
w0
We conclude thab

[$%(M,): Ty U{Q) (T, x U(D)] = 2.

(i) M, is p-maximal. Here we take M, 2, in the standard forms

I} = ¥ -
. M, = ey d w @, dey, e Oyt
Q, = M(2,0,). 'We need only consider

at m
o = , @ reduced modx’.
0

This case can be treated by assuming that mle in (23). We note that this
asgumption does not atfect the argument following (28). Hence the same
conclusion Is valid, and -we must have

SHM,) = Uy x U(2)/ (U, x U (Dy))-
‘We summarize the preceding discussion in

PrOPOSITION 8. Let Q, M be chosen as in Proposition b
for intrangigent idealcomplemes.

(&) If £, is of level Oy, then

8T (M,) = U, x U(R)/I(T, x U(D,))-
(b) If L, is of level p, then

[ST{M,): Uy x () 1(Uy x U(D))] = 2,

or its analogue

- the non-trivial cosel being represented by 'e,u(N {7, (I, ID) of p splits in
K, and by (N (JI)™", I} if p remains prime in K. :

Remark. Tt is dlear that Proposition 8 remaing valid if we replace M
by an arbitrary lattice Le 3 and Q by the left order of L.

Let ofy, Jg, Ju,, denote the idelo groups of %, I, MWy, respectively.
We have natural lncluﬁlﬂnq Jy = e = Jy, which are compatible with the
natural inclusions ** = K™ < Wg. The norm mapping mgy: KX-ok*
extends in the nsual way to a mapping ngy: Jx—J,. We put

I(Jy % dg) = {(e, ®)e Jy X T x| ngp() = 67},

(25) BTV = X [Ty %I g).
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Then

B WISy X5
implies that we have a natural embedding

(26) _ 8 (V)= 87 (V),-

o= I(B* %K)

Let V, denote the adelization of ¥. For each lattice L in V put
I = ]']Lp, where L, = V, for infinite p. Then T is an open sul)group of

Vi C‘onvemely, if L(p) is a lattice in V, for each finite prime p and L{p)
= ¥, for each infinite p, and if [ ]L(p) is an open subgroup of ¥, then

there exists a lattice T in V bl‘l(‘h Lha.t Ly, = L(p) for every p. Furthermore,'

L is umquelv determined by I, since I = LN V. For ac Jugy o= (a),
put a* = (“ ). Then S+( V), acts transitively on 3 by

L—soala® NV, - eedy, ae JQIK.

Thiz action is compatible with the aetion of 87 (V) on I already defined
and. the embedding (26). Thus L, L,e 3 are similar if and only if they
are in the same orbit under the action of the subgroup 87 (V). For any

lattice Le 3 et 87 (L) denote the isotropy group of L undel the action
of 87(V)s. Then

@7 Ho=cmd(ST(V)NSF(V)LI8T (D).
Choose 2, M as in Proposition 8. Set

U, = I] U, U =IJ U©), U@ =ij U(2,),

%) =[] we,),
B

where MN(2,) :'QIEP for infinife p. Deﬁne gJtﬁ.(.é) to be the group of all

ve dJy, such that vﬁ_i* = n for some ne o We call na multiplier of
» and denote the set of all multipliers of » by m(»). Then m(») = nly, and

we may regard m as a homomorphism m: Ny(Q2)—>J/ Ty It is clear that

N(D) = [[ M4 2y, where My (2,) = {rye W, | 1, Q7 = 1y By, mpe k3
P T

If vye My (£,), then », L207 V= 0, since », Q,v; " is the left order of vp'QE:J

“and £, is the left order of n,2,. Thus we have

(28) ' KX U(£2,) = B(2,) = N(2,)
and : '
(20 B JrU(Q)c ff_ts(!:?) < N(D).

-
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Tt follows from (28) that M. (2,) = KJ U(&y) lf 2, has level O,. If 2, has
level p and p remains prime in K, then ITQ, 1T * = N(I1) 2,, where

T = .
w0
= N(2,) in that case, If, however, p splits in K, then
0):EFU(2,)] =2,

Hence N, (£2,)
[R(Q): I U(R)] =4 bub [

because

(7, 1) QI 11)* =

(71;1)* = (IT, IT) 22,

NWD &,
(I, 1) 2, = (1, I) 2, (T, IH*.

In particular, SR(Q)/SR (Q) is an elementary abelian 2- group of order 2.
The wsual type number $(£2) is defined by

(30) £(0Q) = card (W /B oy [T/ R(2) /T )
We generalize this notion slightly by introducing
(31) 1,(2) = card (UF/H* NI o [T xR, ( el i) -

Then ts(Q) = §{ {2
p of k. '

The mapping (¢, a)>amodJ g, ce Jy, ae me indnces
phism

Q) it f = 0, that is, if V,, is isotropic for every finite prime
lomomor-

o 87(V) A—}JQIK/JK
) = Widg/dx —QIK/K" and Proposition 8§ shows thai
oS (A1) = W ().

This implies that 4,(02) < H. Sup]mbe (@, a), (b, B)e Jp X, and f = q:a'.u
~where ye g, »¢ S(Q) with multiplier . Let h denote the class nnmber
of k and let ¢, ..., be a complete set of vepresentatives for J/k* Uy,
Then ba~'n = daiu for some ¢ = 1,2, ..., k, where deck*, ue Uy, and
we have (b, ) = (¢, 1)(d, ¥) (@, @) (5~ %, v). We conclude that &,(Q) < H
< i, (). In pavticular, H = t,(2) if & hay class number 1. TL & does not
have class number 1 it seems difficult to give the precise relation between
,(42) and H, the major obstacle being the fact that elements of N, (f.))

Then o8+ (V

need not have principal nml’rlpher&, IIowevex, we can say o little bit in

case fi = 2.

Let ajedy,, f=1,..., t,(£8), represent all the (generalized) Lype
- clasres for L. Suppose o, beJ, and (e, ), (&, @) represent the same,
similitude clags. Then ¢ =j and ba‘lekxm(iﬂs(b)). Putting B = [J:
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:'lc*m(ﬁts(é))], we conclude that h'4,(2)< H. Let py,...,p, be all the
finite primes p of % which remain prime in K and for which £, is
of level p. For each ¢ =1, ..., ¢ let m; be an idele of % whose p;-th com-

. ponent is a prime element and whose other components are 1. Let (sy,. .., 7,»

be the subgroup of J;, generated by =y, ..., 7. It is easy to see that
:m,(g}s(g)) = Uptgy (F ) o835 o<1y Tog) -

We know by class field theory that [Jp:k* ngy(Je)] = 2, m¢ b ngu(dx),

i=1,...,e Hence B’ = 1 except if 6 = 0 and U," = k* ’HK]L(JK) in which

case b’ = 2. If we assume, in addition, that i = 2, then K is the Hilbert

class field of & and H = 2{,(2). We have proved:

ProrosrrioN 9. Let 2 be chosen as in Proposifion 5 or its analogue for
mtmﬂ,ségem idealcomplexes.

a) If k has class number 1, then H = 1,(£2).

(b) If K is the Hilbert alass field of % and 2 is ¢ magimel order, then
H = 2¢,(2).

Remark. Part (a) is valid even if D{V) is a square in &k, K = kok.
In that case f,(2) can be interpreted as the number of classes of normal
ideals of U (ef. [17], Proposition 1),

§ 5. Some weight computations. We assume from now on that &
= 0, the field of rational numbers. In general, we will make the conven-
tion. that & fractional ideal of Q will be identified with the unique positive

‘rational number generating it. This will be the case, in particular, for the
norm n(ZL) of a lattice I and the level § of an order 2. We will make ex-

ceptions for Ay and the discriminant and redueed diseriminant of a lattice
I, defining the latter two by
A(L) = det[Blvg, v)], 4'(1) = det[n (L) B(o;, )], _
Where {v;} is & Z-basis of L. It is clear from these definitions that A{L),
A'(L) will be negative if g is indefinite and of signature == 0. By taking

: 1nto account the signs of the dlqcrlmma;nts, it is eawy to verify that (b)

of Proposition 6 is still valid.

Throughout this section we assume g is positive definite and D(V)
it not a square in Q. Thus X it a real guadratic extension of € and A is -
& definite quaternion algebra over ¢b. We choose 2, I as in Proposition 5.

For each prime p of Q, p of X, let the corresponding normalized valu-
ation be denoted by | |y, | |y, respectively. Put

Ty = {(a)Tg| [T lagly =1},
. P

T =) e Jie| [T el = 1},
k)

J&K.z {(%)E.Jarxl”li\r(ap)\p =z 1}..
p .
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By the ploc‘mct formula, Q% < Jp, KX < Iy U = JQIK Set

Uh = UQnJQ, Uy = Ugndk, UHQ) = UD)ndy,,
WD) = N(D)"Thy,  R(D) = Ry(D) Ty
" Put
@ = WJR", G =T Tk, Q) =Dk, 6D = TN Tk,

Then @y is a locally compfu.c’r gxoup, @ iz a diderete subgroup of
& and, since Ay is totally definite, G*(2), GL(2) and G\EG, are compuct
spaces. It follows, in particular, that 6% is unimodular. Sinilarly, if wo put

C DIy xd%) = I(Jg Xdg)Ndg xdg, SV = JQ ><JQ[_, [Ty % k),
8F (JI) = 8+ (H)NSH(V)L,
then 8* (V) is a locally compaet ummodu]aa group, 8T(V) is a; diserete

subgronp of S*(V)}, and S (LY, (V)\;S”(V) L arc eompact spaces.
The homomorphism g: S*(V)A»JuK/JK, when restricted to S”'“(V)A,
gives a one-to-one correspondence between S*(V)NET(V)y/8*( b’y ! and
NG 6L (D).
Furthermore, we have _
H = card (ST (T)NSF(VRISTI0Y,  1,(2) = card (NG )G (D).

Tiet 4 be the Haar measure on &% such that Z(G’%(‘f))) =1, For sini-

plicity, let 4 also denote the right invariant measure on G\G% which

“lifts” to A by means of the local homeomorphism: G} —G\G; .
Let M, ..., Myzropresent the similitude classes in I, We may assume

thalth ajMClj, O!je'JgI ,jml H P'llt 4; = a,mOdJK,j ~—1
Then we have a disjoint double coset decomposition

| @ = ) Gg@(H)
. f=1
which shows thab ’

H H
HENGY) = D 3(EN6g,64(2)) = ‘\: MG g, 65 (D g7

J=1 J==1

“‘2 Alg; 6 1) =2 1. .
card Gng,Gl ) ) 4 ca,rd(Gngj.G;(Q)gf‘)‘

i=1

We note that 9(8+(M,-)1) = g,GH D) ¢;'. Hence

o(S*(M) = of8*(V)N8*(IL)) = Gy, GY( D g7

iom

Arithmetio of quaternary quadratic formns 25

Sinee ¢ is definite, 87 (M) = OF(M;), j =1, ..., H. Leb g; be the restrie-
tion of ¢ to O (24;). Then

_ZFI)/Kelgj_Gng?Gl( )JJ » J=1,..,H.

To determine Kerp;, suppose ¢e OF, e K*, and omlll’,-ﬁ* = M;. Then
thgp(0).M; = M; and we must have ngg(e) = +e¢ . It follows that
Kerg; = {£1} and :

.
1 1
‘(32) HENGL) = zf..: card{OT (1))
H 1 '

‘We write j;: M = M (3}, the Mi%kowsk@j—ﬂiegel waight (Mass)
of 3. .
If, on the other hand, we choose the Haar measure 2’ on G such that
l’(Gl(é)} = 1, then the same line of reasoning shows that

4o
{42) 1

(33) (G\G1 ) = _—
/—J [R(2,):E*]7
where the Qn, n =1, ..., t({2) are representatives for the types of Eichler
orders of level 6 in QIK We know by a result of Eichler {[6], p. 137, (16),
(18)) thaf

12

(34_) g; [ER(Q:):KXJ a 925"J-K*2f(9 %ZH i 1) H p—1)*

fem=1

where {z is the Dedekind zeta function of K, py, ..., p, are the isotropic
primes of ¥ dividing 8, and ¢, ..., ¢; are the anisotropic primes of ¥V
dividing 6. The value {z(2) can be expressed in terms of generalized Ber-
noulli numbers ([11], p- 135) as '
4

— 7 BB,

{38) {g(2) = Aara

where B* == 1/6 and B} is the genera.lized Bernoulli number associated

A
%0 the Kronecker symbol x(m) = (_ﬂ_ii),

g A Agr Ay
| S enay B
(36) B, = -7= = .

Using the fact that A(GNGY) = 271 (G\G}), we conclude
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PROPOSIITON 10, Tet J bo the Haar measure on 6 such that A(65( ) =

Then
; & r - Ay ,_ij
[+ [ -7 | (5] ]
(37) A(G\G}&_) = XM (3) == =l Bl == | )

3 26 -I“f-k "J . A 1‘:‘

Remarks. 1. The ehamotm sum appearing in (37) can be ferther
simyplitied as follows (ef. [10], §6)

4

K
215
— ) W
P

dx
(AK-—-I)IZ A
. ) Y
AGE |
(38) 7 it Adg = l{(mod4),
. AR .
SE) g
(5] |
{dpia—1)2 .
2} ’”( = )m if  Ag = 4(mod8
69 =47 MZ S it dg == 4(mods),
Agri8
©(40) 22 (f‘f)[ +{( ——1)"““”’2—1)497,] it dg = 0(mod8),
n=1
' : dx > 8
@y |2 IR it Ag = 8.

2. Exactly the same sort of reasoning can be used to evaluate M (3J)

in the square digeriminant case {(c¢f. [17], § 7).
- Let®,,» =1, ..., g%, be the similitude genera conbained in 3, where

¢" is the namber of striet genera of K. Let M{®,) denote the Minkowski—
Siegel weight of®,,r = 1, ..., ¢, and M (M) the Minkowski-Siegel weight
of M, the genus of maximally integral lattices. Then

ui‘
o M) = ,,% M(G,).

We claim that all the ®, have the same weight, so that M(J) = g™ M ().
Let Q% denote the subgroup of @* of positive rationals. We extend the
notion of the norm of a similitude by setting n(o) = nlo(M )) oe ST(VY4.
Tt is clear that #:8*(V),—0F is a homomorphism, We recall that two
maximal: lattices F,, L, are in the same similitude genns if and only i
n{L, )J'n,(L ) = Mgy (@), we K™ ([14], p. 338). This 1mphestham,/1/" = n Q%N
Mgy, (H )) ig & normal subgmup of §*(V)} of index g* which containg
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both §+(¥) and 8% (JNL. In partieular, 4 must be an open normal sub-
group of 8T(V),. The similitude genera &,,r — 1, ..., g*, are in one-to-
one correspondence ;with the cosets of 87 (V)i mod 4. Let o,e ST(V)h
be a representative for the coset corresponding to ®,,r =1,...,¢".
Then the similitude classes in G, ave in one-to-one correspondence with
the double cosets of §*(VyNAH 0, /8T (ji“)l_ If we choose the Haar meagure
woon 87 (VYL such that M(S*‘(Jl})l)‘ =1, then

H(B,) = p(8TV)NH ) = plSH (VIS ) = M(M),
Tiet ¢ denote the number of distincet primes dividing AIL Then g+ = 27,
which shows

COROLLARY. Let M be the genus of mawimally 1.-1-btega"al- lattices in V.
Let § be the number of distinet primes dividing Ag. Then

3 I ) 4 Az\
[0 ]] -1 [Z(—q;_) wr]

il fo=1 m=1
» 3 Laetiritt AK

P11, .., gt

{42) M) =

Let OF( V), be the adelization of OF (V). Let v = [[7, be the Tamaga-
P
The Minkowski-Sisgel theorem states that
M) ([Teo0F (M) = 2 = (0T (VINOH(V),).
»

wa measure on 07 (¥),.

{43)

It turns out that the product of local measures appearing in (43) ean De

computed In an elementary faghion. This computation, together with the
preceding corollary, gives an elementary proof of the Minkowski-Siegel

. theorem in this special case. Having already done thiz for the square

diseriminant case in [167, § 5, we obtain in this manner an elementary
proof that the Tamagawa number of 0+ (V) is 2 for any definite quaternary
space ¥V over Q. Az this particular aspect is not of primary importance
to us here, we will only sketch the means by which the local measures
7, (07 (M,)] can be eomputed. i
Tor this purpose it is convenient to ’ta.ke the deberlptlon of 0T (V)
provided by (b) of PlOPOS’Lthn 2. Put

W — {ue Wil N(a)e 0%},
Then (b)Y of Proposition 2

| Ui = {ae Wi | Nia)e 05}
shows that we have canonieal isomorphisms
Ug/Q* = 04(7), IO} = 0% (V,).
Put 7(2,) = U(2,) N . Since T(2,)N0% = T,,
2,)/ Uy 88 & subgroup of O*(Vp). In fact, we have
0)]U, & 0F(IM,).

we may Tegard
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2,)/ U, except if p|ddg, In which case
) Upl = 2.

One can show that OF(M,) =
[0F(Mp): (

Let K, (Wg), be the adele rings of K, g, rehpectwcly The Tama-
ga,Wa MeaFure ¢ = H% on K is glven by: Gp(Dp) = 1iorp < 00, 0, = ARl
times ordinary Lebe%gue meagure for p infinite. For each infinite prime
p of X we have QIEF = H, the Hamilton quaternions. Any a< H can be
written o = m,-@,0 -+ %) 25k, where 1,4,7, % is the standard Dasiy
of H. We define a measure o = [Jo, on (Ag), by setbing o, (L) =1 for

p < o0, wy = deyda, duyde, for ppinfinite. The Tamagaws IDeasure on
(W), I8 eo, where ¢ = 16/( cMR .

Put NY = {aeW, | N(a) = 1}, SJI‘” fa, e Wg, | N (ay) = 1}, QP
= .Q N . Let v = nw he the Haar measure on (AL, the a.dellmmmn
of WY, obtained from o and o by the usnal limiting procedure. Then
¢v is the Tamagawa measure on (UAY),. For each prime p of Q let

= ‘!lg’pp . .
If p14, then QY = 8L(2,90,) and it is well known that

st =0 aofo- {2

J
where (—f) ig the Kronecker symbol.

(44)

I p=p,i=1,...,¢, then it is easy to show that

(45) ) = a7,

‘Ifp =gy k=1,...,f, then

p* -
(46) W) =g G-
Finally,
1 (QF) = AL

(47)

The inclusion UL c YL indnees a natural mapping AL - /O
with kernel {+1} which is an izogeny at the local level:. ‘JI%’ ->QIK 195 .

The restriction: .Q“’-—>U(.Q )/U, is an isogeny with cokernel of ord.el'

[U,:(T,)] for p< oo and orderlfor p = co. Since [U,:(U,)] = 2 for
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p #32, but [U,:(T,¥] = 4, we have

(48) [w(0@2)10,) = [ [0

» r
Hence
(49) ]2, (07(3L)) = e2HH [ o (00

n il
5/7 4 2 -
Hl {pi+ HI (2 —1)" S (2)
= 5 p;;{_&} = 20 ()~

§ 6. Class number formulas, Tst us first dispose of the indefinite case.

ProrosirroN L1, Suppose V is indefinite. Let T be the number of distinet ’
primes dividing Ag .

(a) If ¢ has mgmtwa % 0, or if K has an element of norm —1, then
H =21 :

(b) If g has signature O and K does not have an element of norm __1
then H = 272, '

Proof. By the theorem of Kneser ([9], p. 330), every similitude genus
of maximal lattices containg just one similitnde class. It follows that H
is the number of similitude classes in 3. We noted in § 3 that I containg
gt = 271 gimilitude classes if ¢ has signature = 0. Suppose ¢ has signatire
0. Then K is a real quadratic extension of @, and, since Wy s fotally in-
definite,

%(S+(V)) = W’KIE(N(Q‘[E)) = N (L)

Tt follows that Ly, Lae ¥ are in the same similitude genus <n(Lg}in (L)
= fgy (@), e K*. We conclude that H = g, the number of genera of K.
Tt is well known that g = 277 if ngy, represents —1, g = 28%if it does not.

Now suppose that V is definite. We 11npoqe the followmg additional
conditions:

(1) ¥, is isotropic for every finite prime p.

(i1} The fundamental unit of K has norm —1.

Condition (i) implies that g is split at every finite prime of K. Hence
3 =p,...p, and H =1, the type number of Fichler orders of level § in
A, We could then apply the general formula for the type number of
Eichler orders in a totally definite quaternion algebra ([6], [14], [15]) to
obtain a formula for H. Unfortunately, this formula is rather complicated
and not very explicit. However, the imposition of condition (ii) greatly
simplifies the computation of the terms appearing in the Selberg trace
formula expression for H, and results in explicit formulas for 7 of a very
elementary sort (cf. Theorems 1 and 2). In this section we will only state
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thege formulas. Their actual derivation will be left to the remaining sections.
We note that condition (ii) implies that A, only has prime divisors p of
the form ¢ = 1 (mod4) or p = 2.
Notation. For any positive integer m, let A{m) denote the nmmber
of primes dividing m; let i({—m) denote the class number of OV Zm).
TrEOREM 1. Suppose V is a definite guaternary space over Q satisfying
conditions (1) and (i), Let T be the idealcomplen containing the maximally
integral lattices of V. Let H be the number of similitude classes in I and 4
the reduced discrimingnt of J. Let & be defined by A = Ay 6% where K o=
Q(}/B) {ef. § 8, Proposition 6). Denote the square-free lLermel of A by D.
If D is odd and A =5, then
(50)  H =2M(T)+eyh{ —DN-Fegh( —3D) -+

n 2 9- a(ﬂ)—u(nd)h( - rn,d) b —nD /d

nls, d\ D
where nd 7&1 3; d< VD and
if 248,
6 =
if 216,
344,

T = if  3]4, D == 1(mod8§),

if 3|8, D =5(mod8)

P - I “eal
-,
=5

and if D =1(mod8),

—2  if  m =3(mod8),
a{m) =l if

0 m = T(mod8),
2 if mo=1(modd)
while if D = 5(mod8), ' :
0 if m = 3(11106_4)
o(m) = 2 i mo=3(mod4}, 218,
2 4f  m o==1(modd), 244,

s 1{modd), 218,
LFurthermore,

I -1z
~(B1) (D) o o

e Gl B

D
where (W) 18 the Kroneckéer symbol.
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CoroLrARY. Suppese that A = p, a prime greater thon 5. Then

-1
. (——-)m
(52) _ ~ \m n h(-—_fp) . h(—3p)

<@

Remarks. 1. If A4 =p, a prime, then Ap = p,p =1(mod4). It
is well known in this case that the fundamental wnit has norm —1 ([3],
P. 1&))

2. Tamagawa has shown, nnder the aﬁmmptlon of the Corollary,
that H = B{Wg)/B (LK), where h(Ug) is the ideal class number of We and
R(K) iz the class number of K. Combining this with Peters’ formula for

~h(Ax) ([14],.p. 363), we obtain ancther pIOOf of (62). $till another proof

of (52} can be found. in [8].

THEOREM 2. Suppose V is « definite quaternary space over Q salisfying
conditions (1} and {ii). Let 3, H, A, 8, D be defined as in Theorem 1, If D

+3h( —D) +o,h( —3D) +
\ ' —Mn)—o(rd) )
+ G-nclg h( -
u]d,zdjl)

(53) H =2M(%)

ndyh( —nD|d),

where nd > 3, d is odd ond
" =“37 zf 314,
| : Lo 310
and for m >3,
if  m = 3({mod8),
i m = T(1mod8),
if  m = 1(modd),
_ 1 if m = S(mde),
g(m) = l{) if  m == 7(1n0(1é),
2 4f  m o=I1l{mod4).

Furthermore,
Il (»*+1) 22 p
| (54) lﬂﬂi’s—ﬁm [Z(?;Z) (D+((W1}(m~1)f'm1)m)] if D#2,
M(S)= m=1
1 (»*+1)
. (55? oo 17153.26+4 if D =9,
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At this point it seems appropriate to interpret ovr lattice-theoretic
results in the traditional language of quadratic forins. A quaternary (guad-
ratic) form over @ is.a homogeneous polynomial f = f(X,, X,, X,, X,
of degree 2 with coefficients in @. The disoriminant A(f) of f is defined by

o'f

(536) 9X,0%,

A(f)=det[ ], i,f=1,23,3,4.

We always assume A(f) # 0. Given a guaternary form f over @ we can
define a quaternary space V, over O by evaluating f at the elemonts of
*. We assume that V; is not negative definite.

A guaterhary form fover @ is said to be {nlegral if all of its coefficients
are integers. An integral form is primifive if the g.e.d. of ity coefficlents
is 1. Two quaternary forms f,f" over Q are equivalent, written. f o f,
if there iy an element o SLi(4, Z) such that f'(X;, X,, X, X,) = floX,,

6X,, oX;, 6X,), where oX, = Y'a. Xy i o = (ay): TEf o2 ', then A(f)

= A(f", f is integral <-f' is mtegra:l and f is rnmtw& <f" 1§ primitive,
Classieal reduction theory shows that the number of equivalence classes
of integral quaternary forms having a fixed discriminant is finite. It is
this notion of class number which is of primary interest from the classi-
cal point of view. We. proceed now to relate it to the lattice- them*etlc
notion.
Let V he a quaternary space over Q with quadratic mapping g: V0.
We fix an ordered basis vy, v,, vy, ¥, for V and call any other ordered
" basis wy, wy, wy, w, of V positively oriented if the linear automorphism de-
fined by v+w;, ¢ =1, 2, 3, 4, has positive determinant. Tet T be a lat-
tice in V7 with positively oviented Z-basis @, @, @, #,. Define f to be
the unique guaternary form such that

(57) Fuly; 8, 05, a,) —-u(L | z 0,2;)

=l

for all a,« Q, i=1,2,3, & Then f, is a primitive integral form aid
A(fe) = A(L). Tt is clea.r that a different choice of positively oriented
Z-basis of L will yield an equivalent form. Hence the cqulwﬂencu clags
{fz} is uniquely determined by ZL.

Two lattices L, M are said lo be stricly similar, written I M, it
oL = M for some ge STV} with n(e) > 0. Striet simnilarity can dlffm
from ordinary. sumlarlty only if. ¢ has signature 0, as all proper similitudes

have positive norms when q hasg signature =4 0. Suppose L, M ave lattices .

in ¥V and L ~ M. Then oL = M, where ge §*(V), n(o )> 0. It follows
that »(M) = n(c)n(L). Let oy, 2y, o4, 2, be a positively orviented Z-basis
of L. Then o(&1), 0(%s), o(@s), ol{ay) is & positively orlem“cd Z-baxis of M
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and. we have

4
FaelBss G, @y ) = n (M) 3 wyotay)
i=1 ’
4

9.’(2 a’z‘“”'i) == fr, (a1 @2, @3, a4)

Fe=l

= n(a)n( )"

for all a;eQ,i =1,2%,3, 4 Hence fr = fy,, and we have a well-defined
mapping {Lir> {fr} from strict similitude classes of lattices in ¥ to equiv-
alence classes of primitive guaternary forms. Suppose L, M are lattices
in Vwith f7 == f;. We may assume, without loss of generality, that f;, = fy,.
Then there exist positively orlented Z-bases #,, By, &y, #, ond Y1, ¥, Ja, Yy
of I, M respectively, such that

4 4

(68) n (L)~ (Z a1m1) =n(M) g (Z aiyi)

Fa=l im=1
foralla;e @,9 =1,2,3, 4 Definece GL(V) by o(®;) =y;, 1 =1,2, 3, 4
Then (58) implies that oe 87(V) and a(e) = a2 (IM)n(L)™ > 0, which
shows L ~ M. Thuy {L}h—{f;} defines a one-to-one correspondence
between strict similitude classes of lattices in V and equivalence classes of
primitive guaternary forms. This correspondence is “diseriminant pre-
serving” in the sense that 4'(L) = A{f;). Furthermore, it is clear that any
primitive quaternary form f arises in this manner (simply take V = ¥,
L = 2%,

I two quaternary spaces over Q are similar by a positive factor of
similarity, they yield the same eclasses of primitive forms. Therefore,
in order to obtain all classes of primitive (non-negative definite) quaternary
forms, it suifices to fix one quaternary space (V,q) for each possible
fundamental diseriminant when g is positive definite or the mgmtuxe of
g is 0; when ¢ is indefinite with signature = 0, we must also fake (V, —g).

Notation. For any integer m let H*™(m), H™(m) denote, re&pect~
ively, the number of classes of positive definite integral quaternary forms
with discritninant m, the number of classes of indefinite integral guaternary
forms with diseriminant m. :

TarorEM 3, Suppose K is a quadratic extension of Q cmd ¥ is a quat-
emamy space with A = Ag.

a) If V is positive definite, then H¥ (Ag) =

(b) If V is indefinite with signature + 0, then H™(Ag) = 2H.

{(e) If V has smgfn,mtw*e 0 and the fu%dmmenml wiit of K has norm —1,
then H™ (dg) =

(@) If V ohas szgnmtwe 0 and the fundmnmml unit of K has morm 1,
then H~ (Ag) = 2H.

3 — Acta Arithmetica XXIX1 -
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Proof. If Le 3, then fr is an integral quaternary form with A(f,)
= A'(L) = Ag. Conversely, suppose f is an integral quaternary form
with A(f) = Ag. Then f must be primitive since Az it not divisible by
the fourth power of a prime. If V is positive definite, then f = f,, for some
lattice I in V, and 4°(L) = A(f;) = A implies that Le 3. If V iy indefi-
nite of signature # 0, then f = f; for some lattics L in (¥, g) ox(V, —g).
The clagses of forms coming from (V, ¢) arve disjoint from those coming
from (V, ~g), as they have different signatures. Jence their total 'munl‘)m
is 2H. If V has signature 0, then f = f,, for some Le J and H™(dy) == the
number of striet gimilitude clasges in J. ' We must compare the latter 1L111111)el
with H. Suppose L, Me J and ol = M, where oe 8§7(V) and n(s) < 0.
Then I ~ M if and only if there is & ve 81 (L) with n(z) = --1. From the
remark following Proposition 8 it is evident that ze §7(L) implies n(7)
= gy () for some untt % of O. On the other hand, since Ag is tofally in-
definite, the sfrong approximation theorem of Richler ([B], p. 239)
shows that any unit « of O can be expressed. as ¥ (z), where ¢ is a unit of
the left order of L; thus ngy(u) = n(r), where v = p(1, &) 87 (L). We
conclude that I has a unit of norm —1 if and only if D has a unlt of norm —1.
Assertions (c), {d) follow immediately from this observation.

COROLLARY 1. Let K be a real quadratic extension of Q whose funda-
menml wunit has norm —1. Let D denote the sqmw -froe kernel of Ag.

a) If D iz odd, D > 5, then

) m)m WD)  h{—3D)

W-I— 3 +_6

Dy ( D

B (dg) =

(69)

1 9 '
+5 h(—d)h(—D/d)
© @D
t<d<vVD

(b) Lf D 4s even, D # 2, then

.D,’2 ' :
' 1 D —1)j2 b
(60). H*(AK —ﬂ ( )(Dmf—((—ml( /2 1) m )—\—Eh(-—D)-4~
W —3D) 3
t——+ ; W =@ h(—D/d).
i<ci,nl:toflc1

COROLLARY 2. Let K b a quadratic extension of Q: Let t be the number
of distinct primes dividing Ag. '

(8) If dx> 0 and t =1, then H~(dg) = 0.
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(b) If Ag > 0,t> 1, and the norm of the fumdamental unit of K {is
—1, then H™{Ag) = 21,

{0) If dg > 0 and ngy, does not represent —1, then H™(Ag) = 2L,

(@) If A <0, or if dg > 0, ng, represents —1, but the Jundamenial
unit of I has norm 1, then H™ (dg) = 2%

Proof. Tf dg > 0 and ¢ = 1, then A js nonsplit at co. Hence T must
be definite and H™(Ax) = 0. The remaining assertions (b)Y, (e}, (d)
follow from Proposition 11. Note that t > 1 if Az > 0 and the fandamental
unit of £ has nerm 1.

§ 7. Normalizers of Eichler orders. The remaining two sections are
devoied to the derivation of formulas (50) and (53)-for H. 'We have shown
that H .=1;, the type number of Eichler orders of level & in . In order
to compute f; we must first determine which ae Uy lie in the normalizer
N(£2) (cf. § 4) of some Bichler order 2 of level 4. To do this we fix £ and
use the structure of ambiguous ideals of © to put the minimal polynomial
of o over K into a standard form. From this we obtain necessary conditions
on o which we then show to De sufficient (Proposition 14).

Buppose ae N(Q), a¢ . We may assume that « is integral over O,
From our local discussion in § 4 it is evident that the principal ideal (N ()
= ni% where » is a rational infeger dividing d,and i is an integral ideal
of O. Then i* = (n 1§ (a)), which implies that i lies in an ambiguous
ideal class of O. Since the fundamental unit of K has negative norm, i
is equivalent to an ambignous ideal | of D i.e. there iz an element ze K*
such. that #i = i, where } is a primitive integral ideal of O satistying the
eondition j = { ([3], p. 189, Bx. 6). It follows that (N(am)) = ni? where i
is ambiguous. Then j* = (@), where d is a rational integer dividing D (Ia1,
p. 190, Ex. 11). Hence we may assume; without loss of generality, that
(V¢ a)) == (m), where m is a rational integer dividing 6D. From the deserip-
tion of the local normalizers R(2,) it is clear that an element of ()
having integral norm must be integral over O. Thus the minimal poly-
nomial of & over K must be of the form X*+bX -+ um, where be D and o
is % unit of O. As N(a) = um it totally positive and the fundamental
unit of K has negative norm, # must be the square of another unit of .
Hence we may assume that % = 1. The minimal polynomial of « then has
the form X2 -}-bX +m, where be O and m|5D.

Lmdyya. Suppose w is a unit of 2 and N (o) = 1. Then w is a root of
unity.

Proof. This is an 1mmedmte consequence of the fact that the group
of all nnits of £ having norm 1 is a finite group {[6], p- 129, Satz 2).

ProrosiTIoN 12. If ae M(Q), then «* = wa, where o 4s & root of unity
which commutes with a. If w 7£ —1, then K (o) = K (w).
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Prootf, Put o = a* o~ Tt is clear that o commutes with «. Further-
more, since 9* = 2, ¢ must be an element of N(L2). From the description
of local normalizers we see that « o' 1§ a unit of Q if «e M(2). Then o
is & unit of Q and N(w) = 1. The preceding lemma shows that o must
be a root . of unity. If w % —1, then K(w), K(a) are both proper
extensions of XK contained in Yy, and o commutes with a. Hence
F{w) = K(a). _

CoROLEARY. If ae M(D), af KX, then o* = wa, where we K{a) and »
is a primitive n-th root of unity for one of the following values of m: 2,3,
4,5,6,8,10. :

Proof. If o #% —1, then [E{w):Q] = a): Q] = 4, which implies
L (0}: Q7|4 The-only poaslble values of »n 101 wiucﬁh. thh is frue are 3,
4,5,6,8,10,12. However, # = 12 is impossible since K would 1‘:].16]1
have to be Q{]/g), whose fundamental unit has norm 1.

Notation. Tf ae W and & is an algebraic number, then o= & will
mean that there exist @, y« K™ such that ve and y& have the sane minimal
polynomial over K. For a, fe Wy the condition o= g 1\ equivalent to
a, fmod K£* Dbeing conjugate in AF/K*.

Let o be an element of N(Q) with minimal polynomial A% - bX +m,
where be O and m|4D. Taking o as in the corollary, we see that b =
+oa*) =
g V—m. If v % —1 our approach will be to find solutions, if any,
of the equation o = o~ 'm in the ring of integers of K (w).

We first dispose of the exceptional case where o is @ primitive fifth or
tenth root of 1. Let  be a primitive fifth root of 1, go that — « is a primi-
tive tenth root of 1. Since [Q(w): Q] = 4, we must have K(a) = Q(w),
K = Q(VB). The equation o = +w™ = +o' has a solution only if the
+sign holds, and the solution iy ¢ = +w?~ o'. Now consider the
equation «® = fo7'm,m>1. Then (wc)® = wa* = tm, and sinco
Q(l/g) iy the only guadratic subfield of Q(w), we must have (w3a)? == b,
We have a2 0w %~ »* once again. As o I8 a unit, we N(H) if and only if
we 2. 8ince w genarates the ring of integers in Q(w), the criterion of Tichler

([81, p- 133) shows that we £ for some Q2 of level § if and onky i no prime
p dividing § remaine prime in Q{w). Supposa A = b, t]mt is, 8 = 1. Lot
plé. Bince p remaing prime in Q{V*‘)), we must have _fp pa 2, 3(modb);
all such primes remain prime in Q(w), ag thelr residue classes arve of order
4 in Z{(5) ([2], p. 87). This shows

Levva 1. Suppose ceM(Q) and a* = oa, where w 48 & primitive
Jifth or tenth root of unity. If A4 > 5then a o 1.

—(l+w)a, m = ae* = dw. Thus ¢ = o ' 'm I o = -1 then

Remark, Tf 4 =5, then ar~ w o~ —wo certainly does occur in an
-~ Bichler order cf level 1 in Wy (i.e. & maximal order of x).

—(at
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‘We are left with the cases where w is & primitive third, fourth, sixth,
or eighth root of 1.

Let £ be a primitive cube root of 1. Then —¢ is a primitive sixth
root of 1. If o is & primitive eighth root of 1, then K = @(¥2) and K (w)
= K (I/_——l). Hence matters are reduced to studying solutions of o® = o™ 'm
in the ring of integers of K (l/—l or X(vV _3). We know that l/-—_l, ¢
generate the rings of infegers of Q(}/ —~1), Q(l/ jg), respectively. To
determine the ring of integers of K(]/ ml) K TE{), it suffices to de-
termine fthe conduectors of the orders D+Dm, O +DL, respectively.
Thig, in turn, can be done by determining the relative discriminants of
K (V:I), 444 _-_—_3:) over K and comparing them fo the ideals (—4), (—3),
respectively, of"O. We do this by means of the next proposition. Fer any
positive integer m let A(-—m) denote the dncnmlna,nt of the imaginary
quadratic extension Q( V —m).

PROPOSITION 13. Let m be a positive integer and K = Q(VD) o redl
quadratic extension of Q. Put L = K (V —m) and denote by 4 yx the rela-
tive discriminant of L over K. Then
A(—m)4(

Ag

Proof. By the conductor-discriminant product formula {[2], p- 160),
the discriminant of L over @ is given by A(—m)A(—mD)dg. On the
other hand, it is also given by ngy{dyx) A% (21, p. 17), hence the result.

Notation. For any finite extension L of K let @, denote the ring of
integers of L.

. CororLLarY. Let K = Q(l/ﬁ) be a real quadratic extension of Q, where
D is sguave-free and D = 1 or 2(mod4).

(8) If L = KV 1), then 0, < HO--OV —1)..

(b) If L = E(V —3), then 6, =D +90, 1% = 1.

Proof. First suppose L = K(¥ —1). It D = 1(mod4), then

A{—D) = ~4dg,

—mD)

(61) Nri(dng) =

Hence Ay = (4), which shows that 6, = OOV ~1. If D is even, then

A —D) = — Ay, J@K,Q(AL,K) = 4. This shows that AL,K = (2) and the
conduetor of O4+OV —1 iz p, where p*=(2). It follows that
O, = % (D 4OV —1}. ! 7

Now suppose L = K( V' —8). Then A(—3D) = —34z, ngp{drx)

= 9. Hence Apx =(3) and Gy, =D +0¢.
We now complete the determination of all possible ae ({2}, where
¢ is assumed to have a minimal polynomial of the form X*4-bX +m,
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beD, m|dD. Suppose m = 1. Then ¢ mush be & root of wnity. It 4 = 3,
then ac~ ¥V —1, -1, forq a pmmtlve eighth root of 1. We note that if n

iy a primitive eighth 1001: of 1, then K = Q(V2) and 5= 1 +V 1. Now
rappose e > 1.

I o= 4+ 1, ml, then, according to (a) of the corollary,

o= Ho+g/=1), where s, 5D, and @ = smp 1.

Taking o* instead of a, if necessary, we may assuie that o? == mV —1. Then
= (@4+yV =1 = & —9* +20yV —1 = dmV 1.

This impliefa & = 4y, +a V=1 = 9m¥ —1. Hence # = 2. IE m iy
odd we must have 2m'= D, s = L VD. If m is even, then {1"/2 == 12
implies m/z = 1 or D, from which it follows that # = HZorw = 42 ¥'D.
In all cases we have gow L4V 1.

(if) If @ = {7, then, according to (b) of the corollary,

a = &-+9yl,
Thus '
o =y P 2wyl = o gt (L 1) -2aye
=o'~y 4+ (2my —y*) L= Ll
= 4y It @ =9, we must have o> =m; if 2 = —1, We
must have 3¢4* = m. The equation ¥* = m implies ¥ = 41 or Y o= ﬁl/l)
in which case o= {412 [. The equation 3i° = m implies m = 3D,
¥ = VD, in which case a~ {~1e £V 3. |
(i) If @ == g, then

K =0Q02), Kla=KEV—-1), n=+3(/24V_3)

We will show fthat the equation o == my™!
nstead of g, if necessary, we may assume

where @, y¢D, and

o = -Lwml.

which gives a

is impossible. Toking o

o = ,if % (]/5 'H/H-E) »»»»» S ﬂl/__ (14 ]/2..1_)

Furthermore, multiplying a by ]/—1, if neeessary, wo inu.y HRRTINLG

o ml/z VD),

As betore, we can write o = %;(m—i—yl/j),-m, ye . Then

4ot = 2% —y% 120y Y 1 — am V(L £V 1),
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Hence w*—y* = 2?;1,]@, BY = mi/g, which implies @*—y* = 2xy. Then
L == y(lj:l/g), zy = y3(1 4+ 5) =mVe. Taking norms, we obtain ngg ()
= Zm?, an impossibility.

The following lemma is well known (ct. [14], p. 3584; [15], p. 35)

Limyta 2. Let ky, be a local field with prime ideal p. Let £, be an Bichler
order of level p in M (2, k). Suppose aye O, and N(a,) has p-order equal
to 1. If p divides T (a,), the reduced trace of oy, then a,e N(L2,).

TEaMA. 8. Suppose ae Q. In order that ae N(RQ) it is sufficient that
(@) =V —m,m|6D; a =2,y =1+V =1 if 216D, a =2V =3 if
316, -

(b)Y aep, for all primes p of K dividing (N (a), D).

Proof. It is enough to show that aeM(L2,) for every finite prime
p of K, Since N(u) is square-free and N{a)|T(a) in each case, Lemmsa 2
fmplies that ae N(Q,) for every pi{N(a), 8). If p{N (a), then ae U(L)
= N(2,). If PN (a), D), let = be o generator of p. Then (b) implies thab
a = ez, where se U{Q,). Hence ae N(L;).

ProposITION 14. Suppoese ae Wi , ad K*. If A4 > 5, then in order that
ae N(Q) for some Tichler order 2 of level 8 in g 9t is necessary and suf-
Ficient that one of the following holds: a o~ 1/~_m m| D acx §, e~ 1+
V"1 if 216D, acx LV =3 if 34

Proof. The necessity follows from Lemma 1 and the discussion (i),
(i), (ifi). To prove sufficiency there is no loss of generality in replacing
each o~ by an =. Then, according to Lemuma 3, it iz enough to choose £

- 50 that ac £2 and (b) holds. Let p [V (a), D) and let w be a generator of p.

Since «/n i integral over © in all cases, we can insure (b) of Lemma 3 by
insisting that £, be a maximal order confaining «/~. Hence it 18 enough

" to find an Eichler order Q of level & such.that ae Q. According to the

criterion of Hichler ([61, p. 133), we need only show that no prime p divi-
ding 6 remains prime in K (a). The only way that this eould happen is
if p remains prime in Q (a), & quadratic extension of Q. But then we would
have Q(a), = K, = the unique unramified extension of degree 2 over
Q,. This would unply ae K,, K(a), = K{a)®xz K, = K, ®K,. Hence p

would split in K (a). ‘ :

Lemark. X A = Ag =5, then o normalizes an Bichler orvder of

Clevel 1 if and only if ¢ o~ 1/ —1, ¢ or w; a fifth root of unity (mote that

V=5V —1).

§8. The Selberg trace formala. In this section we complete the
derivation of formulas (50) and (53). We regard the type number #; as
the trace of @ eerbain convolution operator and then use the Selberg trace
tormula to express this trace ag a finite sum of integrals over adelic homo-
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geneous spaces associated to G = WE/K*. This sum i indexed by the
conjugacy classes in & of elements which normalize Eichler orders of
level 4. Explicit representatives for these conjugacy classes were found
i §7. To determine the confribution of each representative, we apply
the Chevalley~Hagsgse-Noether Theorem. Asg a result, the evaluation of
each contribution is redueced to the computation of a sum of local unit
indices for certain “admissible orders” coming from a fixed imaginary
quadratic extension of K (Proposition 15). The admissible orders and their
corresponding unit indices are then readily determined (ef. Proposition
18) to yield our formulas.

We use the notation of § 5, allowing 2 to denote an arbitrary Hichler
order of level § in Ug. In addition, we introduce G(£) = MN(Q)/K*
= F{DNE. We fix such an order Q and denote by LZ{G\Gi/Gl(QN))
the set of all complex-valued functions on ¢} which are constant on. double
cosels GgG (2), ge G}. Then L6 \G} /6 ( !5.)) is a complex vector wpace of
dimension #,. Let Iz denote the characteristic function of G*(Q). Thex,
with respect ‘to_the measure 2, the convolution operator fisFgsf,
Fe L (NG} /@ (£2)] is the identity mapping. Hence its trace Te (F,:,) is equal
to t;. Fix a representative s from each conjugacy class of G and denote
the centralizer of s in & by G(s). Applying the Selberg trace formula (of.
[19], [20]), we obtain

(62) h=Tr(Fg) =3 [ ply)dig)
' ‘ 10N Y

where v, (g') = Fz(g"sg), g¢ Fy.

I yedi,, we pub yQy~t = yéy"anIK. A representative s makes
& non-zero contribution to the trace sum (62) if and ouly if g"‘lsg,e G (!:?)
for some ge Gy . Lt ae Wy represent s, and ve I Tepresent g. Then

g sge Gl(é) de G]‘(yéy"l)<-¢»se Glpy™),

fzince se . We conelude that s will make a non-zero contribution to (62)
if and only if a normalizes some Richler order of Wy of level 6. Thus, to
evaluate (62), we only need fo have « range over the finite set of values
consisting of 1 and the ones specified in Proposition 14, If ¢ = 1, then
8 contributes A{G\G.) to the trace sum. This contribution can be evalu-
ated by means of (38), (40), (41), and accounts for the leading term in
(50) and (53).

Now suppose a¢ K*. Put K, = K (a), 0, = the ring of integers in K,.

~

Suppose g~ sge @*(2) for ge GL. IE yeJ i, Tepresents g, then we have seen.
above 1'.-}_11&13 ze N(y2y™). Since a iy integral, this implies ae »£2v~1, hence
- aeyQyTINK, = 0, an order of K,. Any order of K, arising in this manner
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will be ealled admissible for o. Bquivalently, an order ¢ of K, is admissible
for « if e @ and, for some Eichler order 2 of level §, 0 = 2nK, and
ae M(02). Let ¢ be admissible for o. We denote by (2|0 the set of all
yed &[K such that yQ2y~*NE, = ¢. Then the contribution of s to the trace
sum is

(63) D MEEN (L1675,
]

the sum being taken over all orders ¢ which are admissible for o It is
easy to see thatb

if ¢ is pure,

9
(64) [G(s): Ky [E*] = L

if  « iy not pure.

Let Jx_ be the idele grou'p of K,. We regard Jg_as a subgroup of
Jy I the usual way, and put J}gu = Jg NJy,. Then the Chevalley-

 Masse—Noether Theorem shows that

(653) (010> = Tk 7 N(2)

where y, is a fixed element of {£|¢> (cf. [17], § 8, Proposition 8). Let
Iy denote the number of primes p |4 which ramify in K, but do not divide
the conductor of ¢. Putting 2, = y, £2y;* and srguing as in §8 of [17],
we see that (2|0 is equal to 2°7% disjoint right translates of Ji, U Q).
Therefcre, we hhve

(66) A{(EF [K*IN(CR10)[T%)) = 27 0n( (K5 [K*)\{Jk, T (2,)/7%)

— 9L (K TN\Tk, UY(Dy)
e AEE UpNJ Ul(f;a )
- h(K) ( a X Eg 1) .

Let k(@) denote the number of classes of locally pfinéipm fractional
ideals of @. Then _ '
WOy = [k, KX UHO)],
where ' - _
0(0) = [] U009, = T @)k,

)

Then formula (66) iz egual to

2'2—1@-7-@)—) AMEZ TLNEZ U (2)).

(67) h(E
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Let Ky, B,, B{0), denote the unit groups of O, ¢,, ¢, respectively, and
put U = U(@,). Then

By = UpnK*, = 'nK%,  B(O) = U@)nKY,

and

~

9o}, () L Uk T (_f_s_l)q) _27Ton(0) HEM(L)
WE)Y  [E(0): ] W) TE(G) ]
9~"oh(0)

WICE(0): Bl
Let & (JT,) denote the class number of K. Tt is ensy to see that

(68) (67) =

ROy | [ULUYE)]
%) WE) B0
Hence )
oy M) (T3 T(0)]
(79) ) = A R B, T
Applying (64), we obtain

LeMMA . Let s be represented by an integral element a < I which normal-
izes an Bichler order of level & im Wy. Then the contribution of s to the lrace
“sum (62) ¢

h(H ) 31 tr L. T7h e

(71) m 2 @[Ua.U (@)] ?.f C.I’h 'p’lfwt’,
h(K I e

(72) S E 2 I@[U UYO)Y] if «is not pure,

awhere O ranges over oll. orders of K, which are admissible for a.
We denote by W, the group of roots of unity contained in I,.
ProrosITioN 15. Suppose s is represented by o as in Proposition 14.

Then K, = K(V -—m), where m =3 or m|8D, and the contribution of 8 io
the trace sum (62) 4s

) a(a)k(—m')h(:—m.D) Y oyl 1oL )
(73) S (W) _L.a o[ UN®Y] i is pure,
(74) (“)]b(cmg”( ;;, —mD) 2_[ 27 UL UMY i « is not pure,
where s(a) =1 if K, 7 @O/ =1, V=2), s(a) = 2 if K, = QY =1,V -2),

and O ranges over all orders of K, which are admissible for a.
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Proof. Proposition 14 shows that K, = K(V —m) = oV —m,
4 —mD}), where m = 3 or wm|oD. The classical formula of Bachmann ([7],
p. 74) for the class number of an imaginary bievelie biquadratic number
field shows that

(75) h{E ) _ e(n)

[, W B h(—m)h( —mD).

WMEY 2
Noting that
(B, W, Bl 9
[H,:Bg]  card(W,)

and applying the lermma, we obtain the result.

Remark. In our final class number formulas no speeial consideration
will be necessary for the case where K, = (¥ —1, ¥ —2). This is because
Q(l/ 1, V—2 —2) has twice as many roots of unity as Q(l/ -1, V—m my it
m # 2, m| 8D, which cancels the doubling of the factor {a). _

To explicitly determine the contributions (73), (74) we must carry
out two steps. First, we must determine all admissible orders @ for each
a as given in Proposition 14. Second, we must evaluate the unit index
[0 TY(0)] for each such 0. The first step is an application of Proposition
13. Since |:Ul Ul(@)] = n [U{0,,): T{G,)], the second step is reduced

to the compubtation of loc-al indices [U(#,,): U (0,)] for finite p. Such
a computation is a special case of the following elementary propesition,
whose proof we omit.

PROPOSITION 16. Let & be o local field of characteristic = 2, with ving of
integers o and prime ideal p. Put g == card(o/p). Let k, = k-+ka, where
a¢ k, aPe k. Dmow the mamimal order of k, by v, and the unique p-order
of k, of conductor p*, 4> 1, by v,. Then [U (0.): T ()] =

(a) ¢ Hg-+1) if & 4s an wnramified field extension of k,

() ¢ if k, 18 @ ramified field extension of %,

(¢) ¢~ g —1) if k, is a split extension of k.

In order to compute I,, we note that p, ramifies in K, if and only
i p; vamifies in Q(a), ¢ =1, ..., e. It follows that I, is the number of
Peyi =1, ..., & which ramify in @(e) but do not divide the conductor
of @.

Remark. It should be noted that the maximal order @, is always
admissible for «. This ix essentially what we showed when we applied
Bichier’s eriterion ([6], p. 133) in the proof of Proposition 14.

Puti (1, o) = D +Da. Asyume firgt that D is odd. Then D = .. .1,
where r; I8 & prime, r, = 1(mod4), j =1,...,% Let 1,,..., 1, be the
prime ideals of K such that vj = {(#;).
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(1) Suppose a is not pure, so that ¢ =, 1 1/——1 or £ V —3. Since
D is odd, the proof of the corollary to Proposition 13 shows that (1, )
= 0, in each of these cases. Thus @, is the only admissible order in each
case. :
(i) @ = . Then by == 0 if 348, I, = 1 if 3| 4. Applying (74), we see that
a contributes

B(—3D

(76) 13_!3——) i 348,
h(—3D

(77) iiwl-o T,

(i) ¢ =1-+V~—1. Then 2|8,1, =1, and the contribution of « i

h{— 1
T

(ifi) ‘& = £V —3. Then 3|8, I, = 1, and the contribution is
h{—3D)
12

Now suppose that o i pure, o == V—m, where | 4D. Let us write
== ndl, where n|d, diD. We must consider two separate cases:

{2) I m =1, 2 (mod 4), then, using the netation of Proposition 13, .

we have d(—m) = —dnd, A(—mD) = —4nD|d, ngn(dyx) = 1ok
Hence Ape = ( —4n), which implies that (1, &) has eonductor [ [ t;. Suppose
i

¢ is & prime ideal dividing d. Let = be a local generator for ¢. Then, for any
Eichler order 2, of level §, we have ae R((2,);} it and only if ajme R((2)).
It follows that @, is the only admisgible order for a.

(i) m = 1(mod4). Then I, = A(n) if 2468, 1, = A(n) -1 if 2| 4. Hence,
according to (78), the contribution of o is

(80) h—(%ﬂl it m =1, 248,
(81) | —7”(;51)) i omo=1, 206,
(82) 2*““)—%('“@1»( —nDjdy I m=b, 370,
(83) 27— md h{ —nD/d) it =5, 2]6.
(if) m = 2(mod4), Then 213, I, = A(n), and the contribution it
(84) o 27 —nd) h( —~nD/d).
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(3) I m = 3(mod4), then A(-—m) = —nd, A(—mD) = —nD/d,
g (drx) = % Hence dpgpe = (—n), from Whlch it follows that (1,
(1 -+ a)/2) has conductor H 1, and (1, ¢} has conductor 2 [_[ ;. We conclude

? J
that the conductor of an admissible order for ¢ must divide (2). In particu-

lar, it follows that I, = A(n) for any admissible 8. Since o is 2 Bnit in Ka,
for any p dividing (2), any order of conductor dlviding (2) must In fact
be admisgible for a. '

(i) I = b(mod8). Then 2 remains prime in K, K, = @(a), = the
nnique unramified quadratic extension of Q,. It follows that K., is
a split extension of K,. Let @, be the order of K, of conductor (2). Applying
(¢) of Proposition 16, we see that [U,: U'(6,)] = 2° —1 = 8. Thus a con-
tributes ) _
I(—3D)
——
(86) 27 R —md)h(—nDjd) if

(88) if m =3,

m> 3.

(ii) D =1(wod8). Then 2 splits in K, (2) = pip,, K. = K; K,
= 0,®0,. Let ¢, O, 0,, denote the orders of K, of conductor pl, D,
PiPas 1ehpect.1ve]y '

(ii); Suppose m = 3 (mod8). Then Ka y1 Hap, BTE unramnified gquadra-
tic extensions of E_’p y By respectively. Applymg (a) of Proposition 16,
we see that

[U%: UH(6)] = [Ui:UX0,)] = 3,
Hepce the contribution of a is
(87)  in(—3D) i m =3,
(88) oA ndVh(—aDjd) it

[UL: UH0,)] = 9.

m>3.

(i), Suppose m = T{mod8). Then l{upl,lfi',“02 are split extensions
of K ,K,, respectively. Applying (c) of Proposition 16, we see that
(0% THE)] = [0 UN(Go)] = [U3: U (G)] = 1.

Hence the contribniion of o iy
(89) 2=H B ( —ad)h( —nD}d).

"Adding the contributions of l/ —1 and l—i—l/ —1 {if any), we obtain
the term e,%( - D) of (50). Adding the contributions of £, tV =3 3, V- 3

we obtain the term ¢ h{ —3D) of (50). 'We note that ]/—udN V— 'rz,D,’d

Hence we 1may asgume that o — V —nd with 4 < VD. Then the remaining
terms in (50) are aeccounted for by (82), (83), (84), (86), (88) and (89).
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Now assume that I is even. Then D = 2¢...7;, where r; i a prime,
v, =1(modd), j=1,...,3 Let v, %, ..., be the prime ideals of XK
such that ¥ = (2), 13 = (%), § =1, ..., . Let = denote a local generator
of 1.

(1) Buppose « is not pure.

(i) ¢ = £. Then @, is the only adrissible order, with contribution

(90) “---63“?—’. P oata,
(1) MSD i a0

(ii) @ = ¢V =3. Once again 0,
contribution

ig the only admissible order, with

h{—3D)

(92) 12

(i) & = L+ ¥ —1. The proof of the corollary to Proposition 13 shovws
that (1, «) has conductor . Then 1, a/m generate @,,, which shows that
@, is the only admissible order. Hence the contribufion is
R(—D)

Rt

(93)

. Suppose « iz pure, « —‘I/;m, m =nd, n|d, dlD. Since V—nd

~ V —nDjd and D is even, we may assume that 4 i8 odd. IL follows, in

particular, that m iz odd. :

(2) It m =1{mod4), then A(—~m) = —dnd, A{—mD) = —dnD/d,
which implies Az = ( —2n). Hence v ramifies in K, and the conductor
of(l,a)ist [] ;. The fact that ais & unit in K, implies that the admissibls

yld
orders for « are those whose conduector divides r. In particular, I, = A{n)
for any a,d.mmmble @. Let @, De the order or conductor ¢ in K. Applying

contribution: of « I

(94) . Ep(—D) i m =1,
(95) . 3-37MM=2h( —ud)h(—nDjd) H m=5.
(3) If m = 3(mod4), then 4(—m) = —nd, 4 —mD) = —dnD/d,

Az = (n). It follows that (1, (1+e)/2) has conductor H 1; and (1,0)

has conduetor 2 Il Reasomng a8 before, we see that the &dnnsslble or-
. ‘.’ild

. We concluode that the -
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ders are those whose conductor divides (2) = 1% and I; = A(n) for any
admissible 0. Let @, ¢, be the orders of K, of conductort, v, Tespect-
ively.

(1) m == 3(mod8). Then r remains prime in K,, and (a) of Prop-
osition 16 shows that ‘

[UL:U(E)] =3, [ULTU'd)] =6.
Hence the contribution of « is .
(96) o Sh(—3D) i m =3,
o7 5.9 %1 p( _nd)h(—nD/d) £ m> 3.

(i) m = 7(mod8g).
shows thab

Then v splits in K, and (¢} of Proposition 16

[T T 0)] =1, [ULT(6)] = 2.

We conclude that e contributes

(98) 9= HR( —nd) h{ —aD/d).

Compiling the contributions (90)-{98), we account for all the terms
appearing in (53).

Remark. The exceptional case 4 = Ap =5 ean also be handled
by the Selberg trace formula. In this case a complete set of a with non-zero

" contribution to the trace sum is given by 1, ¥ -1, £, w, o', where o, o

are two primitive fifth roots of unity which are not con;uga.te over Q( 1/_ .
The corresponding contributions are 2M(J) = 1/60, 1/4, 1/3, 1/5, 1/5,
respectively, Henee H = 1/60-+1/4+1/3+2/5 =1, as it should be.

We conclude with the following small table, which bears comparizon
with the table in [21], p. 146-148.

AlHE A | H
5] 1 520 3
8| 1 B3 | 3
1B 1 61 | 3
7] 1 65 | 4
200 1 72 | 2
29 2 73 | 3
37| 2 8 | 6
40| 4 89 | 4
400 2 91 | 4
450 1 101 | 5
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XXTX (1976)

On the zeros of Dirichlet L-functions (VI)
, by

AKTO Furn* (Princeton, N, J.)

§ 1. Here wo will see a g-analogue of the author’s previous work
[4]. We will quote this by (V).

Let L(s, x) be & Dirvichlet L-function with a character y to modutus
¢- We write & nontrivial zero of L(s, ) by o(y) =-B(x) +iy(y). As before
for given two Dirvichlet L-functions L(s, y,) and L(s, x.), we call g a coinei-
dent zero of L(s, x;) and L(s, x,) if L{g, 11) = L(e, 5,) = 0 with the same
multiplieity. 'We call ¢ a noncoincident zero of L(s, y,) and L(s, y,) if
e 18 not & coincident zero. We assume the order is given in the set of ordi-
nates of zeros of L(s, ) by 0 < p,(%) < Yo (%) Also in the set {3, (1),
Ymlxa)im = 1,2, ..., m =1,2,..} the order is given by

Yol S V() 0 U () < vi(2)

and

?’n(%l) L ?nz(%ﬁ) & 7)15-4-1 (%1) = ?"Qn+1(x2)“<~. e
if
Palt) = ¥ (g = oo = vulde) = Vmea(a) = -+

Now we ave concerned with the following problems, which are similar
to problems (i), (i} and (i) in (V).

(1} Have different primitive D-functions L(s, y,) and L(s, v.) & coinci-
dent wzerot .

(i1) For given positive real numbers t, and ty, and for almost all pairs
of primitive charadters (y,, x,) does there exist a zero of L(s, x,) ih

vuln) & Ims <y (2)

Jor each Yo (gad 40 b, () S8 8 ) _
{(fit) For sowme v, (x.);, does it happen that v, (%) < vo(te) < Yasa (1)
Jor almost all primitive ocharacters %% _ _
Our answers to these ave the following theorems.

* Bupperted in part by N8P grant GP-36418X1.
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