ACTA ARITHMETICA XXIX (1976)

In some sense, this observation eliminates the difficulty caused by primes (whose behaviour is rather irregular) to a certain extent, in determining the smoothness properties of F.

Acknowledgements. This problem arose in a discussion with Professor K. Ramachandra. The author wishes to express his sincere thanks to him. Thanks are also due to Professor P. Erdős whose suggestions led to a considerable improvement in presentation.

References

- [1] P. Billingsley, Convergence of Probability Measures, J. Wiley, New York 1968.
- [2] P. Erdös, On the difference of consecutive terms of sequences defined by divisibility properties, Acta. Arith. 12 (1966), pp. 175-182.
- [3] M. N. Huxley, The Distribution of Prime Numbers, Oxford University Press, London 1972.
- [4] G. Jogesh Babu, Some results on the distribution of additive arithmetic functions III, Acta. Arith. 25 (1973), pp. 39-49.
- [5] J. Kubilius, Probabilistic Methods in the Theory of Numbers, Transl. Math. Mono., Amer. Math. Soc. 11 (1964).

The largest subset in [1,n] whose integers have pairwise l.c.m. not exceeding n, II

b:

S. L. G. Choi (Vancouver, Canada)

1. Let g(n) denote the largest number of positive integers not exceeding n such that the l.c.m. (lowest common multiple) of any two of them does not exceed n. A conjecture of Erdös [2] states that the extremal sequence consists of the integers from 1 to $(n/2)^{1/2}$ and the even integers from $(n/2)^{1/2}$ to $(2n)^{1/2}$. Thus at any rate

$$g(n) > (3/2\sqrt{2})n^{1/2} - 2 > (1.05)n^{1/2} - 2$$
.

In [1] it was established that

(1)
$$g(n) < (1 + \lambda - \lambda^*) n^{1/2} + o(n^{1/2}),$$

where λ , λ^* are given by

(2)
$$\lambda = \sum_{j=1}^{\infty} ((j+1)^{1/2} - j^{1/2})(j+1)^{-1},$$

(3)
$$\lambda^* = \sum_{j=2}^{\infty} (j^{-1/2} - (j+1)^{-1/2})(j+1)^{-1} + \frac{9}{20}(1-2^{-1/2}).$$

In this paper we shall improve substantially upon the constant $1 + \lambda - \lambda^*$ in (1) by a method which, while retaining certain features of the method in [1], is in some essential respects a different and considerably simpler one. We prove two theorems of which Theorem 1 gives the desired improvement over (1). We have included Theorem 2 because it is of related interest and is in any case essentially best possible.

THEOREM 1. We have

(4)
$$n^{-1/2}g(n) \leqslant 1 + \mu - \mu^* + o(1),$$

where μ and μ^* are given by

(5)
$$\mu = \sum_{j=1}^{\infty} a_j ((j+1)^{1/2} - j^{1/2}) (j+1)^{-1},$$

(6)
$$\mu^* = \sum_{j=1}^{\infty} b_j (j^{-1/2} - (j+1)^{-1/2}) (j+1)^{-1},$$

with

(7)
$$a_1 = 1, \quad a_2 = a_3 = 0, \quad a_j = 1 \ (j \geqslant 4)$$

and

(8)
$$b_1 = 1$$
, $b_2 = b_3 = 0$, $b_4 = b_5 = 2$, $b_j = 3 \ (j \ge 6)$.

Before stating Theorem 2, we need the following definition. For $i \ge 1$, we define $g_i(n)$ to be the largest number of positive integers in $\{i^{-1/2}n^{1/2}, i^{1/2}n^{1/2}\}$ with pairwise l.c.m. not exceeding n.

THEOREM 2. We have

(9)
$$n^{-1/2}g_4(n) \leqslant \frac{1}{2}(2^{1/2} - 2^{-1/2}) + (2^{-1/2} - 2^{-1}) + o(1).$$

Furthermore, if \mathcal{S} is a maximal set of integers in $(i^{-1/2}n^{1/2}, i^{1/2}n]$ with pairwise l.c.m. not exceeding n, then, with at most $o(n^{1/2})$ exceptions, \mathcal{S} coincides with the integers in $(2^{-1}n^{1/2}, 2^{-1/2}n^{1/2}]$ and the even integers in $(2^{-1/2}n^{1/2}, 2^{1/2}n^{1/2}]$.

Direct computations reveal that $1+\lambda-\lambda^*=1.63...$, whereas $1+\mu-\mu^*=1.43...$

In connection with further possible extensions of Theorem 2, it would be interesting to determine if, for every k,

$$(9') n^{-1/2} g_k(n) \leqslant \frac{1}{2} (2^{1/2} - 2^{-1/2}) + (2^{-1/2} - k^{-1/2}) + o(1), n > n_0(k).$$

2. The following lemmas provide us with the essential tools for proving Theorems 1 and 2.

LEMMA 1. Let $N \ge N_0(\varepsilon)$ and let N_1 , N_2 satisfy $N \le N_i \le N$, i = 1, 2. Then there exist primes p_1 , p_2 such that $p_i = N_i(1 + o(1))$, i = 1, 2, and all the prime factors in $p_1 + 2p_2$ are $\ge N^s$.

LEMMA 2. Let $N \ge N_0(\varepsilon)$ and N_1, N_2, N_3 satisfy $N \le N_i \le N, i = 1, 2, 3$. Then there exist primes p_1, p_2, p_3 where $p_i = N_i(1 + o(1)), i = 1, 2, 3$, such that all the prime factors in $p_1 + 2p_2, p_1 + 2p_2 + 4p_3$ are $\ge N^s$ whereas $2p_2 + 4p_3 = 6q$, and all the prime factors in q are $\ge N^s$.

Proofs of Lemmas 1 and 2. The proofs involve only standard applications of sieve techniques. In the case of Lemma 1, we first choose p_1 to be a prime so that $p_1 = N_1(1+o(1))$. Then we sift out from the sequence p_1+2p_2 , where p_2 runs through all the primes in $[(1-\epsilon)N_2, (1+\epsilon)N_2]$, all the multiples of primes $\leq N^\epsilon$. In the case of Lemma 2 we first choose, as in the case of Lemma 1, p_1 and p_2 to be primes so that $p_1 = N_1(1+o(1))$ and $p_2 = N_2(1+o(1))$ such that all prime factors in p_1+2p_2 are $\geq N^\epsilon$. Now we consider the sequence $(p_1+2p_2+4p_3)q$ where $6q=2p_2+4p_3$ and p_3 runs through all the primes in $[N_3(1-\epsilon), N_3(1+\epsilon)]$, and sift out all multiples of primes $\leq N^\epsilon$ from this sequence.

LEMMA 3. Let $a_1 \leq a_2 \leq a_3$ be positive numbers such that $a_1a_2 > 1$ and $a_2a_3 > 2$. Let N be sufficiently large and for i = 1, 2, 3, let \mathcal{X}_i be a set of $a_i(b_i - a_i)N$ integers in $[a_iN, b_iN]$. Suppose further that the integers in $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \mathcal{X}_3$ have pairwise l.c.m. not exceeding N^2 . Then

$$(10) a_1 + a_2 + a_3 \leqslant 1 + o(1).$$

Proof. For i=1,2,3, we can certainly find a subset \mathscr{Y}_i of \mathscr{X}_i consisting of at least $a_i(1+o(1))M$ integers in the interval $(c_iN,c_iN+M]$, where $M \gg N$, and $c_1 < c_2 < c_3$ (clearly $c_1 \geqslant a_1$, $c_2 \geqslant a_2$, $c_3 \geqslant a_3$). By Lemma 1 we can choose primes p_1 and p_2 where

$$p_1 = (c_2 - c_1)N(1 + o(1))$$
 and $2p_2 = (c_3 - c_2)N(1 + o(1))$,

such that p_1+2p_2 have all its prime factors $\geqslant N^e$. To establish (10) it clearly suffices to show that for all but at most o(M) triples of integers $a, a+p_1, a+p_1+2p_2$, where $a \in (c_1N, c_1N+M]$, any two integers from the same triple have l.c.m. $> N^2$. Now $(a+p_1, p_2) > 1$ or $(a, p_1p_2(p_1+2p_2)) > 1$ for only o(M) integers a of $(c_1N, c_1N+M]$; and when $(a, p_1p_2(p_1+2p_2)) = 1$ and $(a+p_1, p_2) = 1$, then we have $(a, a+p_1) = 1$, $(a+p_1, a+p_1+2p_2) = 1$ or 2 and $(a, a+p_1+2p_2) = 1$ so that the integers $a, a+p_1, a+p_1+2p_2$ have indeed pairwise l.c.m. $> N^2$. (Note that $c_1c_2 > 1$ and $c_2c_3 > 2$.)

LEMMA 4. Let $a_1 \leqslant a_2 \leqslant a_3 \leqslant a_4$ be positive numbers such that $a_1a_2 > 1$ and $a_2a_3 > 6$. Let N be sufficiently large and for i = 1, 2, 3, let \mathcal{X}_i be a set of $a_i(b_i-a_i)N$ integers in $[a_iN,b_iN]$. Suppose further that the integers in $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2 \cup \mathcal{X}_3 \cup \mathcal{X}_4$ have pairwise l.c.m. $\leqslant N^2$. Then we have

(11)
$$a_1 + a_2 + a_3 + a_4 \leqslant 1 + o(1).$$

Proof. The proof proceeds along similar lines to those in the proof of Lemma 3. Here we use Lemma 2 instead of Lemma 1.

3. It will be seen that Theorems 1 and 2 are straightforward deductions of Lemma 5 below. All the estimates in Lemma 5 are proved by first appealing to Lemma 3 or 4 in § 2 and then using an argument similar to that employed in the proof of Lemma 2 in [1].

In this section we shall adhere to the following notation. We let \mathscr{A} denote any given set of integers in [1,n] with pairwise l.c.m. not exceeding n. For $k=1,2,\ldots$, we let \mathscr{A}_k be the subset of \mathscr{A} in $(k^{1/2}n^{1/2},(k+1)^{1/2}n^{1/2}]$ consisting of in all $a_k((k+1)^{1/2}-k^{1/2})n^{1/2}$ integers, and \mathscr{A}_k^* be the subset of \mathscr{A} in $((k+1)^{-1/2}n^{1/2},k^{-1/2}n^{1/2}]$ consisting of in all $a_k^*(k^{-1/2}-(k+1)^{-1/2})n^{1/2}$ integers. We let \mathscr{B} , \mathscr{B}^* be the subsets of \mathscr{A} in $(2\cdot 3^{-1/2}n^{1/2},2^{1/2}n^{1/2}]$ and $(2^{-1/2}n^{1/2},3^{1/2}\cdot 2^{-1}n^{1/2}]$ consisting of in all $\beta(2^{1/2}-2\cdot 3^{-1/2}n^{1/2})$ and $\beta^*(3^{1/2}\cdot 2^{-1}-2^{-1/2})n^{1/2}$ integers respectively. Similarly, let \mathscr{C} , \mathscr{C}^* be the subsets of \mathscr{A} in $(n^{1/2},2\cdot 3^{-1/2}n^{1/2}]$ and $(2^{-1}3^{1/2}n^{1/2},n^{1/2}]$, and let the number of integers in these be $\gamma(2\cdot 3^{-1/2}-1)n^{1/2}$ and $\gamma^*(1-2^{-1}3^{1/2})n^{1/2}$ respectively.

LEMMA 5. We have

(12)
$$a_1 + a_1^* \leq 1 + o(1),$$

(13)
$$2a_k + a_k^* \leq 1 + o(1), \quad k = 2, 3, 4, 5$$

(14)
$$3a_k + a_k^* \leq 1 + o(1), \quad k \geq 6,$$

(15)
$$a_2 + \beta + \beta^* \leq 1 + o(1),$$

$$(16) \alpha_3 + \beta + \beta^* \leqslant 1 + o(1),$$

$$(17) \gamma + \gamma^* \leqslant 1 + o(1),$$

$$(18) 2\beta + a_2 \leqslant 1 + o(1),$$

and

$$(19) 2\beta + \alpha_3 \leqslant 1 + o(1).$$

Proof. As the proofs of the estimates (12)-(19) are all very similar it suffices to give a detailed proof of one of them, say (15).

We divide the interval $(2^{1/2}n^{1/2}, 3^{1/2}n^{1/2}]$ into L subintervals each of length $(3^{1/2}-2^{1/2})n^{1/2}L^{-1}$. We let $\mathscr{A}_2^{(i)}$ be the subset of \mathscr{A}_2 in the *i*th subinterval, namely $(2^{1/2}n^{1/2}+(i-1)\Delta n^{1/2}, 2^{1/2}n^{1/2}+i\Delta n^{1/2}]$, where

(20)
$$\Delta = (3^{1/2} - 2^{1/2})L^{-1}.$$

Let $a_2^{(i)}$ be defined by $a_2^{(i)}$

$$|\mathscr{A}_{2}^{(i)}| = \alpha_{2}^{(i)} \Delta n^{1/2}$$

so that

(22)
$$\sum_{i=1}^{L} a_2^{(i)} = L a_2.$$

Next we define $\mathcal{B}^{(i)}$ to be the subset of \mathcal{B} in

$$(2(2^{1/2}+i\Delta)^{-1}n^{1/2}, 2(2^{1/2}+(i-1)\Delta)^{-1}n^{1/2}]$$

and $\mathcal{B}^{*(i)}$ to be the subset of \mathcal{B}^* in

$$(2^{-1}(2^{1/2}+(i-1)\Delta)n^{1/2}, 2^{-1}(2^{1/2}+i\Delta)n^{1/2})$$

Let $\beta^{(i)}$, $\beta^{*(i)}$ be defined by

(23)
$$|\mathscr{B}^{(i)}| = \beta^{(i)} \left(\frac{2}{2^{1/2} + (i-1)\Delta} - \frac{2}{2^{1/2} + i\Delta} \right) n^{1/2},$$

(24)
$$|\mathscr{B}^{*(i)}| = \beta^{*(i)} 2^{-1} \Delta n^{1/2}$$

We note that

(25)
$$\sum_{i=1}^{L} \beta^{*(i)} = L\beta^{*}.$$

Finally we define e_i by

(26)
$$c_i = \max_{j \ge i} (a_2^{(j)} + \beta^{*(j)}),$$

so that c_i is monotone decreasing.

By Lemma 3 we have

$$\beta^{(i)} \leqslant (1 + o(1) - c_{i+1})$$

and this implies

$$|\mathscr{B}^{(i)}| \leqslant \left(1 + o(1) - c_{i+1}\right) n^{1/2} \left\{ \frac{2}{2^{1/2} + (i-1) \, \varDelta} - \frac{2}{2^{1/2} + i \, \varDelta} \right\}.$$

Thus

$$(27) \qquad n^{-1/2} \sum_{i=1}^{L} |\mathscr{B}^{(i)}|$$

$$\leqslant (1+o(1))(2^{1/2}-2\cdot 3^{-1/2})-2\sum_{i=1}^{L-1}c_{i+1}\left\{\frac{2}{2^{1/2}+(i-1)\,\varDelta}-\frac{1}{2^{1/2}+i\,\varDelta}\right\}+O(\varDelta)\,.$$

Denoting the last sum by T, we have

(28)
$$T \geqslant A \sum_{i=2}^{L} c_i (2^{1/2} + i\Delta)^{-2}.$$

Since c_i and $(2^{1/2}+i\Delta)^{-2}$ are both monotone decreasing we have

(29)
$$\sum_{i=2}^{L} c_i (2^{1/2} + i\Delta)^{-2} \ge \left\{ L^{-1} \sum_{i=2}^{L} c_i \right\} \left\{ \sum_{i=2}^{L} (2^{1/2} + i\Delta)^{-2} \right\}.$$

From (26) we clearly have

$$\sum_{i=2}^{L} c_{i} \geqslant \sum_{i=2}^{L} \left(a_{2}^{(i)} + \beta^{*(i)}\right) = L\left(a_{2} + \beta^{*}\right) + O\left(1\right),$$

and it is easy to estimate $\sum_{i=2}^{L} (2^{1/2} + i\Delta)^{-2}$; in fact

$$\sum_{i=2}^{L} (2^{1/2} + i\Delta)^{-2} = \int_{2}^{L} (2^{1/2} + i\Delta)^{-2} dt + O(1) = \Delta^{-1} (2^{-1/2} - 3^{-1/2}) + O(1).$$

Using these estimates in (29) and (28) and recalling (20) we thus obtain

$$\begin{split} T \geqslant & \{a_2 + \beta^* + O(L^{-1})\} \{2^{-1/2} - 3^{-1/2} + O(L^{-1})\} \\ & = (a_2 + \beta^*)(2^{-1/2} - 3^{-1/2}) + O(L^{-1}), \end{split}$$

which, together with (27), yield

$$n^{-1/2} \sum_{i=1}^{L} |\mathscr{B}^{(i)}| \leqslant (1 + o(1) - \alpha_2 - \beta^*)(2^{1/2} - 2 \cdot 3^{-1/2}),$$

on choosing L sufficiently large. The above estimate clearly implies (15).

⁽¹⁾ For a set \mathcal{Z} of integers, $|\mathcal{Z}|$ will denote the number of integers in it.

We are now in a position to prove Theorems 1 and 2. We shall find it convenient to prove Theorem 2 first.

Proof of Theorem 2. Let \mathscr{S} be a maximal set of integers in $(4^{-1/2}n^{1/2}, 4^{1/2}n^{1/2}]$ with pairwise l.c.m. not exceeding n. On recalling the notation introduced before the statement of Lemma 5, we may regard \mathscr{S} as a set \mathscr{S} with $|\mathscr{A}_k| = |\mathscr{A}_k^*| = 0$ for $k \ge 4$, so that

$$\mathscr{S} = \mathscr{A}_3 \cup \mathscr{A}_3^* \cup \mathscr{A}_2 \cup \mathscr{A}_2^* \cup \mathscr{B}^* \cup \mathscr{B} \cup \mathscr{C} \cup \mathscr{C}^*$$

and

$$\begin{split} n^{-1/2} \; |\mathcal{S}| \; &= \; a_3(4^{1/2} - 3^{1/2}) + a_3^*(3^{-1/2} - 4^{-1/2}) + a_2(3^{1/2} - 2^{1/2}) + \\ &+ a_2^*(2^{-1/2} - 3^{-1/2}) + \beta(2^{1/2} - 2 \cdot 3^{-1/2}) + \beta^*(3^{1/2}2^{-1} - 2^{-1/2}) + \\ &+ \gamma(2 \cdot 3^{-1/2} - 1) + \gamma^*(1 - 2^{-1} \cdot 3^{1/2}) \,. \end{split}$$

On using (13) with k = 2, 3, (15), (16) and (17) and denoting η by

$$\eta = \max(\alpha_2, \alpha_3),$$

we obtain

(31)
$$n^{-1/2} |\mathcal{S}| \leq \eta E_1 + \beta E_2 + \gamma E_3 + (1 - 4^{-1/2})(1 + o(1)),$$

where E_1, E_2, E_3 are given by

(32)
$$E_1 = (4^{1/2} - 3^{1/2}) - 2(3^{-1/2} - 4^{-1/2}) + (3^{1/2} - 2^{1/2}) - 2(2^{-1/2} - 3^{-1/2}) - (3^{1/2}2^{-1} - 2^{-1/2}),$$

$$(33) \hspace{3.1em} E_2 = (2^{1/2} - 2 \cdot 3^{-1/2}) - (3^{1/2} \cdot 2^{-1} - 2^{-1/2})$$

and

$$(34) E_3 = (2 \cdot 3^{-1/2} - 1) - (1 - 2^{-1} 3^{1/2}).$$

To prove the theorem it suffices to show that if $\eta > 0$, then

$$n^{-1/2}|\mathcal{S}|-\{(1-4^{-1/2})+\frac{1}{2}(2^{1/2}-1-(1-2^{-1/2}))\}<0;$$

and in view of (31), it suffices to prove

(35)
$$\eta E_1 + (\beta - \frac{1}{2}) E_2 + (\gamma - \frac{1}{2}) E_3 < 0.$$

Clearly

$$(36) (\gamma - \frac{1}{2}) E_a \leqslant 0,$$

since $\gamma \leqslant \frac{1}{2}$.

Furthermore direct computations give

$$(37) E_1 \leqslant .014$$

whereas, on using (18), (19) we have

$$(38) (\beta - \frac{1}{2})E_2 \leqslant -\eta(.105).$$

Obviously (36), (37), (38) yield (35), as desired.

Proof of Theorem 1. Let \mathscr{A} be a maximal set of integers in [1, n] with pairwise l.e.m. $\leq n$. By Theorem 2 we have the estimation

$$\sum_{k=1}^{3} \left\{ |\mathscr{A}_k| + |\mathscr{A}_k^*| \right\} \leqslant |\mathscr{S}| \leqslant \frac{1}{2} (2^{1/2} - 2^{-1/2}) + (2^{-1/2} - 2^{-1}) + o(1);$$

and estimates for $|\mathscr{A}_k|$, $|\mathscr{A}_k^*|$, $k \ge 4$ are given by (13) and (14). To complete the proof of the estimate (4) we use the simple fact that $a_k \le \frac{1}{k+1}$, which is obtained on observing that any two integers in \mathscr{A}_k have l.e.m. > n unless their g.c.d. is > k, i.e. unless they are separated by a distance $\ge k+1$.

Concluding remarks. It seems interesting to pose the following question. Let \mathscr{A}_k be a set of $a_k((k+1)^{1/2}-k^{1/2})n^{1/2}$ integers in $(k^{1/2}n^{1/2}, (k+1)^{1/2}n^{1/2})$ with pairwise l.c.m. $\leq n$. We define \mathscr{A}_k^* to be a largest subset in $((k+1)^{-1/2}n^{1/2}, k^{-1/2}n^{1/2}]$ so that the integers in $\mathscr{A}_k \cup \mathscr{A}_k^*$ have a pairwise l.c.m. $\leq n$. Let the number of integers in \mathscr{A}_k^* be $a_k^*(k^{-1/2}-(k+1)^{-1/2})n^{1/2}$. Determine the largest number m_k so that for all choices of \mathscr{A}_k , we have

$$m_k a_k + a_k^* \leqslant 1 + o(1)$$
.

Lemma 5 gives $m_1 \ge 1$, $m_k \ge 2$, k = 2, 3, 4, 5, and $m_k \ge 3$, $k \ge 6$. It is clear from the proof of Theorem 1 that it remains valid with b_k replaced by m_k . Finally we remark that it can be shown that $m_1 = 1$, $m_2 = m_3 = m_4 = m_5 = 2$, $m_6 = m_7 = m_8 = m_9 = m_{10} = m_{11} = 4$, and that (9') holds with k = 9. We have refrained however from giving the proofs of these results as these would require a substantial elaboration of our present method resulting in a great many complications in details.

References

[1] S. L. G. Choi, The largest subset in [1, n] whose integers have pairwise l.c.m. not exceeding n, Mathematika 19 (1972), pp. 221-230.

[2] P. Erdös, Extremal problems in number theory, Theory of Numbers, Proceedings of Symposia in Pure Mathematics, Vol. VIII, pp. 181-189, Amer. Math. Soc., Providence, R. I., 1965.

MATHEMATICS DEPARTMENT UNIVERSITY OF BRITISH COLUMBIA Vancouver 8, B.C., Canada