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In some sense, this observation eliminates the difficulty caused by
primes {whose behaviony is rather irregular) to a certain extent, in deter-
mining the smoothness properties of 7.
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ACTA ARITHMETICA
XXIX (1976)

The largest subset in [1,n] whose integers
have pairwise l.c.m. not exceeding #, II

by

8. L. G. Cmor {Vancouver, Ganada,).

L. Let g(n) denofe the largest nmumber of positive integers not -

- exceeding n such that the le.m. (lowest common multiple) of any two

of them does not exceed n. A conjecture of Brddés [2] states that the ex-
tremal sequence consists of the integers from 1 to (#/2)"” and the even in-
tegers from (n/2)"* to (2n)"%. Thus at any rate

g(n) > (3/2V2)n1? —2 > (1. Oa) W2 g,
Tn [1] it was established that O
(1) : g(n) < (l+l—l*)411’2+0('n1/2),
where 2, A* ave given by
(2) A= 2((j+1)1/2 —9"2)(3'-[—1)‘“1
=1
(3) o= TP G0 4 S -2,
j=z

In this paper we shall improve substantially upon the constant .1+ A — A"
in (1) by a method which, while retaining certain features of the method
in [1], is in some essential respects a different and considerably simpler
one. 'We prove fwo theorems of which Theorem 1 gives the desired im-
provement over (1). We have included Theorem 2 becanse it is of related.
interest and is in any case essentially best possible. :
TurorEM 1. We have
(4) n Mg (n) 1+ p—pt+o(ly,

where u and p* are given by

0“0

(3 - p= 2co,'((j+_1)”2mj”“)<j+1)-’
. F=1
(6) - po= (GG,
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with
(7) ay =1, @y =ay,=0, @=71(=4)
and

(8) -bl =1, bz = bs = 0:

Before stating Theorem 2, we need the following definition. For
i1, we define g,(n) to be the largest mumber of positive integers in
(37 gY? M2 M with pairwise l.e.n. not exceeding 4.

THEOREM 2. We have

() g (n) < B

Furthermore, if & is o mazimal set of dntegers in (2

pairwise Lo.m. not exceeding w, thm, with at most o (n'?) e..fr,(mpmons, & co-
ineides with the integers in (27'w' 270 gnd the even dntegers in
(2R} QMR '

2-My (39l o (1),

12, 1/.. 1!"'3”] with

Duect computabions mvml that 1-4+4—4" = 1.63..., whereas 14

L Lp—pt =143
In connecmon with further possible extensions of Them em 2, it wonld
be interesting to debermine if, for every £,
@) w7 Pg(n) < HEP 2T R (27 BT o(1), 0 > mo(R).

2. The following lemmas provide us with the essential tools for
proviig Theorems 1 and . 2. :

TEvva 1. Let ¥ = Ny(e) and lot Ny, N, satisfy N <« N, < N,¢ =1, 2.
Then there ewist primes Dy, Dy such that p; = Ni(1+o(1)), o= 1,2, and
all the prime factors in p,+2p, are = N°

LevMa 2. LelN = No(s)and N, Ny, N, SGLNSf’t[N <N, <« N,i =1,2,3.
Then there ewist primes pp, Pe, Py where p; = N{L-+o(1)}, ¢ =1,2,8,
such that all the prime factors in P, -2y, P+ 2py+-4p, are = N°© whm eas
29,4+ 4p, = 6g, and oll the prime factors in ¢ are = N°

Proofs of Lemmasg 1 and 2. The proofs involve only standard
appleations of sieve fechniques. In the case of Lemma 1, we first choose p,
0 be a prime so that p, = N, (1+o (1)) Then wo sift out from the sequence
P1+2p,, where p, runs through all the primes in [{L— &) Ny, (L4 )N,
all the multiples of primes < N° In the case of Lemma 2 we firgt choose,
as in the case of Lemma 1, p, and p, to be.primes so that p, = N,(1-0(1))
and py = No{l--0(1)) such that all prime factors in p,-+2p, are > N
Now we' consider the sequence (p1+2pz+4p3)g where Gg = 2p,+4p,
and p, runs through all the primes in [N {1—¢), N,y(1 —|— &)}, and gift out
all multiples of pnmes < N° from this sequence.
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Lmaya 3. Lef @y K G2 K by be positive numbers such that a e, > 1

and ayy > 2. Let N be sufficiently large and for i = 1,2, 3, let &, be o set

of a{b;—a;) N integers in [a;N,b,N1. Suppose further that the indegers

in & =T &0y have pairwise L.o.m. wot exceeding N2 Then

(L0} ooyt ay < 140(1).

Proof. For i = 1, 2, 3, we can certainly find o subset %, of &, con-
sisting of ut least L +o0(1))M integers in the interval (¢, N, ¢, M),
where M » N, and ¢; < ¢, << ¢y (clearly ¢, 2 a;, €33 ay, ¢; 2 a3). By
Lenmmi 1 we can choose primes p, and p, where .

Py = (62— ) N{L+0(L)) = (¢3— o) N (L+ o (1)),
such that p,+2p, have all its prime factors > N¢. To establish (10) it
clearly suffices to show that for all but at most o(M) triples of integers
@y 6+ P;, 6+ p1+2p,, where ae(c, N, ¢, N+ M], any two integers from
the game triple have Le.m. > N&% Now {(a-}-p., ) > 1 or (a ) P12l P11+ 2p0))
> 1for only o( M) integers & of (¢, NV, ¢, N +M]; and when (a, P1Pa{P1+2Ps))
= lllnd(a+P1:pz) == 1, then wehave (@, a +p,) = 1, (a+py, a+ 91+ 2ps)
= lor2and (¢, a-+p,+42p,) = 150 that the integers a, 6+ py, &+ P, -+ 20,
bave indeed pairwise l.e.m. > N2 (Note that 6,6, > 1 and cy,64 > 2.)
Lomva 4. Let oy < ay << 6y < 0y be positive numbers such that a0, > 1
ond sty > 6. Let N be sufficiently large and for i == 1,2, 3, let I, be a sei
of a;ib;—a) N integers in [a, N, b, N]. Suppose further that the integers
in & =X uE 0T, 0x, have poirwise Lem. << N2 Then we have

{11) al+az+aa+ag 1+0( ).

Proof. The proof proceeds along gimilar lines to those in the proof
of Lemma 3. _Here we use Lemma 2 instead of Lemma, 1. '

3. It will be seen that Theorems 1 -and 2 ave straightforward de-
ductions of Lemma 5 below. All the estimates in Lemma 5 are proved by
tirgt appealing to Lemma 3 or 4 in § 2 and then nsing an argument similar
to that employed in the proof of Lemma 2 in [1].

Tn this seclion we shall adhere to the following notation. We let &/
denote any given set of integers in 1, n] with pairwise Lc.m. not excee-
ding n. For &k =1,2,...,we let o be the subset of & in (K n",
(B--1)2n'®] eonsisting of in all au((k-+1)"* —FPjn'® integers, and’ esz
be the subset of & in ((k+1)7"n"% k'"n'?] consisting of in all
A (b7 (k1) )0 integers. We let 4, #° be the subsets of & in
(23712l QM 1] and (21t 3227 5 !*] consisting of in all f(2F° —
—2-37M) % gnd gY(8Y*-271 — 27 integers respectively. Similarly,
let %, 4" be the subsets of =7 in (n'*, 2-37n!®] and (27312, !,
and let the number of integers in these be p(2-37 —1)u and y*(1—
—27134412 pespectively. .

and  2p,
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.LEMMA 5. We have ‘

{12) ] al+af<l?~|-0(1),

{13} 2a,c—|—ak 1+4+o(1), I=2,3,4,5,

(14) Sa+al <l+o(l), k=6,

(15) oy B <L +0(1),

(16) @+ B+ 8" < L+o(l),

(17) y vt < 14o(l),

(18) 98+ ay < 1-0(1),

and

(19) 98+ ay < 1+0(1).

Proof. As the proofs of the estimates (12)-(19) are all very similar
it guffices to give a detailed proof of one of them, say (15).
 We divide the inberval (24222, 38412 into I subintervals each of
length (32 —2"*)#'2 L1, We leb M}f’ be the subset of <7, in the ith
subinterval, namely (2"*n'®+(i—1)4n'?, 22t 4§ A, where

(20) A = (32",
Let ol be defined by () '

(21) || = af An*
g0 that

' L

7(22) V' o = La,.

=k

Next we define 3% to be the subset of 4 in
(A(zlfzm}mm) It 22 (3 1) 4) e
and #*® to be the subset of @ in

. (2-1(2”2 +{i—1) A)nt®, 2 (B Ay
Let 89, g*9 be defined by
9 9

49| — w( - i,
7 = e Ty T R A)”
| B0 = fFO2L gt |

(23)

(24
We note thab

(25)

L .
2 6 = Ip",

i=1

() For a set &' of integers, | 2| will denote the number of integers in it.
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Finally we define ¢; by
(20) 0 = max (o + §*P),

i
50 that ¢; is monotone decreasing.

By Lemma 3 we have
BY S {Lto(l)—ep)

and this implies
il 2 2

VeR i1y 2l

189 < (L o(1) — ¢ )n'?

Thus
XL

B

{27) ||
=1
' L1

<_(1+0( )(91[9 2.3m1/2)_220£+1{21',2+(

=1

2 1
114 2 4id

} +o(4).
Denoting the lagt sum by T, we have ’

L
T A ) 62" rid)y™

=2

(28)

Since ¢; snd (2'2 +-i4)™ are both monotone decreasing we have

}Lj e (2 i) = {L—li’ c,.} {ZL (21 +M)—2}.

=3 L= =

From {26) we cleamly hawve

(29)

Z (af? + ") = L{e,+57 +0Q1),

.‘L\ﬂ

and it is easy to estimate 2(2"2+id)‘2

=2

jinfact

L

I
2(21]2 _1_,‘;’1:])-—2 - f (2112_1_.td)-2dt+0(1) o A-l (2-1/2_3_
2

Fwad
Using these estimates in (29) and (Zé) and reczilling (20) we thus obtain
T3 fog+f 40T NE =871 +0T )} '
= (@ + 67 (27" -3 + 0 (L7,
), yield

)+ 0(1).

which, together with (27
L : _
L2 Z B < (1+0(1) - an—ﬁ*)(?}’” —9.37M,

on choosing L sufficiently large. The above estimate clearly implies (15).



icm

110 ' 8. L. G. Choi

We are now in a position o prove Theorems 1 and 2. We shall find
it eonvenient to prove Theorem 2 first.

Proof of Theorem 2. Let & be a maximal set of integers in (4~ 52,
#1725 with pairwise lLc.m. not exceeding #. On recalling the notaiion
introduced before the statement of Lemma i, we may regard & a8 o set o
with |2y = |#3] = 0 for &34, so that

F o= sty oty o sty VB VAT UG
and. ‘ .

W] = ay (47— BY) o] (3T — 47 M) e gy (3 21 -

+ a;‘(z—lﬂ o 3»«1]2) + ;8(2112 —9 _3»«1,’2) f'l" ﬁ* (3]{22“1 - 2—«1,’2) 'I"‘
+p(2: 37 D)y (1 — 273
On using (13) with & = 2, 3, (1B), (16) and (17} and denoting % by

(30) 7 = MAX (agy o),
we obtain
(31) 0| < By 4 BBy 4 y B+ (L — 47 (14 0(1)),

where B, B, Ey are given by
(32) El : (4}/2.__ 31,’2) W2(3—1]2 . 4*.1,’2) -+ (31/2 _21/2} - (2-1]'2 - 3»—-1,’2) o
_(3]/22”1_2—1/2),

(33) Ez — (211‘2'_2,3—1/2)m(31f2_2-..1_2__1/3)’
and
(34) By =(2-3717—1) — (1—2713"),

To prove the theorem it suffices to show that if 5 > 0, then
nTE {1 -4 4 (22 1 — (1 —27Y)) < 0;

and in view of (31), it suffices to prove

(38) {8 — 3B, +(y— 58, < 0.
Clearly

(?6) {(r—HE; <0,

since y < .
Furthermore direct computations give

(37) B, < .014

whereas, on using (18), (19) we have

(38) (=P —n(.105).
Obviously (36), (37), (38) yield (3B), as desired.
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Proof of Theorem 1. Let o/ be a maximal set of integers in [1, n]
with pairwise Le.m, < n. By Theorem 2 we have the estimation

3
Sl 1 < 19 < AR 27 4 (27 -2 4o (1)
k=1

and estimates for |o7y|, |73, k > 4 are given by (13) and (14). To com-
plete the proof of the estimate (4) we ugse the simple fact that o, < —k%’
which iz obtained on observing that any two integers in »#, have Lem. > n
unless their g.e.d. is > k, i.e. unless they are separated by a distance
= k1.

Coneluding remarks. It seems interesting to pose the following
question. Tet 7, be a set of au(k+I1y"* —EP)n'* integers in (K0,
(5-+1)*n**] with pairwise Le.m. < n. We define .75 to be a largest subset
in (& -+1)" Y202, BP0 so that the integers in 7y o7} have a pairwise
Lem. < n. Let the number of infegers in o} be af(k™ — (k4 1))t
Determine the largest number m;, so that for all choices of &7, we have

Mo+ ap < 14+0(1).

Temma 5 gives m,>1, m;=2 k =2,3,4,0, and m, >3, k= 6. It is
clear from the proof of Theorem L that it remains valid with b, replaced
by my,. Finally we remark that it ean be shown that my = 1, my = my
=my, =My = DBy My = My = My =My = My = My = 4, and that (97)
holds with & = 9. We have refrained however from giving the proofs
of these results as these would require a substantial elaboration of our
present method resulting in a great many complications in details.
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