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Some results on the distribution of values
of additive functions on the sei of pairs
of positive integers, |

by
G. Jocusm BABU (Eugene, Oreg.)*

0. Introduction. In 1969 H. Delange [1] defined a dengity for sets
of pairs [m, n] of positive integers and determined it for some sets defined
by sxitkmetical properties of m and #. In thig pmpel we find necessary
and -sufficient  éonditions for

{fI(Fl( Gl('”f) :fs( m), G (”)”

to have distribution, where f,, ..., f, are additive [unchons and 7, &;
are polynomials with integer coefficients, Fy(m) > 0, G;(m)> 0 for ail
w2z 1, ¥y, G; are not divisible by square of any 1rred11clble polynomial
and F.b, Gy, f; satisfy the Condition A given in the next section. We also
give some gufficient conditions for ! ’( m), G(n)} to have absolutely eon-
tinuwous distribution. :

1. Notations and definitions. P denote the set of all polynomials F
with integer coefficients ,satlsf.ymg the following conditions:

PL F(m) >0 for m =1, 2,

P2, ¥ is not divisible by squa.re of any irreducible polynomial.

For Fe P lot Dy denote the degree of the polynomial F. For ANy Posi-
tive infeger 4, let #(F, d) denote the nwmnber of incongrnent solutions in
integers of the eongrnence relation F(m) =: 0(modd).

I the sequel Z, denotes the set of all pairs of positive integers. p, ¢, ...
denote prime numbers. The letters 7, J will stand for non-negative in-
togars, X, d for integers and s, n, s for positive integers.

DpprNerron. A real-valued function on Z, is said to be additive if

Sy Mgy 1y 09) = F 1y, M) 4+ F (93, @2)

* The awthor is mirrently visiting the University of Oregon, FKugene, Gregon,
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whenever (m,n;, Mmyn,) = L. Deline, for any positive integer &,

o{p, 7} -y elp,n)
Flom, n g;f[p , 50
where
0 it ptw,
WM =1, % e 1)
Let F be & set of pairs [, n].of positive integers. Leb N (#) denote

the cardinality of the set B. If
(Ljzy) N{[m,nleB: m<wand n<y)

tends to & limit §(#) as z and ¢ tend to infinity independently then we
zay that the set ¥ pogsesses density 8(F) (see [1]).
We define for any #>1, ¥y =1 and F,Ge P

Ala,y,f, 7,6 = Z =f(p, Dr(F ,p>+z ST PG, p),

ez Jlﬁl

{Blo,y, £, 7,6 ~2 Zfrp, Dr(F, p) +Z Z (L, p)r (@, p)-
péa; .‘IJ<II

We say that the s-tuples {h,(m,n), ..., h{m, n)} of real functions,

on the pairs of positive infegers, have a dzstmb@mow, if there is amn s-dimen.-
sional probability distribution function @ (e, .. ., ¢,) such thab the density of

{m, 0: Ry, 1) << ey, 1oy Byl m) < 6} b

exists and equals §(ey, ..., ¢), for all of its continmity points.'-
We shall often use the following condition and shall refer to it as
Condition A.

ConprTioN A. We say that FeP, GeP and a reajl-valued additive
function f on Z, satisly Condition A 1f the following hold:

fp*, 1)r(F
FL, o8 r(@, p5)=0 as psoo for b =1,..., 1

, PE)->0 ag p-roo for k== 1, ..., by,

and

Flo", plr (¥

for k=1,...,t and for j ;:1,

Throughout this paper f, fi,
tions on Z,.

P0G, p)myo A8 P00

, tg, where ty = max(l,Dg—1) and

ooy Jy denote real-valued additive fune-
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For any additive function f on Z,, let f* denote the additive function
given by

# flp,3) i |f(p, 1) <1,
1) =
7, 1) 1 otherwise;
and
. f,p) i If, P <,
1 =
UNCE ‘1 otherwise.

2. Results.

Tugorem 1. Let F;eP, GieP for ¢ =1,...,8 Suppose for each
4 =1,...,8, F; G and a wal-mlued additive ffunctzon f. on Zy salisfy
Condstwn A Then the s-tuples

[f:l(FI {m3}, Gl('”’)): veny fa(Fs(qn): Gs('n*))}

have a distribution if and only. of the following series

1 %
@) D e 0, ),
b
1o
(22) 2 o )
P
and
(2.3)

D) 053, WP, 2+ T D), )
P . .

converge for ¢ =1,..., 8.

TurorEM 2. f has a distribution 4f and only if the three series
1 ES
(2.4) ;-I-,—f (#,1),
1 .« :
{2.5) —f"{1, p)
25
and
1l 9
(2.6) 1_>_J S DR )T
CONNEF e,

Moreover, if f has o distribution then it is conmmmfus if and only if
either

A 1 \"‘1 1

P —_—— 00 or i —_—== 00,
P ] Lnd D
I.p)#0 I, 2)#0
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This theorem was also obtained by Delange independently (personal
communication).

An obvious modification of the proof of Proposition 3 in [6] gives
the following

TrgoreM 3. Let Fel and GeP. Suppose f, F and & sotisfy Condi-

tion A. Let Q be a set of primes such that S 1lg< oo, and q¢¢) tmplies either
qet)

7(F,q) 70, 00 7{G, q) #0, or f'(I’ ) mOMdf(Q,l)
and f(1,q) = 0. Suppose f (m,n) and f(F(m), Gn)) have distributions.
Then the distribution of f(F(m), &(n)) is absolutely emcwwmfs if the digtri-
bution of flm,n) is absolutely continuous.

TweoreEM 4. If llmsup (L/et )\ N {[m,n]: m< @, 0=

=0, or r{&, ¢) = O

<w, f(m,n) = a}
> 0 for some real numbmﬂ ca, then f has o distribuiion.
TEREOREM 5. Let

= {p: either f(p,1) <0 o F(1,p) < 0}.

Suppose

1 1
, i

el

and there emist ;posztwe constants ¢, & cmd two sequences {2} and {y;} such
that

N{lm,n]: m < oy, n< gy flm, 0) < 6§ > dmy,

Jor all i and 3, oo, y;—>co as i—+oc. Then [ has a distribution.

Results similar to Corollaries 1 and 2 of [7]can be obtained in a gimilar
way for additive functions on Z,.

3. Preliminary results.

Leyva 1 ([9)). Let Fe P. Then there ewists a p, such that D > Py implies
P (I, p¥) = v(F, p) for any posnwe integer k. Algo

P&, ab) = r(F, e)r(F,b) if (a,b) =1

and
r{F, ") <e for some sonstant o depending only on F.

Levma 2 ([4]). Let FeP with D=2 Then for each &>

_ 0, there
ewist By = o(e) and k = k(s) such that

Fim < w: pPF\F(m) for some p>v or ¢“[F(m) for some gf} < &t -0 (@)

as o£—»co for all o> v,

icm
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Levmnma 3 ([3], . 246). Let U and V be two probability distributions
neither of which s concenirated ot one point. If for a sequence {1} of prob-
ability distributions end constants a, > 0, ¢,> 0, b, and 4,

T (aye+b,)—U{w),
(o0 +d,) >V (@)
at all poiwts of continwity, then

d,—b
nosd o, BT p

He a"ﬂ.
Lvnia 4. Let Fe P and GeP. Let f be any additive funotion on the
pairs of positive integers. Suppose f, F, G satisfy Condition A. Then given
any &> 0, there ewist my, y, such that -

2 DB m), ¢m)— A, y,F, F, @)

M nELY

< ooy B2 (w, y,f F, &+ exy

fo:r all = %, and y = v, where

@0 i 0<h<
0 otherwise

- ; b and 0<J < g,
f@* o) =

and ¢ depends only on I and @.
Proof g similar to Turdn—Eubilius mequahty ([8], Lemma 3.1, p. 31).

LeMMA 5. Let Fe P and G P. Let f be any real-valued additive fune-
Iy = 0 whenever k-+j > 1. Suppose further we have

Blw,y,f, F @)~ as
(@&, p)F(L, p) = o B(L, 7, f, F, &)

H—+00, Y—>0o0,

and :
P:lsfrlﬂaG)) as

p—>o0.

P, pf(p, 1) = o[BI
Then

ST (m), G( N-—Alwie, f, F, @ }

Blw, e, f, T, G)
&
fe“‘a‘g“’dz

—00

ot N {[m, R @, S B,

.—>—~——

Vor

as w00, for all veal numbers c. _
Troof is similar to that of Theorem 4.2 of [8].
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4. Proofs of main results.

Proof of Theorem 1. First we prove this theorem when & = 1.
For gimplieity in writing we drop the subscripte. Let p, be such that

7 (F, p*) = r(F, p) (@, p*) = (G, p)

for all k> 1 and p > p,. Define a sgequence {X,: p > 9y} of independent
random variables such that for each real number a and p > p,

'P X, =a} = P_kHjT(prrc)T(G; Pj) S(H, &y P)O(G, 7, p)
»

‘where the summation is taken over all k,j > 0 such thub J(®*, p?) = a,
and

and

. -1 ot —
5(F, T, p) = 1—r{F, p)p if k=0,
7 1—p~? it ki,

and
P{X,, = a} = density of {[m,n]: f{F(m), G(n)), = a}.

Note that Xy, iz well defined as the density of the set on the right-hand -

side above exists.

Tt is not difficult to check that for any 7 > g for each real number a,

the density of {[m, n]: f(F(m), G(n)), = a} exists and equals P{YX, = a).
: o

If (2.1), (2.2) and (2.3) converge, then by Eolmogorov’s 3-sevies thaeorem

2 X, converges almost everywhere. Hence by Condition A, Lemma 2

and Lemma 4, it follows that, for each continuity point ¢ of the dighri-

bution function P{} X, < ¢}, the density of {[m,n]: FT(m), G(n) < ¢}

exists and equals P{}X, < o}.

To prove the converse part we assume without loss of generality,
the distribution of f(Z'(m), @(n)) is non-degenerate. [Otherwise, we can
choose & p; > py, k> 1, such that 7(F, p¥) = 0, and define new additive
function g such that

Q(ijzi) =f(;ﬂ’f,1)-i—1;
g, p) =o', 2" it (97, 0Y & (9, 1),

Obviously ¢ has a non-degenerate distrihution.] In view of Condition A

and Lemmas 2, 3 and § we conclude that supB(w, y, f%, I, ) < co.
Yy .
By Kolmogorov’s 3-series theorem

1, - " |
@i S 2, Ve, 5+ 1L, 016, )

- » =

converges almost everywhere. Let ¢ denote the distribution of {4.1).

It is easy to see in view of Condition A and Lemma 4, that at each conti-
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nuity point ¢ of @

(42)  (L/zy)N{[m, n]: m<o,n<y,

FE(m), G ) — A (2, y, f*, F, 6) <o)

tends to € (e) as # and ¥ tend to Infinity independenﬂy. It follows easily
by (4.2), that the set {d(w,y,f", F, @)} is bounded, sinee f(F(m), G'(n))
has distribution, and

(Llzy) N{[m, n]: m << e, 0 ¥, f(F{m), G(n) — A, y, " F, G < e}

ave diserete distributions. Hence there exist sequence {m,}, {y,} such that
Wy =00y Yy —>00 a8 M-roo and lm A(x,,y,, f*, F, &) = b for some b. 8o

[hatede]
PIYX, < a+b) = @ (a) for all continuity peints @ of Q such that a--b
is a continuify point of Q. Consequently 5 is the only limit point of
{A(m, 9y, F, )} So the two series (2.1) and (2.2) are convergent. This
completes the proof of Theorem 1, when s = 1.
Now wo consider the case s > 1. Find a p, such that -

7Ty ) = (T, p) (@, %) = (G, p)
for all k21,4 =1,...,s and p > . For each ¢ =1, ...,5, define a se-

o

quence {X,,: p 2 po) of independent random variables with the same
domain as follows. For p > p, and for any real number o

T r{f, p"’)r(G{, ioj) S(F;, %, p) G d, p)
P

and

].){AT,U, ey (14} s
R, j=0
Fio®, ply=a
and

P{Xyp, = 4} = density of {[m,n]: f,{F(m), Gy(n))y, = a}.
If (2.1), (2.2) and (2.3) hold then for cach i == 1,...,8, )X, converges
» .
s
almost overywhere. So for each s-tuple (¢, .. . 6s) of real vumbers 3¢, X,
fri=1

converges almost everywhere. As in the above case, it ean be shown that
digtribution of

afilly (m), G+ o 6 fd By (m), Gy(n))

s :

exishs and iv same ag the distribution of Y'e, 3' X, Hence by Cramer—Wold
i=l @ .

deviee ([3], p. 495), the distribution of

{.fl(ﬁyl('m‘)a Gl('“’))y sen 7fs(Fs_(m): Gs('”’))}

exists, The converse part follows from, the above case. This completes

the proof of Thoeorew, . '
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Proof of Theorem 2. To prove that the convergence of the series
{2.4), (2.5) and (2.6} is necessary, note that following {2] with necessary
modifications, one can show the existence of a ¢ > 0 such that

T

1L p)lze Jf(z: 1)\36

The rest of the proof iz similar to that of Theorem 1.

We omit the proof of Theorem 4 ag it is gimilar to the proof of Theorem 1,
of (B]. :
Proof of Theorem 5. Choose M and = 2 such that

Zg n >“* b+ +2/____

q>M » 23>M
ged

Let
B = {[m,n]: either glmn for some ¢ > .M and ged

~or p®|mn for some p or pmn for some p> M}.
Clearly, we have for all @ and ¥

¥{[m, nleB: m < <Y< ooy,
Henee, for é.ll i,

N{lm,nléB: m < a@, % Y, flm, n) < o} > (5/2)%%.,

Let

L= 3 It ol
M, Ik

If we define an additive function & by
fwh oY) # i4j=1 and ped,
0 otherwise,

= h(m, 1)-Fh(l,n) =

L(p?, pY =

then clearly h(m, n) 0 for all m, n axid -

N{fm, n]: m < Ty MK Yyy B, B < 0‘1"1:'} >‘(5/2)m¢y%-
for all i. So we have
. 1
hmsup;;oa.rd{m Lnr h(m, L)< o4+Li>0

and

*

. 1
lim gup — éaxd {m <

N0

n: h{l,m)<o+L}>0.
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Since ) 1/p < oo, it follows from Theorem 3 of 4] that the two series
ped
Nl
S
- P

converge. Now the regult follows from Theorem 2.
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