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A conjecture of Erdos in number theory
by
R. R. HALL (Heslington) :

Introduction. Tet % be a positive integer and ¥ (s, k) denote the num-
ber of positive integers » < » which have a divisor in every residue class
prime to k. Hrdds [1] proved that for every fixed s > 0, we have

Fw, k) =(L+o(ll)a
provided
. T < 2(1—8)1031‘38'55'

Frdos conjectured that the following stronger result holds: if ¢ is
any fixed real nummmber and :

(1) k= Zloglug'a:-i«(c-l«o(l))V’log]oga;
. then _
o - a
(2) P, T) o e f IR gy
]/21': :

It is well known that if v(n) denotes the number of distinet prime
factors of n then

o
v(n)—logloga o iz
(3) ea.r-d(w.<m: T 3 (] s f e dy;
Vlieglogw Vor ;
moreover i g(n)--co arbitrarily slowly as #-+oco then for almost all ns
wo have :
(4) 20 < ¢ (n) < pln) 2™

where v(n) denotes the number of divisors of n. Certainly » is not counted.
by F(z, k) if v(n) < ¢(k), and if we combine equations (1) to (4), we can .
© say rather approximately that the assertion ig that a number with .su.‘E—
ficient divisors to go round will almost surely have one in every residue:
class prime to k.
In this paper I prove the following result in this direction:.
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THROREM. Let £(k)—=0 arbitrarily slowly as k—oo. If & and o are
related by (1), and if the interval

(5) (1—exp(—&(k) (log k™), 1)

is free of real seros of the Dirichiet L-functions (mod k), then (2) holds.

The required zero-free interval (5) is wider than that established
by Siegel’s theorem, which would correspond to replacing the exponent #
of logk in (5) by 1. But a result of Page [4] gives the

CoroLLARY. The conjecture holds for almost all To. More precisely,
Jor every fiwed A the number of exceptional k's not emceeding I is O (K [log? K.

For Page’s Lemma § states that there exists an absolute positive
constant O such that if I > 2, there is at most one primitive charncter »*
© with modulus k* < K such 'hhat L{o, £*) vanishes for some ¢ mtmfymg

(6) : o> 1— Gl/logff.

Thns if & iy exceptional, either 6 E)Qog k¥ < log (O tlog K) or there is
a character (modk) induced by »* , i.e. ¥"|k. The former, small ks are
negligible in number if &(%)->0 sufficiently slowly, and there ave at most
K /k* multiples of ¥* not exceeding K. By Siegel’s theorem, L (s, 5%} = 0
- implies that

o< L—Cy(A)(E")~14,

where Cy(4) > 0 and depends on A only. Combining this with (6) we
obtain the corollary. _

In the proof of the theorem to follow, 0-constants and Vinogradovs
< are always uniform. The limiting process implied by the o-notation is
a8 » and k tend to infinify; these arve equivalent by (1).

Proof of the theorem. Since &/p(k) < loglogk, (k) also satisfies (1).
We need only consider the integers # < w for which z(#) = p(k), and if
we take p(n) = loglogn in (4), this implies that

v(n) 3= loglog® -+(c + o(1))Vloglogw.

Tn view of (3), it will be necessary amnd sufficiont to show thut all butb
o(z) of these numbers have a divisor in every residuo olagy prive to k.
Let I(2) be the interval (g, A], where

100 I m,__,}(?n(-,_-a‘._

logg ~

logg = (logloga)®,
and let

= n.p-u:

)

pel(m).

icm
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By the familtar vavianee method of Turdn, »(n)— »(f(»)) has normal
order 6logloglogy. Hence we may assnme that
{7 loglogax —E—(nn}— o(l))l/logloga:‘- < af(f(%)) << 2loglog,

and we follow Brdés [17 in constructing the divisors of = in each residue
clags prime to kfrom prime factors of f(n). We shall require:
Lemwa 1. For each 1 prime to k we have

<! £
by »~—z=~-~~(1 2 () M+ B(1)

Bk ‘T) 7’(})
oo (mad k)
where
141 A-ig
I - [ L_wf_og?/) &y, L —’““f ¥ (4 logy)
S ylog?y ylogty
and

(D] < {loglogz) ™.

Here g is the unique Siegel zero {mod%) if such exists, that is L(8, y,)
=0, #> 1--Cflogh. Tt is known that if ¢ is a sufficiently small positive
absolute constant there is at most one such zero, moreover y, must be
real and non-principal. We define M = 0 when there is no sueh ﬁ

The proof of this follows from the formula

I e, ED wlg kU B ( 1 ) ( 1
- — — k. Dd o
2 P hlogh glogg f v ks D ylogy +0 Vg

b

pensh
p=l{mod k)

and Satz 7.3 (p. 136) of Prachar [5], which gives

y ?/ﬁ BV iogn
e e L O (VY 108Y
o Bpcm TOWT

uniformly for (4, %) =1 and &< exp( HV@,—; a and b being absolute
pasitive constapnts, This condition holds for ¥ = ¢ if # iy sufficiently large.

We muy agsunio that f(n) iv squarefree since the number of integers
# < with n repeated prime factor in I{w) s O(x/g) = o(w). Hence we
have

Py, &, 1) =

f(%) = hzlnglag?z < V‘E it # 3=,

in view of (7). Let 3 denote summation over squarefree m < Va, all
of whose prime factors lie in I (@), and which fail to have a divisor in every
residue clags prime o %, moreover which satisfy

(8) loglogz (e + o{1)}¥logloge < »(m) < 2logloge.
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Then it will be sufficient to prove that

E’ D1 =ola)

it <

ftn)=m

To estimate the inner sum, note that # = mg where ¢ < #/#. apd has no
prime factor in I(»}. Since i < Vo < @fm, a theorem of van Lint and Fi-
chert [3] gives

& 1 wlog g
E 1<~——l} 1——] <€ -
n P mlog ogh
L pel{x)
fin)=m

by Mertens’ formula. Hence it will be enough to show thatb

0 Z' 1 (logh
— =0 .
9} ‘ m logg

"

Let i, ..., denofe an arbitrary set of residue - classes prime
to k. We refer to these as a good sef if the congruence:

iz, 0t = h(modk)  each g =0 orl,

has a .solutwn for every % prime fo %, that is, as the g’s vary over their
2¢ possible choices, the left hand. side runs through every reduced residue
clags. If m has ¢ (distinet) prime factors p; such that p; = Zj(modk) for
1<j<t, evidently m has a divisor in every vesidue class prime to &
i1, .00, 1 is & good set. Leb 2{#) denote summation over bad sets of ¢ I;’s.
Then

(10) 2 Zt! y(t) ]Y( Z )

Pl
Pl (mod k)
where ¢ runs through the possible values of »{m), that is, the range given
by (8). Notice that as we remarked at the beginning of the proof, ¢ (k)
satisfies (1}, so that it will be sufticient to deal with the case

(11 logg (% +o(l/logq:{i’c ) < tlog? < Blogq (k).
By Lemma A, we have that

b
AN o ”,,(1 BN 1
0 2 ) -] (ol

=1 g<ph
1)%‘!1: (mod &)

where

w =g (ly) ot ga () oo (B,
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o that

—b=g u L g,

¥ = t{mod2).

(ota) (252

» b to give a fived u, hence if we sum over all

There are

choicos of the set &y, 1y, ...
sets of ¢ 17N, we obtain

. ‘

et 8 1

Y 1 :I.) <. L , “( ( 1 ))

7 e (LM L+ Of———-]].

— G gﬁ-;é,'{” » ¢ (k) ( ) l (logloga)®
p=limod k

By the Cauchy-Schwarz inequality, we may combine this with (10) and
deduce that _

2

o1 | 1 e
—_— ayH/2 iy e :
(12) 24 m < (120 Z 1! (gn’(]x:) Z(t) 1)

. € (11 apsytn 108N
- logg

provided '
(13) S LS (k)

when ¢ satisfies (11). Now we refer to Theorem 2 of Erdds and Rényi [2].
This implies that when,

ogp(k)

1
tlog2 = logp (k) —J—210g—(§ +log ( Toag
. b

) +5log2,

we have (13). By (11), we may infer that (13) holds provided we choose 8
80 thatb :

(14) | log - = o [Viogy(8)).

We require an estimate for M, defined in Lemma 1, and it is at this point
that we use the hypothesis that the Ainterval (B) is free of real zeros of

L-functions (modk). We have
Lﬂ{@ _(1 —fe 7 d Ql"‘]‘lﬂg (%_.j;m_ﬂ).
roin v (1—p)logg

Since L ~logloge ~logkflog2, we have
M < E(F)(logh)™™*, Mt < E(k)(logk)”.
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We select & so that

log %— = 2M*t-+ (logh)*?

(the last term in case M = 0) and note that as &(k)—0 as @, and so k-oo,
(14} is satistied. With this choice of 6, (12) implies that (9) holds, and
the proof it complete.

Remark. It may be that the Caunchy—Schwarz ineguality is inef-
ficient in deriving (12) and that the factor (1 4+M*)"* is not needed. How-
ever, I could not find a useful estimate for the number of bad sets I, 7y, ...
..l with a fixed % — evidently there is nmo uniformly good estimafe
of this type rince if == ¢ all the sets are bad, indeed

_ (Bl G =1, g's arbitrary.

Qiepel’s theorem gives the estimate M = o{1l) and it seems reasonable
=1 b N

that rather more than this is needed.
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On. the equation of Catalan
by

R. TrrneMAN (Leiden)

1. Introduction. The following conjecture was first enunciated by
Catalan [8] in 1844 bub has never been proved.

The only solution in integers p > 1, ¢ > 1, & > 1, y > 1 of the equation
(1) o -yt =1
B p ==y =2, §=a=3

In 1953 Cassels [6] independently made the weaker conjecture that
equation (1) has only a finite number of solutions. '

The equation has been shown to be impossible for some special valnes
of p and ¢. In 1738 Buler [10] showed that the only solution of #2 —y* = 1
is @ = 3, ¥ = 2. In 1850 Lebesgne [14] proved that there is no solution
at all when g =2 and p 5 3. It was shown by Nagell {187 in 1921 that
there are no solutions if » = 3 orifg = 3,p + 2. The problem of ghowing
that there ig no solution when p = 4 was posed by Nagell and solved by 8.
Selberg [20] in 1932, Since 1967 this last result has become a special case
of a theorem of Chao Ko [9], that there are no solutions if p == 2. Hence
ote hag p 3> 5 and ¢ > 5 for all unknown solutions of (1).

Tn proving Catalan’s conjecture one ean obviously assume without

© loss of generality that p and g arve different primes. In 1960 Cassels [7]

showed that if (1) holds then ply and gla. It I3 an easy consequence of
Classels’ result that there are no three consecutive positive integers which
are all perfect powers, [17]. :
There arve sevoral results concerning the number of solutions when
some of the variables are fixed. If # and y are fixed, then there are only
finitely many solutions (p, ¢) -of (1). Thix follows from Gel’fond’s tfran-
scendence measure for loga/logy, [11]. LeVeque [15] showed that there

*is at most one solution (p, g) which can be found explicitly if it exists.

Casgels [6] simplified his proof. If p and g ave fixed, it' ik} an immediate
consequence of a vesult of Siegel [21] that (1) has only finitely many sol-

utions (&, y). Sce also Mahler [16]. In this case Hyyro [127 proved thab

there are at most exp(631p%g?) solutions. An explicit upper bound for



