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We select & so that

log %— = 2M*t-+ (logh)*?

(the last term in case M = 0) and note that as &(k)—0 as @, and so k-oo,
(14} is satistied. With this choice of 6, (12) implies that (9) holds, and
the proof it complete.

Remark. It may be that the Caunchy—Schwarz ineguality is inef-
ficient in deriving (12) and that the factor (1 4+M*)"* is not needed. How-
ever, I could not find a useful estimate for the number of bad sets I, 7y, ...
..l with a fixed % — evidently there is nmo uniformly good estimafe
of this type rince if == ¢ all the sets are bad, indeed

_ (Bl G =1, g's arbitrary.

Qiepel’s theorem gives the estimate M = o{1l) and it seems reasonable
=1 b N

that rather more than this is needed.
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1. Introduction. The following conjecture was first enunciated by
Catalan [8] in 1844 bub has never been proved.

The only solution in integers p > 1, ¢ > 1, & > 1, y > 1 of the equation
(1) o -yt =1
B p ==y =2, §=a=3

In 1953 Cassels [6] independently made the weaker conjecture that
equation (1) has only a finite number of solutions. '

The equation has been shown to be impossible for some special valnes
of p and ¢. In 1738 Buler [10] showed that the only solution of #2 —y* = 1
is @ = 3, ¥ = 2. In 1850 Lebesgne [14] proved that there is no solution
at all when g =2 and p 5 3. It was shown by Nagell {187 in 1921 that
there are no solutions if » = 3 orifg = 3,p + 2. The problem of ghowing
that there ig no solution when p = 4 was posed by Nagell and solved by 8.
Selberg [20] in 1932, Since 1967 this last result has become a special case
of a theorem of Chao Ko [9], that there are no solutions if p == 2. Hence
ote hag p 3> 5 and ¢ > 5 for all unknown solutions of (1).

Tn proving Catalan’s conjecture one ean obviously assume without

© loss of generality that p and g arve different primes. In 1960 Cassels [7]

showed that if (1) holds then ply and gla. It I3 an easy consequence of
Classels’ result that there are no three consecutive positive integers which
are all perfect powers, [17]. :
There arve sevoral results concerning the number of solutions when
some of the variables are fixed. If # and y are fixed, then there are only
finitely many solutions (p, ¢) -of (1). Thix follows from Gel’fond’s tfran-
scendence measure for loga/logy, [11]. LeVeque [15] showed that there

*is at most one solution (p, g) which can be found explicitly if it exists.

Casgels [6] simplified his proof. If p and g ave fixed, it' ik} an immediate
consequence of a vesult of Siegel [21] that (1) has only finitely many sol-

utions (&, y). Sce also Mahler [16]. In this case Hyyro [127 proved thab

there are at most exp(631p%g?) solutions. An explicit upper bound for
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max{|z}, ly!) was given by Baker [2]. Hyyrd [13], Bate 18, proved that
there is at most one solution if p and ¥, or ¢ and 2, are fixed. Hyyro 137,
Satz 17, also gave a finite upper bound for the rumber of solutiony if
either # or ¥ is given.

In this paper we prove Cassels’ conjecture by an effective method-

TuroreM 1. The equation (1) has only fimitely wmany solutions in
integers p > 1,9 > 1, % > 1,y > 1. Bffective bownds for the solutions »g, oy
con be given. :

Dr. G. V. Cudnovskii announced in & letter 16 the author that he
has also proved Theorem. 1 and morecver, that he proved the same stote-
ment for the more general equation " —y? = &, where % is any fixed
non-zero integer.

Hyyro [12] proved that the equation (1) has no other solutions if
2 << 10%*. The upper bounds obtainable by our method are miuch larger,

and it is not likely that one can prove Catalan’s original conjecture by

checking the remaining values of # on a computer.

I express my thanks to Dr. P. L, Cijsouw, Dr. W. D. Brownawell
and Dr. J. Wéjcik, who kindly suggested to me some corrections and
improvements of an earlier version of this paper,

2. Auxiliary results. The proof of Theorem 1 in § 3 is rather short,
but it contains four applications of the Gel’fond-Baker method. At the
end of the proof we obtain that there are absolute bounds for p and ¢

for every solution , g, z, y of (1). We then complete our proot hy using
the following result.

TeeOoREM A (Baker [21). ANl solutions in integers i, y of the Liophon-
tine eguation ‘
(2) | Y = ayw” a et -{—a}m
where m = 3, n >3, @y = 0, &y,
the polynomial on the right of (2) possesses at least two simple zeros, satisfy
max(fo]; lyl) < expexp {(ﬁm)m(-n,l""‘ﬂ_)“z},

where T = max gyl

Barlier in the proof we shall use the following refinement of & recent
result of Baker [3].

THEOREM 2. Let o, -+ey Oy 08 Mon~2er0 algebraic numbers with degrees
ot most d and let the heights of wy oo, oy g and a, be.at most A (3> 2) and
A (= 2) respectively. Then there exists an effectively somputable constant
C =0C(d, n) such that ihe inequalities

(3)  0< |bloga,+:.. +haloga,| < exp m-O(logA’)g”2+lﬁ“logA log Bj

wo s Gy, denote votional imtegers and where
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have no solution in rational integers by, ..., b, with absolute values at most
B (=2). _ o

It hag been assumed that the logarithing have their principal valzes,
but the rexult would hold for any choice of logarithmy if ¢ were allowe.d
fo depend on their deterniinations. The only novelty of the theorem is
the explicitly given dependence on 4'. We note that in the proof of Theo-
rem L one has d == 1L and # =2 or 3. :

Our proof in § 4 follows the main lines of Baker’s proof :Pnd we only
indicate the moditications to he made. One modifieation is of independent
interest. Our Lemma T is an improvement upon Baker’s Lemma 1.
Lemma 171 enables one to choose & at p. 123 more easily and to correct
an inequality ob p. 126 without difficulty. (Compare the footnote at p. 35
of [4].) Another modifieation can be found at the end of the proof of.
Theorem 2. The exponent of log 4 in Theorem 2 wounld be at leagt 1242
if we would. apply the result of Fel’dman like Baker did. Tnstead we use
the following new result of Baker. .

TrmorEM- B (Baker [5]). Let ay, ..., a, be non-zero algebraic numbers
with degrees at most 4 and let the heights of ay, ..., o, be g,t most Ay, ..., A,
respectively. Put QF =logd, .. . logd, and assume Q" = 2. Then thc?re
emists an  offectively computable comstant € = C(d,n) such that the in-
equalities . .

0 < |bJoga -+ ... +b,loga,| < exp(— 0@ logl) log B)
hawe no solution in votional integers by, ..., by, with absolute values at most
B (> 2).
3. An improvement of Baker’s Lemmna 1. For any integel.‘ k=1
we signify by »(k) the least common multiple of 1, ..., k. We define
Ay T) = (@-+1) ... (k) B! -
and. we write 4(z; 0) = 1, Further for any integers 7 > 0, m z» 0 we denote
(/:1 (23 k))l [CON
A(wy ke, bym) = )
We prove the following improvement of [37, Temma 1.
LMmA T, Let q and gu be positive integers. Then
g ()™ A (m; &, 1, m)

is o positive inleger and we huve '
Ala; by 1, m) < 4ETH,
Proof. We have :

* . T !
A(m, ;'i}, Z, ) == (/I (.’L‘; k))z 2 ((m"l“]j,) vas (m+jaiw)) ’

F1arein

w(k) < 4%,
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where j;, ..., 7, run through all selections of w integers from the set
1, ..., & repeated [ times, and the right hand side is read ag 0 if m > Ji,
Hence,

(&) ¢ A(w;k, T, m)

- (qguq) ... (qu+ gk

(k!)l 2 ((Q'"r’ 4 i) - (g Qj'm))gl-

L TR %)
We write ¢ A(w; k, 1, m) = r/s, where 7, seZ, (r,s) = 1. Il p i a prime
Wwith pls, then, from (4), p/k! and, henee, p < k. We distinguish two cases
for the prime divisors p of s.
(2) p71 ¢ The number of factors p in (k1) is exactly

T k % logk
(5) l([ri] + [——] 4 [——,-—]), where t = [-»Qg—;’—-].
P p* . Lp logp

Since , (p, ¢) =1, the product (gw+¢) ... (gz-g¢k)' contains at least
as many facters p. Here we have not counted more than ¢ factors P in one
factor gv+gj (1<j < k). Hence, if we omit m factors out of this prod-
uct, the remaining product containg at least

7 kT i

(6) z([i]+[i2]+ ek [—:-])—mt
? P P

factors p. It follows that

M (@t g ) 3 ((ge - gd) - (g g

Aleeeiafan

contains at least (6) factors p. Thus s contains at most mt = m[logk]

factors p. This is precisely the number of factors p of (w( .76))"“.

(b) plg. In this case (k!)! also contains (5) factors p. The integer (7)
might not be divisible by » at all. Since

I ke 7 ‘
[5]+[5?]+--' +[z“f‘]*§’“’

wo see that & containg at most %l factors p. Note that ¢" containg at leagt

#s many factors p. ' '
The first assertion of our lemma follows immediately from (4) and

cagses (a) and (b). The second follows easily from Balker’s estimates

Mo &y, m) < (m —[—kk v 1)t(m) g gl e

W

(Distingnish the cases [#] = 0 and [z]>0.) .
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We apply the inequality m(k) < 4%/(3logh) (see [19], formula 3.6} to
obtain the final estimate :
l%’-ﬁ]
[T < [0 = 0 < o < 4,
pl:

vk

';J(k) =

4. Proof of Theorem 2, In $his section we give a proof of Theorem 2
by indicating the modifications to be made in Baker’s paper [3]. We
shall prove a slightly stronger form of Theéorem 2, namely under the extra
aggnmption that ey == ~1 and with 2n24-16n replaced by 2n2--7Tn in
the exponent of logd'. This assertion with n-+1 instead of » and by = O
implies Theorem 2, sinee 2(n--1)*+-T(n--1) < 2n24+164. We suppose
thevefore that there exist rational integers b, ..., b, with®b,, = 0 having
absolute values at most B (3= 4) such that :

(3% 0< |hlogay ... +bloga,] < exp['—G(IogA’)“”z“” log A log B}

holds, where a; = —1L and it is asswmed that the logarithms have their
prineipal values and that O == C(d, ) ig sufficiently large for the validity
of the subsequent argumnents. By e, ¢, 0y, 65, Cy, ... we signify numbers
greater than 1 that can be specified explicitly in terms of 4 and » only.

We denote by & an integer exceeding a sufficiently large number ¢
and we write '

§ == IOQ-A:
C =Ly e = L,y = [yt gkt ],

go =logd’, h=L_;+1 = [logB],

Lﬂ, = [g%n+1 kl/z]:
where, as usual, [#] denotes the integral part of . Further we write f,,(2)
for the mth derivative of f(z).

In the formulation of Lemma 5 the npper bound for the absolute values
of the infegers p(i_,, 4, ..., 4,) should be replaced by exp(csgi*™® ghk),
while the upper bound for my--... -m,_, becomes ¢***gk. In the
prool we have _ '

M R (iR gle-l 1) < 202 R o
and. : :
N = (Log 1) oo (L A1) 32 g P22 gm R,
Hence, N > 2.0, The absolute value of the product over o in the defi-
nition of V(s) 18 at mout
(247" (24" < exp (20 Lhgy + 2L, hg).
Using ' :
(8)  ILng<Ig

we see that we can take U = exp(c,g"*?ghk). Hence, the integers
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P{Ayy-reyry) can be chosen fo have absolute values at most NU
exp ey gi+? ghk), a8 required.

Tn Lemma 6 we consider all non-negative integers g, ..., .
with my+ ... +M,_; < gi" T gk. Instead of (B4) (i-e. formula (4) of Baker’s
paper), we have

(T4) [f(2)] < exp(eggy™ ™ ghk + oo [21),
gnd in place of (Bb) we have

{T5) (=
On making obvious modifications in Baker’s proof we obtain

{T6) . 2 ley
and.

exp( — Gy ghk — €11 9o L) -

—a}] < exp( — 306" "™ gh),

|4 (=)} <

Using the modified Lemma 5, the estimate

exp (e st ghk + 05 L [2]).

Ay2

left™ ... ains¥| << exp(ego L il),

Baker’s estimate for o and the ineguality (8} the required estimate (1'4)
follows easily.

To prove the second assertion it is readily wverified thal each conju-
gate of ¢ has absolute value at most exp (60571 ghk -+ ¢y 9o L1). Further-
more; from Lemma T1 we see that, on multiplying ¢ by -

P o=aPt .. afally ()™,
we obtain an algebraie integer and, by (8),
P < exp(ey; go Ll + ¢,ghimy) .

Hence we conclude that either @ =10 or
2n.1-2

_ 1@ = exp( —eug
~But, as above, we deduce easily froro (T6) that
1Q—F(8)] < exp (040052 M — 4 Ogi™™ gh)
and, if 1< £ MR and ¢ i larger than some function of &, the number
on. the right hand is at most _
exp( —30g" " gh) < 311
Henee, if Q # 0, we obtain [f(I)]| > %|@| and this proves (ThH).

In Lemma 7 where ¢ now depends only on d and %, we have to replace
the upper bound for I by k(g3 %)™ and the upper bound for my -+ ... My,
by 277" 2 gk. We shall show that in fact a suitable valne f01 ¢ is 1/8n.
(This bound i3 even betfer than Baker’s value for ¢ and this iz due fo
the improvement in Lemma T1.) We follow Baker’s proof with

ghk — eau o L1) .
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By = [W(gs ™8V, 8, =[27"g"gk] (J =0,1,...)
and some other evident changes. Formula (B9) is replaced by
(T9) o (1) 1] < exD( —30g3 ™ gh) ,
the upper bound for 6 «t the botfiom of p. 124 becomes

0 < oxp(r',,q“'zghfc oy gy Ll o BH Y

Formula (B12) remaing unchanged. The number on its right-hand side
19 at least
9 .'t’c--ﬁ%-mlggﬂ,-l 2‘Eﬂ(ﬂ.-l«ﬂ)sfcghks}’f—]ul log %

The nwnber at the right-hand side of (B13) becomes in our ease
(6a+ o) 05" gl - (09 -+ 1)) JoLillye, T
< ((}ﬂ e 010) gﬁ'rwzghlﬂ _1_6,23ggn~i«l+(u+2)(eﬁ’,+ejghkl-{-eK-:-u—lj(an) .

Since ¢ == 1/(8n), we have (n+42)e <
follows by mducuon
The formulation of Lemma 8 does not eh'mo‘e at all. We follow Balker’s
proof with,
X —_ I"gzonz-l-fmhk-u-}-l‘l,

1 and (B11) is untenable. The lemma

Y o= [0 g0 20k, 0y = gt
On making obvicus modificationy at p. 126, 1. 3 and 1. 5, we obtain
IFG < expleggi™ " ghk - ey gy LXKV — X (¥ +1)log( (37468 4
_{__ exp ( ___ngm-{-"m gh)
Since
Go LM < gintl gh and ey SR Rt - Y (Y 1) 50C g"“2+7”gh,
the upper bound. for |f({/g)] is at most exp( — gEr ™50 ghkn+4),

We now utilize the latter estimate to confirm the wvalidity of (B2)
with 1 replaced by. I/g. Bach conjugate of @ has absolute value at mosth
exXP (Cye g™t ghle?). Turther it follows from Lemma T1 that on multi-
plying @ by

g2lﬁ(L0.|-J) (1, (h))"'ﬂ (z,blz L,,} ‘»KP(%GQM '(]Mi' ),
one obfaing an algebraic integer, (We noted already that Baker’s original
proof is not correct at this point.) Thus, if @ +# 0, we have
Q] 2 exp(— o g T ghR ") -
But it iy easily seen from (T6) thatb
@ —1f(Hg) < exp( 10" gy, -

whence [f(1)g)] = 4@ Since ¢< 25" 7", it is clear that the estimate
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for |Q] given above is inconsistent with the upper bound for |f{i/g)] ob-
tained earlier. Hence we conclude that @ = 0, as required.

Since we made the assumpiion that o = —1 at the beginning of
this section, we can now follow Section 4 of Baker’s paper word for word
up to p. 128, line 12. We obtain the inequalities

(9) 0< |ploga+ ... +by_iloga, ;+bylogay] < exp(— Og%”z‘”"gh),
where
b; = bl+bn(jl+3)7 b'.lrz. = ﬁb71? b; = ba'+b11jr

Clearly by,..., 0, ave rational integers with absolufe wvalues at most
At BV B, Further we observe that each conjugate of

(1 < r<mn).

~Ip—1

o —3i
= 0,0 .. Oyl

ay

has absolute value at most (24)7d4, and the same estimate holdy for
some integer a such that ec; is an algebraic integer. Thus, from Lemma B4,
we deduce that the height of o, is at most (2d4")"™? 4™ where D (< @)
denotes the degree of K. Since p > g%, we have 2D/p < 1/2. So
we have proved the existence of rational integers b, ..., b, with absolute
values at most ¢ g2 & B and an algebraic number o in the field gen-
erated by the «’s over the rationals with height at most e, 4" AM gueh
that (9) holds, _

The proof iv now completed by induction. We can suppose that
B> dgf" iRt for otherwise the result holds trivially (ef. [1], Lemma 6).
Tt follows that A > Zlog(e, g™ %2 B), If also A4 > ctA™™P then g
Slog(c, AP AM®) and (9) clearly remains valid with

B = log(c, gt 5 B). g 1= log (e, 4P A2

substituted for & and g respectively. Thus we can repeat the above argu-
' ment and obtain for each s = 1,2, ... a set of integers b®, ..
absolute values at most (6, E)PRB =: exp(A®) and an clement o
of K with height at most. : '

(0 A" PPyl G 4 exp (™)

and

such that
(10) 0 < [Bloga,+ ... -5 loga,_, -+ bPlog ald|

< eXp(— O™+ ™ gh) < exp(— Ogir g ).
The algorithm ferminates for some s < 2loglog 4, say 8, when. the height
of o is at most AP It follows from Theorem B that there exists
an effectively computable constant €; = €.(d, n) such that

- 0 < plog oyt .. £ log o,y + B og ol
< exp( — O,log (0,63 5% B gi{log (.47 P)?)

. b with -
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has no solutions. Henece, for some constant O) = C,(d, )
Cgi™ ™ gh < Oy (log gloggo-+ By g+

Since logglogg,+-H << Uyhlogglogg, for some constant Oy, we obtain
2 constamt ¢, such that

Gy < G loggylogg
Thus both g, and ¢ are bounded. This has been proved under the assumption
that (3%) holds for some rational integers by, ..., b,, made in the beginning
of this section. We now apply Theorem B to our original form. If (3%)
holds, then @* is bounded and it follows that for some constant U = Cy(d, n)

b loga,+ ... +b,loga,| = exp( — Cslog B).
Hence, (3*) has no solutions if we take ¢ sufficiently large. This proves
Theorem 2. ‘

5. Proof of Theorem 1. Without logs of generality we may assume
that p and ¢ are different primes. TFurther we assume that ¢ is odd. This
last agsumption is justified by Lebesgue's result that ¢ = 2, [14]

We have

of == gt 1= (gD g 4 )
Lot @ = (y-4-1, 4" —y? 4 ... +1), where (a,b) denotes the g.c.d.
of @ and b. Then y = —1(modd) and, hence, Y-yt L =
g{modd). Tt follows that dlg, and therefore d =1 or d = ¢. Since the

product of ¥ -+1 and Yt -yt b L 1 I8 & pth power, we find that
there is o d,e{—1, 0,1} and a positive integer o such that

{11)
In a similar way we derive from

Yl = g ] = =1y (@ P )

y+1 =g2".

that there are integers dye{—1,0,1} and ¢> 0 mch- that

{12) @1 = phrgh.

(Tho exact valoes of d; and 8, can be computed, but thelr exact values
are immaterial for our further argunents.) On substituting (11) and (12)
in (1) we obfain

(13)

This equation is almost symmetrical in (p, ¢, 1) and (g, o, 52)-._ Since
we have to distinguish the cases p > ¢ and p < ¢ and the p{:oof,s in both
cases are simdlar in virtue of this symmetry, we agsume p > g1 the sequel,

(p% 7137 — (g6 — 1) = 1.
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We shall first prove that there exist two absolute constants o, and o,
sueh that : )

(14) g < ¢y(logp)®.
We distinguish two cases, (a) and (b).

. (a) @ =1 or ¢ =1. The following argument shows that < P in
ﬂus case. Indeed, if ¢ =1, then, from (11), §, =1 and ¥ =g—1 and
it follows from (1) and p> g that ¢ < y < ¢ < p; if ¢ =1, then we have
from {12) that either # =2 or @ = p-+1. By (1)

n

Fri} H
0 < iplogzw —qlogy| < a —li<exp(—gqlogy).

We. apply Theorem 2 with 4 =y, 4 = p?and B = P Thié gives
[plogw — glogy| > exp (—e¢;logy (log p))

fc?r some absolute constants ¢; and ¢;. The combination of both inequalitieg
yields (14) in case ().

(b) p>1 and o> 1. It follows from (13) and (x—1)7 < y¥3-1.
< (y+1)¢ that v

-
1> pma quq—dzqo,—m - (1 + __1m) {01 - g—az Gmgﬂ)q+q-dzq a"“i"?}.

Pt
Uging the estimates [log(l+a)| < o for a> 0 and
(15) log{(1—a)?+a%| < —qlog(l—a) < 2aq

for 0 < &< 3, we find

P 2q

< pg”

Sinece p > ¢, we have ¥ > ¢ by (1) and hence, by (11 and (12). g% o7 o o
I follows that ; by (11) and (12), g% o% > p%1 2.

8,plogp — 8,qlog g +-pylog =
_ s

o

' 2
% plogp —b,glogg+pqlog = < 43—2»?;.
o @
We want to prove (14). We may therefore assume that

{16)
Hence, from g2,

g > 10logp.
Qq,'z . Q_slog,z.a e :psluge = sz_
Thus,

17 0 <| 8, plogp — ¢ :
{ ) o 0<|dplogp deqlogﬁquOg;'<.exp(—-v’_>~g10ge)-
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Tt iy an eany comsequence of (16) and {17) that

_ 2logp

0
% p +1< 2,

log—
o

(18)

I[énee, o< 6" p < ¢". We can therefore apply Theorem 2 o the left-hand
side of (17) with 4 == ¢, 4’ = p, B = p* So we seo that absolute con-
gtants ¢, and ¢, exisgt such that

)
(19) dyplogp - daqlogyg ~]—m10g—§— ‘ > eX] ( - ¢5(logp)¥log g} .

The combination of (17) and (19) yields inequality (14) in eage (b). This
completies the proof of (14).

Subsequently we show that theve is an absolute constant ¢ such
that p = ¢ for every solution #,y,p, ¢ of (1). Again we distinguish two
cages, (a) and (b).

(8) o =1. We see from (11) that 8, =1 and y =g¢—1. By (1) we
obtain,

plog2 < ploge < qlogy -+1 < glogg-+L.

It now follows from (14) that
P < 2qlogyq < ¢,(logp)™

for some absolute constants ¢, and ¢;. Hence, there is an absolute upper
bound ¢, for p in this case.
() o> 1. It follows from (13) that

8 P ol 00 1 ! 1 1
(p 1Qg+_1) g~ = |1 - qazoj) e qﬁzgo_m <

Using the estimate (15), we oblain

P +1

2g 247 '
dyqlogg —plog’ s

dy o a®

<5
It p > 32, then 2¢° < 2p° < 27 = o, and -

)dl q'-l*l 1
(20) 0 = | Byglogg-plog -8, 2| < exp(— ologo).

Tt follows from this inequality in. combination with (14) that

pa'+1
Uﬂ

< dogg L 2¢i(logpy*®

loe A
0g 'R ph-. P =

ik p = po, where p, is some absolute sonstant. Since we want fo prove

“that p is bounded, we can assume that p = 32 and p > p, without loss
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of generality, Hence, we ean apply Theorem 2 with
A = max(pigft-1, o) Leo?’ <o, A =g, B=
On using (14) we obtain absolute constants ¢, and ¢y, such, that

¥y Dq

qﬂ = exp{ —e,(logp)™ loga).
43

{21) dzqlog g —plog

The combination of (20) and (21) yields
P < 20, (logp)he.

Hence, in both cases (a) and (b) there existy an cffectively computab |
upper bound for . By (14) this gives at the saino time an elfeetively con
putable upper bound for 4. The case ¢ > p leads similarly to effective wpp i
bounds for p and ¢

The number of pairs (9, ¢) for which (1) has & solution p, ¢, o,
is therefore finite. Lt iz an immediate consequence of Theorem A th:
for fixed p, ¢ the solutions @, y of (1) can be effectively bounded. Hene
“the total number of solutions of (1) is tinite and thure exists an effective
computable number , such that p < Gy, ¢ < Oy, 2 K Oy, ¥ = Gy
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