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A note on Fermat’s conjecture
by

K. Inxnwrr (Torku)

Introduction. Recently Everatt [2] has proved the following theorem.

TrroreEM 1. Let an odd prime p > 3 and an integer v = 1 be fized.
Then theve wre at most a finite number. of relatively prime, positive integer
pairs (@, y) on the line y = w-+v such that 5+ y* is the p-th power of an
intoger. ‘ '

The proof is based on Roth’s famous theorem, stating that a real '
algebraic irrational is approximable to no order higher than 2. It is sur-
prising in the proof that 2'% works as the irrational. '

Some time ago, the author [3] stated the next theorem,

Tymsorint 2. Let p be o prime > 3. Then there ewist at most & finite
number of positive integer triples (@, y, #) which satisfy the conditions

(1) WLy o (Y, ) =1

and for which some difference o —y|, 2 —2, 2 —y is less than a given posi-
tive number M. )
Theoren L is contained in the cage |2 —y| < M. Theorem 2 can be proved
most naturally by the general method given by Inkeri and Hyyrd [5].
Because they only discussed one case (albelt a typical one), we give a eom-
plote proot in Hection 2. Further we will state a generalization of this
theorem. The proof of Theorem 2 given in [3] is of interest for that part
which coneerns the so-called first case of Fermat’s conjecture (payz).
The wmiethol wsed is completely elementary, and yields also an upper

Dound in termy of p and M for each of the numbers @, y, # of every solution.
~ On account of Theorem 1, a footnote on p. 52 in [3] is worth mentioning.

Accovding to this note, the proof of Theorem 2, excluding the case z—y
< M, phye, can be carried out elementarily, using only Thue’s theorem
concerning (like, Roth's), the approximability of an algebraie nuraber
by rational numbers, Sinee Roth’s result is fairly deep, we will, in Section 1,
prove Theorem 1 by means of Thue’s theorem, Our proof ig simpler and
shorter than that of Everett. In Section 3 our results, and a result of
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Baker will be applied to Abel’s conjecture (a special cane of Termat’s
conjecture).

1. Proof of Theorem 1 by Thue’s theorem. Let 2, ¥, 2 be any solution
of Fermat’s equation (1) in positive integers such that y—a = v > 1,
(w,y) =1 Then 0 <& <y <=z (¥, ¢ =1 and, by Abel’s wall-known
formul% (see [6], p. 322, Satz 1044 or [3], pp 61—8) we may 'v1ite

(2) g— = DY, ,q—yma;” (0<a<b)
where

(i) @ and b ave integers if ptoy;

(ii) b¥ = p?7'hY, a and b, ave integers, it ply;
(i) a® = p¥"'af, @ and b are integers, if p|w.
By subtraction it follows from (2) that

{3) v =y — = b —aP,

In Case (i) b¥—a® > b7 —ab”™ = (h~a)b?™" > b, since b—a = 1. Thus
b is bounded, by (3). Putting a = p'? (> 1) we obtain in Gase (ii), from (2)
and (3), '

(4:) Py == (pbe)? —pa® > pbo-(aa‘)p-—l —(a)? > |pb, — aa|a?=t

and hence |a—phy/a] < pv/a”. Here « is an algebraic number of degree p
(2 3), because the polynomial #” — p is irvedueible over the field of rutional
numbers. Now, by Thue’s theorem ([6], p. 56, Satz 689), there are only
finitely many positive integer pairs (#, y) for which |o—a/y| < 442,
where 4 is 2 positive number. Thus we can conclude that b (< Ply)
is. bounded in Cage (ii). The same holds also in Case (iii), for it follows as
above that

(3) - By = ph—(pay)? > (ab)? — paty (b)) > |ab— paylp?,
whenee |a — pay/b] < po/b?. ' ‘
More precisely, we may say that there exists a poqmw comstant A

dependmg only on the fixed v and p such that b < M for cv ery solulion
(#, y,2) In question. Since, by (1), ‘>””m<~, we have; according m (2)

D<2(l=—2"cogp<M?. or z< P12ty

which completes the proof.

Still more quickly than above, cases (i) and (iii) ean be settled using
Thue’s theorem on binary forms ({61, p. 37) instead of Thue's approxi-
mation theorem. From (4) and (5) we immediately see that in Case (ii)

# =.pby, v = a and in Case (i) ® = pa,, v = b is an integer solution
of the equation

P —p®| = po.
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Since #”—p i8, as mentioned befove, an irreducible polynomial of degree
= 3 ‘with integer coefficients, this equation has, by Thue’s theorem, at
most a finite number of solutions in integers w, ». After this, one ean
proceed as above.

2. The proof and a generalization of Theorem 2. The npatural source
of regults like Theorems 1 and 2 {(see [B], where some such results have
heen. sliated) is the following fairly general theorem.

Timorem 3. Lel m =2, nz2, ag %0, 8, ..., 4, be inlegers such
that m or w48 2 3. Then the Diophantine equation

(6) ,ron = a, Q,.ql__l_alwn——l _{_ _1_6'}

has only fm?,!elfz/ many solutions in integers ’bf all zeros of the poly Jnomml_
on the vight of {8) are simple.

Siegel ([7], pp. 155-157) has proved. thig theorem in the case m = 2.
Applying his method Irkeri and Hyyrd [6] have given a complete proof.
The theorem ig coptained in a more extensive result of LeVeque ([8]
p. 210, Theorem 1). Finally, Baker [1] has obtained, using his famous
new method and Siegel’s techniques, an upper bound for all integer sol-
utions of (6). For m = 3, n = 3 his reqults implies that

A7 Cmax (), ) < expexp {(Hm 1"“A)” by

. where 4 = max |a}.

It iz casily seen that fo prove Theorem 2 (and so Theorem 1, too),

© it suffices to prove the following theoveri. (The result with a, minus sign

n (8) has already been discussed in [5].)
TisorREM 4. Hock of the Diophantine equaiions

(8) T

where p i @ prime = 3 and & a fived positive integer, has only finitely many
solutions in inlegers @, . . .

Proof. Tho doegrees of ’rhe polynomidls f(#) = (@+ k)2’ are
mp~—Lz2 THis seen 11]]])5;@&]‘1»'!'01}? thm;

PF@) — (& B)f (#) = F hpa®™.

Since f(0) == k* 0, we infer from this identity, that f(#) has in the
both cases no mumple zero. Now our theorem follows divectly from The-

orem 3. _
To generalize Theovem 4 we eonsider the equation

(9) f@) = g (@) —hP ) =9 L
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where p is 2 prime >3 and ¢ and b are distinet, mon-constant poly-
nomials with integer coefficients. Denote by { a primitive pth root of unity.
Then -

-(10) flay = (g(z) — k(@) {g{w) — Eh(®)) ... (g(@) = " h{a)).
We have for the degree of the pelynomial f(x)

-1
- degf = Zdegg 'Myzp~122,
Fosl
because deg(g—h) =0 and deg(g—"h) =1l for L<r < p—1
By (10), a multiple zero of f is either a multiple zero of some factor
on the right of (10), or a commeon zero at leagt of two factors and thus
also of the polynomials g and . Now we can conclude that all zeros of f
are simple, provided that the diseriminants of the factors on the right
of (10) and the resultant of g and b satisfy the eonditions

(11) Dlg—R) #0 (r=0,1,...,p~1), R(g,h) 0.

(For a polynomial f(#) = a of degree 0 we define D(f) = a™*.)
The conditions (11) may be replaced by the following

(12) E(f(@), g(a)}' (@) — g’ (@) h(2)} # 0.
Indeed, a simple calenlation shows that
(13) pf(@)g’ (@) —f' (2)g(@) = ph(@)" " {g(2) ' (m) — ¢’ (@) b (@)}

A common zero of f and & would be, by (9), a zevo of ¢ and thus also of
" ‘the lagt factor on the right of (13). But, because of (12), this factor and f
have no common zero. Now it follows from (18) that the same also holds
for f and f*, whence all zeros of f must be simple.

By the way, the equwa]ence of (11) and (12) is evident from the
decomposmons \

n—1 .
R(f, gk’ —g'h) = ey [IRlg—=h, (g—Em)W —(g' ~ "W} )

Pl
m-l
= o9, ) [ ] D(g— IR,
Fuea )

where the ¢’s are numbers = 0. To verify these one can employ (10) and
the following “well-lknown properties of the resultant:

-R(fg:h) =01R(f7 TL)R(Q, h_): R(fag) = :l:R(g;f)r
B(f, g+hf) = e B(f, g),

whete f, ¢, h are polynomials and the ¢’s are numbers # 0.
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By Theorem 3, we may sum up the above results as

Tuworem 5. Let g(z) and hiz) be two different, mon-constant poly-
nomials, wilh infeger coefficients. If g and h satisfy the conditions {11} {er
(12)), then the Diophantine equation (9) has at most o finile number of sol-
ulions in intogers o, y.

This implies as a special ease Theorem 4, for if g(x) = a4k, bz
= F @, we have gh'~¢'h = Tk and hence (12) ig valid.

As another example we congider the case g(z) = aw®-+bx ¢, h{o)
== (i -- ¢, where the coefficients are integers and ad ¢ 0. We have

Bg, h) = ae* —bde+¢d?,  D(g—~("h) = b2 —dac+ (dae—2bd) 7+ d2 2™,

If v # 0(modp), no two of the numbers 0, r, 2r are congruent (mod p).

Obviously, an equation
n--1

2 0, = o,

(2] .
where the ¢’z are integers, holds iff ¢ = ¢, = ... = p-1- Lhus the con-
ditions (11} ave fulfilled if ae®—-bde+ cd® # 0, the numbers b?— 4ac,
dae —2bd, d% are not all equal, and moreover the sum of these numbers
ig 0. I‘ox instance, o mention one special case, these three conditions
are valid if d1dae?, d|(b, ).

3. Abel’s conjecture and Baker’s estimate, Abel has asserted that (1)
(with an integer p = 3) has no solution in positive integers «, ¥, # such
that any of the integers «, v, # iz a power of a prime. The background
and the present state of this problem become apparent from the papers
(3], p. 8 and pp. 51-b8, in particnlar, 8atz XV and its proof, and [5],
p. 6. I #, 9, 2 i3 guch a solution, the following conditions 11016.

(i} p is a prime;

(i} only the smallest of numbers @, ¥, 2 (say #) can be a prime power;

(i) 2—y =1; 2 =51 and ¥y =0 or —1(modp?).

In addition to these, we have the following fact: There exigh only
a finite number of solutions of (1) in positive integers , y, ¢ such that
one of @, y, 2 iy & prime power. Thiz follows :tmmedm.ely from (iii) and
’T_‘hcsormn 4 (B == 1),

By (i), we can write (1) in the form,

(YA 1Py = ZOﬂW=

=1

for any solution in guestion. We now apply Baker’s result (7). By Stir-
ling’s formula, the binomial coefficients OF satisfy the conditions

9\ .
Of <52%p™",  0F "'(7?) PpTH (g = (p—1)[2, p->oo).
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Without essential restriction, let p = 5. Then
(7'17)10(4 —1/2)(1) 1)“<1‘.

Further, by (7), where now n =p—1, m =p, 4 = O we have the

estimates
3 < y < expexp(2®(p— 1)1"(1“‘1))‘*"""’“1)2 < exp exp (2p™y#,
By virtue of estimates given by the author [4] it follows that
w>pP7h Y >4

since ply(y+1). Recalling that Fermat’s conjecture has been proved
for. p < 26000, the magnitude of each of these bounds ix fairly large.
Towever, the differences between the above upper bound and these
lower bounds are enormous.
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01} the representation of a number in the form
@'y +p*+q" where p,q are odd primes
by
G. Gruaves (Cardiff)

L. Introduction. This paper shows that every sufficiently large
natural nwmber N that satisfies the necessary condition of incongruence,
modulo 8, to 0, 1 or 5 is representable in the form stated in the title.
The interest of this result lies partially in the fact that {so far as the author
is aowiee) there is no imunediste prospect of any solution of the correspond-
ing “Waring—Goldbach” problemn in which the numbers x, ¥ would
also be restricted to prime values,

The preof depends on a combination of the mean value theorem of
Barban {11 (as re-discovered shortly afterwards by Davenport and Hal-
berstam [37) with the {-residne sieve method developed by Rosser (wnpub-
lighed). An necounnt of this method appears in Iwaniec’s paper [7]. Barban’s
theorem is used. in the way described in the author’s paper [5] o estimate,
with sufficient accuracy for our purposes, the number of pairs of primes
P, ¢ that satisty

'132+g8 = Nmodl, p<Z, 9<%

for & odulus 7 not exceeding Z/log%. Such an estimate is the essential
starting point for applications of the sieve method to binary problems
involving primes. In this paper the }-residue sieve method is used in
obtnining o 1)0&1!1% lower estimate of how often N —p®—g? i free of.
primme fetors @ 2 3mod4, and hence is of the form #2442 '

16 iy, ]_3(51'115,1.]9,5, worthy of comment that the 3-residue sieve is suf-
ficlently powerful to establish the exigtence of nnmbers that are sums
of two squares and lie in a. suitable sequence, whereas the 1-residue sieve
Lag ot yeb been successfully used ho esmbhsh the exigtence of pnmes
m amy sequence at all.

Twanice used his vesults in his treatment of the number of primes p
not ‘exceeding % that are representable in the form #*+g*+ A {where,
indeed, #3--y* wag replaced by an arbitrary quadratic form, positive if



