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fiir ¢ > 4. Somit braucht man in (12) nur jene v zu berticksichtigen,
fiir die ‘

%7 o N

gilt. Wenn wir also etwa »n = 107* getizen, so hat man fiir

1 .
(g S TS
jedentalls -
. 0 1 ) . —-l(logN)]-"f‘
(13) [ 18P (a)*de < N aGen (log M) < Ne ® .
—d ,

Insgesamt erhilt man ans (4}, (6), (11) und {13)

P
[ 18, (a)|2da < 5 (log N)°,

—d
Wie in §1 schlieBt man dann, daf die Gleichung
tp+p' N1 < (log N)*
Tir alle grofen N Ligungen in Primzahlen hzut‘.,‘sob-fmld
A29 > b-8
gilt, d.h.
A > 5000 (b + 8);
dies alles unter der Annahme der Riéhtigkeit der Dichtehypothese (1)
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On the non-linear sieve
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J. W. Porrer (Cardiff)
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1. Introduction. In [8] Jurkat and Richert obtained definitive bounds
for what may be called the linear sieve problem, and in [10] Richert used
these bounds to cbtain elegant results in various applications, meluding
the distribution of almost-primes in the sequence of values taken by an
irveducible polynomial. To date the best bounds available for the non-
linear sieve problem, corresponding to the investigation of reducible

. polynomials in the above type of application, are those due to Ankeny and

Onishi [1]. The present writer [9] investigated their bounds numerically
and Halberstam and Richert [6] gave a detailed treatment of the appli-
cations. Flagedorn [4] also studied the properties of their bounds. It has
been realized for some time (cf. Selberg [117), that improvements on the
bounds of Ankeny and Omnishi could be obtained by means of an iterative
technigne based on the Buchstab identity ((2.7) below), and it is the purpose
of this paper to give o detailed treatment of the first step in this iterative
process and investigate some of the properties of the resultant improved
bounds. ’

2, Notation and statement of results. We follow the notation of Hal-
beratam and Richert ([6] and [7]). ' '

Let «f be a finite sequence of not necessarily distinet integers. For
any integer d we denote by «f,; the subrequence of «f consisting of those
elements divisible by d. We use |#| and |« to denote the number of
elements of & and 7, respectively. ' ‘

Further, let # be a sot of primes and dencte by £ the complement
of & in the ret of all primes. Tor any 2z 2 we write

Py =[]

e
pew

We define the sifting function §(s7,; #, ) for 2> 2 and an integer

- g satistying (i) u(g) =0, (ii) (g, P(2)) =1, (ili) (¢, p) =1 for all pe# by

8ty P, 2) = |[ae s (o, P(2)) = 1.
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In words, 8(s/,; 2, #2) is the number of elements of «/, which contain no
prime factor Dbelonging to & which is less than z.

The sieve problem, in one of ity aspects, consists of finding wpper
and lower bounds for this quantity §(«7,; &, e). '

In order to make progress it is necessary to impose on our seqience
/ some fairly stringent conditions, which, however, ean bo chosen o ay
to be valid for some interesting applications. We first introdueo s number
X > 1, which is to be thought of as a convenient approximation to ||
Then we set ‘

By = ||~ X,
and for each prime pe# we choose a number o(p) and seb
@

. . o(p)

R,= lof,| — L)
(In practice thig is always done in such a way that B, is small.) We define
o(l) =1, o(p) =0 i peP, and for a squarefree integer d put

w(d) = l ’ w(p).
‘ pid
We then write

wl(d)
By = 1oty - 2% .
-"The conditions that we impose on our sequence « are most simply
expressed in the form of a demand that the choice of « should be made
in such & way that the following requirements hold:

(I). There exists a constant 4, = 1 such that for all primes p,

@ (p) 1
0l L e —.
= P =y A
(II). There exist numbers 4, > 1, L1 and » > 0 with the property
that for > 22 2, : S '

O w(p)

-0 —- logp -—_wlng»’g{a: Ag.

PR <w } . ‘
Although this can always be done, significant results can only he

obtained if it can be done in such a way that Ry is small on average, as
will be apparent from (2.2) and (2.3). '
It iy convenient at this point to state the following consequence
of (T) and (IT), which is due to Halberstam and Richert [5].
LemmA, If, for 2 > 2, we write

(1622

Dy

W) =

icm
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then, under the conditions (Y) and (IL),
_ O(=x) L
WO =g gz

o) =6“.”"];[( "%&)) (1‘“%)_”'

(v in Buler’s constant.) ‘

The cage x = 1 corresponds to what was referred to in the introduction
as the linear sieve problem, and accordingly is excluded from further
consideration in what follows, where we assume » > 2.

It should also be remarked that we allow the constants implied by
the O-notation to depend on » and the 4’s but not on L. (For the reison
for this, see Halberstam and Richert [5].) o

It hag been realized for some time that in these circumstances the
sieve problem resolves itself into a search for functions P, and f, for which

(2.1)

where

(2.2)  S(oy; 2, 7)
w{g) f L(loglog &£)4s )} ' #n)
< e XW(z) 11*1::(’%)“{‘0 (——lggz_:"""— +0(§ 3 IRW|).
’ rn'flt’(a_]
and
(2.3) 8{A,;2,2)
Ll . L (loglog £)4s N
= 7 XW(2) {fx(fa) +0(———15g§—)} +0 ( % 3 !anl)
‘ :fp(z)

where 7, = log £%/logz, »(n) & the number of distinet prime divisors of

n, and £ is an arbitrary number greater than 3. . :
Ankeny snd Onishi obtained such functions defined as follows: Let
o.(u) denote the continuous solution of the differential-difference problem:
§-rg= |

" ‘ ! ....._i — -.‘
=TV <UD ) =S {nlu—n(u-2) (32),

o (u)

They proved that o,(w)->1 as u->co in sueh a way that

1

o, (%)

-1 = O(.B*uﬂ)n

5 — Acta Arlthmoetion XXIX 4
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We may therefore write
. o
~x f por (L 1)t
== g2l e =] |
Nulth) == 2t J o (i)
Then Ankeny and Onishi proved the
TumoREM. The following ave admissible choices of T, and f,:

" _ 1 ~ 4 F N T o foy
(2.4) o () ——_a—,:(f_w—) and  f(uw) =1 —n,(u).

The function 7,(u) is continuous and decreasing monotonically to 0.
Since u,(#)—>co ay u-+1+ for x> 1, it follows that, for » 3= 1, there is
a unique positive solution of the equation g, (u) =~ 1, denoted by »,.
'Fhis parameter is of some importance in the d])piic&hbiona of the sieve.

In this paper we seek (and find) better functions ¥, and f,, which
satisfy (2.2) and (2.3). I is convenient here to introduce some functions
which are required in the definifion of our new ¥, and f,, and mention
a few of their propermes We define indnctively
(2.5) : Top(t6) = ™ [ 0y, (6—1)dt,

Y
mterpretmg Mo (w) a8 7,(%).

This defines 7, , for u > 7 ay a continuouns monotonmally deme‘mmg
function of  tending to 0 as #—+o0, and t0 o0 a8 w4—>r-b, if % 2 7, .

Ankeny and Onishi proved that #,(u) = O(u™ e¢™**). One may deduce
immediately from (2.5) that

(2.6) Moo (%) = 0(w™2e™)  and - g, (u) = O(u"%6 ).

The above mentioned lower bound of Ankeny and Onishi was obtained
from their npper bound (derived by Selberg’s method) by means of the
Buchstab identity, Va.lld for 2 <2 (2,

2.0) ' S(t; 2,8 = (A P, ) NSty 8.
ByRae
e *

Our method is to use the Ankeny—Onishi lower bound in (2.7) vo obiain,
a new upper bound for §(s,; #,2) and then fio derive from this new
upper bound, again by means of (2.7} a new lower bound for the Hamo
quantity. :

In addition to the results of Ankeny and Onishi guoted above we
require the following result of the “Tundamental Lemma’ type:

-

8ot @, 2) = ;‘” W) (1 +0e "z}+0(2 BOIR,,).

)

" P(z)
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Applying this with

log & |
&5 ST (10&1'@?)
we obtain
{2.9) .
- (l)( ) e h T l N l ~ vlﬂ(’n‘l) )
S(q/,,, P, 2,) = . XW (=) ll H)(log.f)l +O(4,_J3 [Bnl]-

sz
n] B (=)

3. The upper bound. For convenience we collect together the following
simple estimates, which are required several tlmes in this and the following

gection:
With #; given by (2.8), we have for &, < w = O£ (a< 2)

[¢H] -
(3.1) N 20 ) = Wi — W (0);
et D

ZyEpiw

o N e(p) | R ((10_‘3_1“00‘5)"
RS s 1
and,
@3) o Y E Ry Y SR
BED<W gty e
pe a1 1)

In order to obta.m an upper bound for S{w; #,2) from (2.7) we
require a lower bound for S{=/,,;#,p). Two lower bounds are afi our
disposal, viz that given by (2.4) with ¢ veplaced by ¢p and 2 by p, applied
with £%/p replacing &2 (in order to ensure that the error term can be dealt
with), and the trivial lower bound 0. The trivial lower hound is better if

logg® -t L il
a i Sy,  Le, if pz £
logp
Writing 0 = min (&% 2) we have
Y - w( O ru [
,2.; 8(H0ys @, 0) 2 = ) (2) =l =)+
BEEN<E zlr_.,p«_ﬂ

pe

oﬂwwwq22wmo

Epr ey
log &
2y p<0 (‘1<§2fp
. s d|P(p -



382 J. W. Portor

Now, by (3.1) and (2.1),

O e(p)
P

W (p)9,(7,—1)

ﬁlgp‘f.ﬂ

= [nEm-10a(WE~WH) = ~ [ ndm—0aw

= =W (O nu(re—1) W (2) 7 (75 —1) -+

== — W (0)n,{vs—1) “{““W(zl)’?x('le 1)+

C{x) I a
+ f{ ].Og i L (10g?¢+1t)}_é? ﬁx('rt'—‘l)dﬂ.

Further

(]

] d - .
[ ot MmN
2y

‘ 1 dt
= T o 'Tx(le""l)-i-l ) Tu{Ta—1) + 2 fm(n )HW
1 i -
2 _— J— 2y -2 gt} —_
g T D+ oo tlro D)+ #(l0g 8 [ ig (u—1)an.
)
Hence
w(p)
M W(P)m(fp “_'1)
!1£p<9 'p

={we- ()}m(rﬂl -1~ {win

O] ¢(x)
+ o 10 ) N, 2( m nw,a( sl).’l" ) (log"f‘lg;)’

which, by (2.1) and (2.6) it equal to

o) I L
g0 80+ 0{ ) = WO "O(mw )

icm
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Using (3.2) and (3.3) we find
B4y D) Sy 2, p)

o<z
e

©l). W) — L (loglog g) s+
> X{W(zl) w(0) W(B)m,g(ro)-%-o(—w)}‘F

+0( 3 8 |R,,).

n<dt
n|P(2)

It follows that, if § = 2, that is, if 7,3 1-+4, we have, from (2.7), (2.9)
and (3.4)

< i”—‘q—@ XW(z) {1+n,¢,2(rz) +o(

L{loglog &)y4st*
log ¢ )} B
+0( 2 3 |-Rgn|)

< §2

wIP)

S(-ﬂqigp: ?)

whereas, if 0 = £+, je. v, < 1+, since
W{e) (logz)"{ : L )
Wz \log6 '1+O(1oge }’
8(oty; 2, 9) <22 WL 720+ (1490)+

L(loglog &)4s** i)
o(——. Tog £ )} +-O(ﬂ<2523 Bl

nlP(z)

it follows that

The following is therefere an admissible choice of npper bound fanction:

F (% — |1‘|'77n,2(“) (’M; lﬁ Tx)!
" (LFry oL+ g,, (L +2)}  (w<14,).

The question ariges as t0 how this choice compares with that of Ankeny
and Onishi, namely

Ag iy shown in § 5,
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for sufficiently large values of . {Indeed it is even shown that

Yo —1)‘)

Since 7], (%) = + oo a8 w—2 - for x = 2, it follows that the equation

1
7774,2(%) =0 ('—"

By (W) = - 1 -1 (#22)

(3.5) o

mugh possess ab least one root. (What nu merical evidence there is HULZEoRhy
that it possesses only one roof, but it it mot necessary to asswme this,)
(Call the leagt root of (3.5) A,. The data available suggests that 4, > 1 v,
In any ease we have the following result:

TarorEM. The following s an admissible eholee in {2.2):

1 +77x,2(%) (% ? Ax)?
(3.6) Flu) =1 1
o) (<< i),

4. The lower bound. To obtain a lower hound for S(af,; 2, 2) from
(2.7) we reguire an upper bound for

Y‘S(

Elﬁj‘)?‘w.c

qpy Z,p).

We use the upper-bound obtained above for §(«7,
placed by &p~i.
Now ‘

w P, 1) with &2 re-

2 o —1
Jogt'p~
logp
Z p. Writing @ = min (e,

( wi? B = > 8

i

according ag E” (A2}

(1) 3

T4y wo thevefore have

ap? 7'p)+ ‘-’ S( qp:g’ P)~

zljizéfa zlzg:pcﬂ ﬁ»ﬁ:&;z
Now
O
21 S(a s Py D)
51}-?339;:&
o(g) o s wlp) ‘ L(l()ﬂlogf)*"‘l |
S D S it 1) o TEEAEAT L

+0| Z 2'3“‘1) 1B -

ayEn<d g #im
P )

icm
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Precigely ad in § 3, it follows that

1 @(p) L
280 g (v, 1) mww)m,a(m+o'(——“—+l——- .
o log"™! 2,
zl;);'r;{}

By virtue of (3.2) and (3.3), we find

(42) D) 8(y; #,p)
gy i
Dot )
w(q) ‘ . L{loglog &)dst®
<3 X {W(.zl) e W () 4= W (D)1, m} +0 (m 10g£'4?1_”'"5“"_)}
w{n)
+0(1£2 3| Ry, 1)
. ] Piz)
Ag for
(4.3) D 8ty 2, 1)
T

we note that if 4 = 2, Le. t, » 1 +4,, the sum (4.3) is empty. Gonmdela,tmn
of (2.7), (2.9), (4.1}, and (4.2) shows that, for =, =1+ 1,

. 1 Fa¥: EX
2D xwis) {1w M%) + 0 (%)} !

g
+0(23”(”) )

n< 6>
n]P(z)

(44)  B(ly; 2,2) >

On the other hand, it =, <C 1--1,, applying {3.6) with £%/p replacing
£ we obtain -

2

w () 1w
J . <—__ . -
0\ S (03 #, ) b {> ; W‘”lg,m,_n .
¥ Heipy
e . .
L{log &p U2t T
o[ o 37 5 woua)
Oé 'p dp<la dﬁfgfﬂ'l )
IJEW dlp(.’ﬂ)
We have aga,iil
a o) 1 o ( i )
= =W —W{dn, 0 |——r—
WB) gy = W) =T ) +0 ()

Deiq) e



336 J. W. Porter -

80 as before it follows that

(4.5) ?’ 8 (8 g3 P, 1) < %“’ég) X{W(m_mz) W (&g (v,) —
Bp <y
neF

#41
=Wy 0+0[FIELL N o Ve,

o
Nt
n[ L (&)
From (2.7), (2.9), (41), (4.2) and (4.B) we obtain, it & = gM+4) jo
T, <144,
- W
$(t55 2, ) > 2L X W0 1 n,(z) T 150 = 1 5 4

L(loglog £)s+ gv(n)
+O(-———-}E~g’ ‘)}'I‘O(ZJ JRczﬂl)'

It follows that, sinee ¥ = £/(1+4 and’

W(#)  (loge\*| 7
W) (k»gﬁ) {H O(EBE&“)}

that
(4.6) = §(H,; 2, 2)

= w—;qlx-w(z) {1 '"f'"nx(rz) + (1 +j'u)u1"z_u(77x(1 "I" Z;c) - ﬁn,a(l -+ lx)) ’"i"'

L(loglog £y4s+s '

o= S ()

o+ ( Tog )} %0(@%‘23 1Byl).
ol (2)

From (4.4) and (4.6) it is apparent that the following theorem holds.
TrmoreM. The following is an admissible chosee in (2.3): '

i = {lmnm(%) | (4> 14y,

1- "?n(u) +{1 +’1u)“u~x{77w(l + xn) Ny (1 ;{H)} (Q"" <L An) ’

5. _l‘n fsh‘is aef}tion we investigate the asymptotic behaviour of some
of the functions introduced in the Preceding sections. In particular we

deduce the existence of the number A, and show that our ehoice of 7, and -

Jx 18, at least for some parts of the range, an improvement on that of
Ankeny and Onishi, The methods we employ are essentially those of
de Bruijn ([2] and [3]). ‘ . :
- We derive first an agymptotic formula for o, (u) using the method
used by de Brujjn for a function thaf is, in all essentials, of (4), and devive

icm
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from this, in suceession, asymptotic formulas for 1—a,(u), 5,(u), T2 (%)
and 7, (1)

We quote the following lemma from de Bruijn [2]:

Luymwma (de Bruijn). Let K (m, t) be a function of o and t which is absol-
utely intograble with respect to  and ¢ for 0 < @ < a, 0 <t 1, for any a > 0,
with the preperties that, for » =1,

(i) K@, 1) 20 (0 <1< 1);
(iiy K{@,?) =0 (t>1 or £<0);

(i) nf‘;rf(m, Hdt = 1.

Suppose further that there emists a positive constant y <<1/4 and a
continuous function o(®) on o 1 with the properiies:
(i) pl@) = 0 (w2 1);
(ii) the series

o

(5.1) 2, nt{p(@); n <o <nt2)
: =1
is divergent; .
(iii) for any » = L and any measurable subset T of the inferval 0 LEL1
with measure = y, : ‘

(6,2) ng(w, )t = (o).
I .

E

Then the integral equalion

fla) = [ Ko, t)fl@—1)as

i

lim  f(a)

has the property that every continuous solution is convergent, i.e.
B L0

extsts.
We write v,(u) = o,(2u) 50 that
‘ 2

ur,(u) = uol(2u) = %x{a”(éu)imgw(ZM_z)} =} [ 0(2u—1t)dt

0 ‘

1 1 -
=x [ of2u—1))dt = [ T (u—1)dt.
0 [}
Thus z,(#) is & solution of the integral equation

(8.8) uf(w) = » [ flu—it)dt.
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Suppose F(u) is another continuous solution of this equation. Then the
funetion
P ()

T (%)

is easily seen to satisfy the integral equation

gl =

_ lxrx(qowt) , .
g(n)--“f () g (w—1) dt.

We therefore apply the theorem of de Bruijn with

Since 7,{®) is decreasing for @ > %, we have for » = %41
L
Kz, t) x/w

- and take p(m) = yxz~' (2 = »+1). The defmition chosen for ¢(#) in the
interval [1,»+41] cannot affect the validity of condition (i) and it is
clearly possible to define a non-negative continuous function in this interval
with the property (iii).

It follows thercfore that there existy a constant ¢ (r,

%) such that
g{u)~C, ie. that «

(5.4) 7, (it) NJ]G;F (u).

We can therefore obtain the asymptotic behaviour of 7, by construct-

ing a solution F(u) of (5.3) whose asymplotic behaviour we are able
to determine.

Tollowing de Bruijn, we seek a solution of the form

J f,-n.. z

the integral being taken a1011 ROME }mt.h in Lhe complex plano. Ditferen-
tiating (5.3) and ma,ln_ng 4 forma,l substitution of (B.5) vields

[ep(e)

Thiy suggests that we choose P () so that

" (5.5)

{2 — 2™ -0~ 1} e = Q).

o e (2)} = eT%p z)( U = 50 e —1),
ie. i

—1uf
o U

/() = ™" p () (e —L)
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or
P (2) e —1
== ¥ — ~
p(z) g

We therefore take

_ . P |
p(2) =exp(u“f——3»~ AAAAAA ds).

Since the function p(#) tends to 0 very rapidly along the lines 2 = L mi-+4,

we take o
1
W e —2 -
Fw) = g jexpl Ue 3% Uf

(5.6}

where ¢ ix the contour consisting of the line ¥ = —=n Irom # = --o0 to
® = 0, the y-axis from —x to wand the liney = wfromao = 0to 2 =+ co.
That (5.6) is indeed a solution of (5.3) follows from the fact that the differ-
entiation of (5.6) under the integral sign is valid by virtue of the continuity of
the integrand and the uniformity of the convergence of the integral for 2> 0.

~ To determine the asymptomc behaviour of F (u) we proceed as follows.

We write

| 22
[

(5) = —us-+ f &' =1
B = — % | -
, ; §

ds.

Now

‘l”(z) = -—-—u-'['"%(es—l).

2
Thus, ¢'(2) = 0 if and only if »(¢®—1) = uez. This equation has one real
positive root for % > x, as is clear from the grapha of the functions #(e* —«1)
and wp. Call this root & = £(u) so that

w(ef—1) = uE.
Now
(&) = wefe ™l — (e 1)

80 that :

() = we"ET (et —1) ETH == (b ) E
We now replace the path ¢ by a path ¢ consisting of the line y = —=
from @ == ooto® == & theline # = &fromy = = to § == m, and the
ling ¥ = from # = & to 2 = -+co. Thus

1 :
J{a) = v j exp {y(z)}dz
&

_ 1 few(s 'nf),bdt _{_ f blﬂ(-l“i i) dm _i_ R j w[v-i‘r) dw

Qi
-7

=T +1,--1;, &ay.
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Now

®-Fim

P(@ i) = —u(m+'in)+xf
13
= (@ --4m) Haf-
Hence
law(a:-}—iﬂ:)i — eﬂl)w(:l:-l-'in) - 0(6—--%71)’

80 that
(5.7) I, = O{e7" 1),
Similarly,
(58) I, = 0(c" 7).

Aj regards I,, we note that given ¢ > 0, there exists a ¢ > 0 independent
of & such that if [f| < 6,
- (5.9) C (£ it) = w’_’(f) {10}

with |8 < & This becomes clear if we note that

wu( g ~|—'&i) _ 65"'“(5 + ?:t)—l‘w (e{s-wt _1)(5 A 'ﬂ) -l
pIE ¢ & —(F 1) 7"

~elt

as E—oa,

With & 1;0 be chogen later so as to satisfy 0 < §' << 8, we write

—&

Sl [ [ o

="§:{I&9+1§>+1§”}, say.
‘Congsider first It

. T 1" i
1)< g, — ey [ oenerorwong,
& 8

Now
P(E+it) —p(8) = —u(§-+it)+ j’-"”f:;;}_ds_wm% fi}i':_ds
&-pif :
== —mt—l-%éf

] 1 Ev{ iz 1

6~—~— ds = — it i dl
- — s |
'M [—xj E*l % ~4dt.

icm
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It follows that

! .
) f efreosT — Eefsint — 7
= i

0

Since the integrand is negative for 0 << i< =

sup Re{p(s+it) —w(£)} = x de.

B el I

i .
f e*roosr — Eefint —v
62_1_72

Noting that

i f

* TCOST 11,
J g2 |t oy <?“~ Eﬁ
o
sin 1
: - &
of oz Eop ey
and
#
T
——dr >0,
[ e
we obtain
4 67 e! ——— (1 —co8 a')}
dfggﬂﬂe{"ﬂf'l‘i )“ E)}\"ie 252 ,52+5’2 !
so that
(510)  1IP| < merexp{xef(467 87" — £(£+ 8771 —e0s 8'))}.

A gimilar analysis shows that the same inequality holds with I{? replaced
by 1.
To deal with I we note that for each ¢ satistying [f| < &' there

exists a ¢, satisfying |f,] < ¢, with the property that

P(Eit) = (&) —BPp" (§+ity).
Tence, by (5.9), if |t| < &',
w(&-+it)

= () — 32y (&) (1 +6)

with 18] < e
We therefore ha.ve_ '

&
5 — 32 HEL 6
1(12)=e"’()f6 i+ gy
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It 6 = 0,-+i0, we have
‘ Iml(lz). = g¥é f @“*izv"’(“g)“"'al)sill{-—z}f}ataﬂpff(f)} d.t

and
Relf = 9 fr’“”z""‘”“ 0 o (§0, 829" (£)]} di.
SR
Now }
W (£)0y = Tmy' (£)0 = Im{y' (E-}it) 9" (£)) = Imp"" (§ i)
gt gEit '

=N T e

= 2Tm {¢"T* (£ —it)(&* “Hz)_l""( i )(f" ¢~ 2080 (8 -+
¢'Exint —e'feost  of (&1 *sint — 2§t (efcost—1))

= ":{ TE e T (&2 4122 ’

Therefore
' lp” (£)] = O(e"E7 i),

Tt follows that

. 5
HIInI(lz)l =0 (evp(E) 65 E—~l 6’3 f &Miﬂwu((@)(l_s) dt)
iy :

and ‘
| ReI(Z) —~e""(‘5) fe“*‘z“"'( M0 Gl + O (e E287)} .
— 5 . .
Now '
R
f o WEW N0
.1

1ies between the two quantities

VTR

(sl : e e e e e e
* 2 2 "
oI gy l/ L j gty
| V(8 (Le) o

5 Y 5)(-‘{.:!::‘“)/2”

]/ "_:Ec o
HEEY)

if & is  chosen o that 5’1/1p” oo,

which are asymptotic to
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Therefore I is sandwiched hetween two quantities

) ]/ 2=
(&) (Lte

Sinco p' (&) ~e £, if wo choose

{ A+ O ET ) L O (F £ 8],

A
LA 12
d e ,

we s#hall have
1
—— g
6’]/1,0”(5) Nelz 5“}%"00
and '
eE‘,;_-—I 5 = 6”*55_1%0,

Algo, with this ehoice of &, from (5.10)

w(g)
| << 1/_'1(5 eXp{er(éﬁ“’E‘ (§2+a'2 )746%) + £}
'l/J
me?é) oo .
*'7“;;*“” exp {% 8" {%5“——3.;5(52 + 8271 - &)
4 .

= 0 (W(E)/VTPFF(—E—)—):

and similarly for o, .
Finally it is easy to see from (5.7) and (5.8) that

e¥i8) _ v
= o( —) and I =o(——,__).
Vy''(&) Vo' (8)

Collecting these results and leiting -0, we obtain

. e
7 (1) ~ e
Vary' (€)
80 that, from (5.4}
1 e
Ty (M) o * s
l/Zmp” (£

Noting that v (&) ~u and that

g 5 __ g
’l,l)(f) = —MEHFMJ‘ETE" a8 == —%(Ge—1)+%ff'*~}-d8
0

s -
a

f&'e —a® 1
= —M s —
8
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if we make the transformation to the variable » defined by We require also the remark that

(5.11) ' w{ef—1) = ns

1 1
. (5.17) s(d(w—1)} = s(a}u)—T +0( 7 )
80 that 8 = 0 corresponds to n =% and s = § t0 » =% and b wlogt

which follows from the Mean-Value Theorem and (5.15). We alse deduce

xe®ds == nds-+sdn, that
i.e. 1 1
LI (5.18) ogs(f(u—1)) = logs(iu -I—O( )
(xe“-—u i - ) ds = 8dn, & } (hu) ulogu
" ' We can now obtain a more enlightening expression tor o.(w) than
we obbain . (5.12), Tor
W
7, (%) ~ ! ex {——fsd] e b
» Vo P J Ui [ sdn = jus(4u)— [ ns'ay.
Le. . ) “ Tt is easy to mee from (5.15) that
(5.12) (T L n— {—f sda;:}. b
OVmu v f ns'dy = O(u),
It is convenient to interpolate here a few of the properties of the 80 that from (5.13) '
function & defined by (5.11). These are required in the subseguent calen- R : _
lations but alse shed more light on the behaviour of the functions we are f sdn = Julogu 4 O{uloglogu)
investigating than does an estimate of the type (5.12), though this is in o ”
s0me ways imore convenient. and ‘ '
‘We easily deduce by taking Iogarithms in (5.11) that a,(4) ~exp{ —julogu + O{uloglogu)}.
1\ More accurafe expresgions may also be obtained (cf. de Bruijn).
(5.13) logx+s =log(x+ns) = logy +10g3+0(;;8*) Finally we note that
o that - o P
§ ) - ' : ’ (6.19) f sdy ==%us(%u)—%(u—l)s(%(uﬂ—l))— f &' dy
(B.14) g~lognm. ‘ I N Hu1)
Algo, differentiating N = {s(%u)—s(%('u—l)‘,}+%s{%(u ~1))— f {L4o(1)}dy
we's' = ¢'n -3, : 1 N ' i)
i - J_H-o(;) + -gs(-;u,)w(E) —3-+a{l) = ks(du) +o(1).
(5.15) QL . 1 ‘ -
' = %" —1n wtps—7 NE ' We now prove two lenmas which will assist in the traxsition to asymptotie
' . _— . : formulae for v,, 1., and 1,,. .
d, dife ” " T
and, erentiating again, Lmvma 1. Let f(u) be a positive function swuch that the infinite integral
- we's +ug'(s')! =288y, [F(t)dt converges. Suppose that f(u)~g{w). Then [ g(t)dt converges and
so that u _ % '
' | 28— (82 (g8 + ) 1 e e
5.16 "= —_—— : ~ R

-8 — Acta Arlthmetlea XXTH.4
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%
Proof. We may write we have from (5.12) and Temma 1
glu) = fu) {1 +e(u)} _ ' > >
where &(u)—0. ’ : 1—a, =f ol (%) df ~ - _.._f D gr
It is clear that [s(¢)f(¢)dt exists and therefore that f g(t)dt exists. Since | '
Moreover : 1
o W (u) = —gs(4u)— -~
X 2u
Jondt = [ Flydt-+ f Fi0)e)d onil
and ' | " , 1
. N B () = 35 (B + 5
%
U (Bf dti sup le(t)]! [ £t (ff cu) . » -
o = o it follows from (B.14) and (5.15) that the conditions of Lemma 2 are satisfied.
Therefore We therefo;'e deduce that
o0 : _ 1 9 -}'u 1
gBd~ [ i) (5.20) 1 g () o ¢ e exp{—j sin—3logu
J / | ovz S OPLT ) shmiey
Lemwma 2. If & is a twice differentiable funclion with the property that "
o f i Y propersy tha = exp{_f sdnmélogu—logs(%u)}.
f "3t is convergent; and @f the following two conditions are satisfied: : OV p
(i Pt /B{ u )0 ag U —nc0, ‘ This shows that 1— o, (%) tends 10 zero more rapidly than o, (%), by a

factor which is roughly #“?logu.

(1) ' () /[B () 20 as u-—>co; ‘
An application of (5.18) and (5.19) shows that

then
00 . fu
fen('ﬂ)dt ___w_mgh(“) . 1 (% 1) 2 exp{ fsd +48(du) —%logu logs(%-u)}
r~ ; — O, el B —-— 7 —_ 'y
3 {_h (%)} ) 0'/; P )
Proof. Integrating by parts N o and so it follows that
oo o ' e
1 BM'”) l t) 1 [ ]
O = |~ @) =~ - M” e ’u""l( —1)~ = 6K {— sdn +Ls{lu) —logs(3u) -{x—F)logu;.
Tt iz eagy to see that : We must now check whether we can apply Lemma 2 with
o B (1 X ) ER
f M T ( ; o oU W)&g) _ hiaw) = -~ j sdn - Ls (hu) —logs (du) - (x —Hlogu.
and the result follows. Tn facf
We can now deduce asymptotic expressions in turn for 1 — o, (u), 70 : (%”) %—3
' W () = —be - log
Nult)y H2(u) and 7, 4 (). ¥ (1) Be(d) - b’ (3u) — = YT e %Og
Writing | | o and .
fu ’ i 3 3
: ' Laf ’” -S(’%’M)S (%M)—{S (%u)}g X —3
) = = [ sdn—3logu | W) = = () e -
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£
so that (5.14), (5.15) and (5.16) show that the conditions of Lemra 2 are

gatisfied. We dedulce that

(5.21)
2 i |
M G —— G]/-n: %M exp { ! sdn -+ e (Ju) —logs(du) _]_(%_g)log%}
b
4 .
=6—% exp {—f 8 oy 5 Fs(du) —21oge ($u) ngog,‘_b}.

H

This again shows an improvemwent of woughly w'*logu over 1o, (u).
We may now prove by induction on r that

(6.22) 7, (w)

21‘+1 %7‘ .

- exp] f 80+ 475 (3) — (7-+1) logs () —(r - g»)mg%},
For the case ¥ = 1 is simply (5.21) and we may deduce in turn precisely
as in the passage from. (5.20) to (5.21), that
ﬁx,r(u _1)

‘ 29;—|~1nr

o

.

W .
exp { — f sdn+-4(r+1)8 (§1) — (r +1)log s (du) — (r + %)k,gu}

and that Lemma 2 iy applicable with

iu

h(w) = — [ sdn+4(r-+1)s(du) — (r +1)logs (1) + (x —r — Y logu,

H

It follows that

ﬁx,r-]—l(u)

21--12 1 i 7
V«~- ~exp{ J .9da1-{~;§(r+l)s(a}u)-~(r~z~2)1ogs(-}u)w(w~|-f§-)logu},

"

which completes the proof of (5.22).
An application of (5.13) enables us to deduce that

(5'23) 'nx,r(u)
g1, }/24-1 du
~ 01/“ exp{ fsdﬂ-—(%Ml)mgs(%u)H%(Ml)logu}.
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Comparison of (5.20) with (5.23) I01 r ==2 ghows the truth of the asgertion

of § 3, viz that

‘ 1
matt) = °(a,,<u> ”1)'

Also pulting » = 1 and 7 == 38 yields the coxrespondmg result for lower
bound functions, that is

Nes () = 0(7791{'“)):

thus showing the superiority of cur bounds to those of Ankeny and Onishi.

Of particular interest from the point of view of the applications
of the sieve is the improved valve of what may be called the sieving limit,
i.e. the root of the equation f, (%) = 0. The improved values are ta,bulamed
below for small values of w, but unfortunately the improvement over
the valnes of Ankeny and Onishi does not seem to be Iarge enough to

yield any 1ntelcqt1ng new resulty in the applications.

y Ankeny-Onishi ) Our
gloving limif sleving limit
2 4.42 4.38
3 6.85 6.82
4 9.32 9.30
3] 11.80 11.78
[i] 14.28 14.27
7 16.77 18.76
8 19.25 19.25
9 21.74 21.73
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An asymptotic formula for the property (n,f(n)) =1
for a class of multiplicative functions
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1, Introduction. A number of authors have investigated the problem
of estimating the sum _
(1) 21

(mF)r ,

for certain types of integer-valued arithmetic functions f. If the arithmetie
properties of # and f(n) are more or less unrelated, probabilistic arguments
leadd ome.to expect that the sum in (1) is asymptotic to 64/x?, and some
results in this direction have been obtained, in particular by Watson [15],
Erdés and Lorentz [2] and Hall [6], [7], [8]. There iz marked contrast
between Hall’s result for certain strongly additive functions, later improved
in some cases by Falnleib [4], and the result to be derived in thiz paper for
& related class of multiplicative functions. In [6] and [8] Hall considered
the strongly additive function given by

2) fln) = D'p,

Dl

and in t7 ] he invegtigated a class of funetions that includes functions
of the type
(3) flny = g(p),

’ FIrA

where g is a polynomial with integer coefficients satistying some further
conditions. Taking g(@) = @ in (3) givey (2), and in both cages the sum
(1) is asymptotic to Gw/n?; in fact a very much more precise result was
obtained for (2), using o combination of elementary and analytical argu-
*The author is indebtod to the Poligh Ministry of 8cisnce, Technology and Higher
Edueation for financial support during a period of three months, in the autumn of
- 1973, spent at the Institute of Mathematics of the University of Wroctaw, where much
of the work for this paper was done.



