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1, Introduction. A number of authors have investigated the problem
of estimating the sum _
(1) 21

(mF)r ,

for certain types of integer-valued arithmetic functions f. If the arithmetie
properties of # and f(n) are more or less unrelated, probabilistic arguments
leadd ome.to expect that the sum in (1) is asymptotic to 64/x?, and some
results in this direction have been obtained, in particular by Watson [15],
Erdés and Lorentz [2] and Hall [6], [7], [8]. There iz marked contrast
between Hall’s result for certain strongly additive functions, later improved
in some cases by Falnleib [4], and the result to be derived in thiz paper for
& related class of multiplicative functions. In [6] and [8] Hall considered
the strongly additive function given by

2) fln) = D'p,

Dl

and in t7 ] he invegtigated a class of funetions that includes functions
of the type
(3) flny = g(p),

’ FIrA

where g is a polynomial with integer coefficients satistying some further
conditions. Taking g(@) = @ in (3) givey (2), and in both cages the sum
(1) is asymptotic to Gw/n?; in fact a very much more precise result was
obtained for (2), using o combination of elementary and analytical argu-
*The author is indebtod to the Poligh Ministry of 8cisnce, Technology and Higher
Edueation for financial support during a period of three months, in the autumn of
- 1973, spent at the Institute of Mathematics of the University of Wroctaw, where much
of the work for this paper was done.
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ments, by Hall in [8] and for (3), using a different approach, by Fainleibh
n [4]

Multiplicative functions f present a rather different problem, for
here the arithmetic properties of f(n) are dependent on those of n. In
1948, Erdos [1] considered BEnler’s g-function and he proved that )

(4) 3 i
. & 7 loglogloga”’
' {nym(m))=1

this vesult is of special interest since the property {n, ¢(n)) == 1 is a necess-
ary and sufficient condition for there to be only one group of order n.
The purpose of this paper is to obtain the corresponding result for poly-
nomial-like, muitiplieative functions; if there exist polynomials W, (x)
(§ =1,2,...) with integer coefficients such that for all primes p

(8) - fo = Wip) (G=1,2,..,

then f is said to be polynomial-like. For example, the function ¢ and the
divisor functions

(6) ‘ 7 (") =2.1, o,(n) de"

dln - aln

{v a povitive integer)

satisfy this condition, whilst the function in (3) is a strongly additive
‘polynomial-like funetion. : ' :

. Our objective is to obtain an asymptatic formula for the sum (1) when.
f is a multiplicative polynomial-like function. We shall assuine that the
polynomial W, of (5) satisfies two further conditions: that the ‘degres
k of W, is positive, and that W,(0) # 0. It is easy to see that, if we drop
.this latter condition, the sum (1) is rather small. For if WL (0) =0,
(p,f (;o)] = p for all primes p, and hence using the multiplicative property
of f, we have that (fn, f(n)) = 1 implies that » is squarefull (that is, p*ln
whenever ¢ [n); hence

PP

L
(m.#n})=1

1 = O
ez
nsguarefull -
by 2 regult ?f Erdds and Szekeres [3] (see (25) below). Tn Theorem 3 in
§ B, we consider the case when W,(a) is a non-zero congtant.
We now state the main result of this paper:
TreoREM 1. Let f be a polynomial-like multiplicative funotion suech

that Wy has positive degree amd W,(0) = 0. Then there ewists o positive
constant C such that, as g—oo,

1 Cu
- 2 Lo o
- (logloglogam)
(n,.f(n))z-:l ‘

iom
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where A (0 << A<1, A vational) is the constant of Theorem 2 below applied
to the polynomiel W,. '

The structure of ¢ will emerge from the proof (see (34)), and.for
certain subclasses of polynomial-like multiplicative functions we shall
obtain a simple expression for it in terms of the positive constant ¢, of
(9) below. When f = ¢, we see from (4) that ¢ = ¢™7, 4 =1, and this is
also firue, as we shall see in Corollavies 2 and 5 in § 5, for all functions
in a certain gubelass, containing ¢ and o, for odd », of the functions con-
widered here, .

The proof of Theorem 1 is based on Erdds’s proof in [1] of (4), but
in our rather general situation it is somewhat more complicated, although
reinaining elementary in character. We divide it infio several parts. The
preliminary Lemmas that we need are contained in § 3; in § 4, we prove The-
orem 1, and in § b we investigate some special cases, some of which have heen
referred to above, and in particular we consider the divisor functions.

In § 2, we shall prove Theorem 2 (stated below); the proof of this
theorem in the general case is due to Professor A. Schinzel, and the author
is very grateful to him for supplying a proof.of this result (when pre-
viously (7} below had been asgumed a8 an additional eondition om W, in
Theorem 1) and for permission to include his proof in this paper. et
W be a non-constant polynomial with integer coefficients, and denote
by e(p) the number of solutions of the congruence :

W(w) = 0(modp), -

where p iy prime; let & denote the get of all primes p for which ¢ (p) > 0.
Then we have . :
TuEorREM 2 (due to A. Schinzel). For any non-constant polynomial

. W with integer coefficients, there ewist constants A {0 <. 1 < 1) and D such that

P
pe

Let n be the number of elements in the Galois Group ¥ of the splitting field
of W over the field Q of rational numbers, and suppose that evactly t of these
elements leave at least one zero of W fized; then

(8) : : ./1 = t/n.

Some special cases of (7) are well known; for example, when & is
the get of all primes, A == 1, and when & is the set of all primes congruent
to h{modk), where (k, %) =1, & = 1/p(k). The proof in the general case
is by an algebraical argument based on the proof in [11] of & Theorem
of Frobeniug. A less precize result than (7) may be deduced from two papers



404 E. J. Seourtield
[12], [13] by Schulge in which it is shown that the natwral density of
& in the set of all primes iy A, where 2 ig given by (8).
With the notation of Theorem 2, it very readily follows that
CoroLLARY, There emists a positive constant Cy such that

) [] =27 = 0,1+ 0{(loga) ")) (log )",

Finally, I wish to thank Professor W. Narkiewics for first drawing
my attention to the problem discussed in this paper, and for a number
of helpful and encouraging discussions whilst T was working in ' Wrockuw.

2. Schinzel’s proof of Theorem 2. 'We use the notation introduced
in § 1 and some well known Jemmas in conjunction with the notation and
lemmas employed in Chapter 16 of [11] in the proof of Theorem 16.5
(due to Frobenius). '

Lef K denote a number field of degree n and # the Galois Group
of K over Q. For any polytnomia;l £ over Q, let gp(p) (or simply o(p) when
there is no risk of ambiguity) denote the niunber of integer wolutions of

(10) F(2) = 0(modp),

“.rhere P is a prime; when required, we may take ¥ to have integer coef-
ficients without altering o(p) except for a finite number of primes p, .
Levma L. If p runs over the prime ideals of K, then

}_’ log p = loga--0(1)
W P o

Lovma 2. If T is irreducible over Q, then

lo
Z ow(D) -ﬁﬂ =logw-+0(1).

b

The_se lemmag are well known. Lemma 1 can be deduced by partial
sumngatmn from the Prime Ideal Theorem, ag given for example in Sitze
190, 191 of [9], or can be deduced divectly and straightforwardly from
the regull; :

= go+0(x' =" (g 50)

(p- 712 of [16]). Lemma 2 can be deduced from Temma 1 with K = Q(0),

where Bjis & zero of F; for Np = p for o(p) prime ideals p, and otherwise
Np = p’ for at most » prime ideals p, where 2 < f < ».

icm
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LasmmA 3. Let ¥ be normal over Q, and z be an integer of K whose different
in Q(2) over Q ds prime to p. Let # be the Galois group of K over Q(2), and

G = W HTy+ oo (Tye® for v =2,...).

Let p belong to the class of § <%, and let ¥ (x) = 0 be the irreducible equation
Sor z over Q. Then op(p) equals the number of iniegers v such that

T 8T e,

Thiz iy Theorem 16.4 of {117 for the case F = Q.

LA 4, In the notation of Lemma 3, let Se# be of erder m and let
N be the normalizer of {8%. Then

. % @(m)
M 4 —_— ———
(¥: (8% =,
where t is the number of elements in the division of 8.

See Lemma 16.5.1 of [11]; we recall that the division of & iz the get
of all elements of the form : '

G7'8°G  with Ge¥

LuMma B. In the notation of Lemma 4, let B be the set of primes that
belong to the division of 8. Then '

and (j,m) = 1.

: logp - ¢
(11) | ﬂ;—?w = —loga+0(1).
et

Proof (based on the proof of Theorem 16.5 of [11]). We usge induction
on the order of 8. If § is the identity element, then (11) follows irom
Lemma 1 since p has exactly » prime divisors of degree one in K. Suppose
that & has order m > 1. Consider the subfield I of K fixed by {8 and
let L =Q(z) (2 integral). Tet #(2) = 0 be the irreducible squation of
z over Q, and define pp(p) = o(p) as in the sentence containing (10);
assone that (z—2%, ») = 1, which excludes only a finite number of primes
p. By Lemma 3, o(p} == 0 for any prime » not belonging to the division
of 8% for some d. Suppose now that p helongs to the division of 8¢, where
d|m. By Lemama 3, o(p) equals the number of intiegers » for which

1,800 (8%, or  SPTyHSYT,.
Tf N, is the normalizer of {8}, we have therefore by Lemma 4,

(12)  g(p) = (Nr{8) = (W {SENA(ST}:(8) = -;’::*"”“ZZ’ )

where 4, it the number of elements in the division of 8%
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TLet B, denote the set of primes belonging to the division of 8%, We
now use Lemma 2, (12) and our induction hypothesis that the result of
the lemma is true if § has order less than m, and we have {since ¢, = t,

B, =E) ’
logp o glmid) 1 logp
loga 4 0(1) =29(p)‘ - L;; t‘/ : Z )]
o P dj# i P L
nelly
\ d o log
= NTEPID gyt o) P N 108D
" ) m ot Led
dim Hem
a>1 . FILIA
—[1—#= {lo r»+o('1))..1‘.ﬂ_f."",..(_7@__2 logp
B ol & T m i p
' ekt
whenee ‘
up!
>"1 _.(.J.g_‘_ji o m_t_ Iogmd|ﬂ0( )-
d D R i
p<w

- Thig completes the proof of the induetive step, and hence of the lemma.

Levma 6. Let T be a monde polynomial without multiple rools over
Q (but F need noi be irreducible). Let @ be the Galois group of T over 0.
Let p be a prime belonging to the class of 8 ¢ % but not dividing the discriminant
of F. If 8 consists of g eycles of length 1,,...,1,, then

Fla) =fi(@) ... fy(») (modp)

where f; is irreducible (modp) dnd of degres I, (i =1, ..., g).
See Theorem 16.6 of [11].

Proof of Theorem 2. Our aim is to tind an a&ymp‘ﬁotic formula
for the sum : .
2 7

Dk
ofp)=0

where o(p) is the number of integer solutions of the congruence
W{x) = 0{modp),

where W is an arbitrary non-constant polynomial with integer coefficients.
Our gum will only alter by a constant if we replace W by a wuitable poly-
nomial ¥ satizfying the conditions of Lemima 6. It p doey not divide the
diseriminant of ¥, we have by Lemma 6 that gplp) > 0 if and only if
. belongs to a class whose elements have a cycle of length one. Since all
classes in a division decompose into cycles in the same way, the last

"

icm
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condition can be stated by saying tha.ﬁ p belongs to a division whose el-
ements have a ¢ycle of length one. If # is the number of elements in the unien
of all such divisions and » is the order of %, then by Lemma 6,

S’ logp =—£—10gw—|—0(1).

e
pum P
epp(p)=0

On applying partial surnmation, we deduce that

. .
Y p7' =—logloga+D+0((loga) ™),
P L
eppr(2)>0
where D is a constant, and the theoram follows.

3. Preliminary lemunas. As in the proof of Theorem 2, let & be the
set of primes p for which g(p) >0, where g(p) is the number of solutions of

(13) Wi{#) = 0({modp),

and let &, be the finite set of primes p such that p|W,(0) but (13) has
no non-zgero golution; thus (13) hag a non-zero solution if and only if
PpeFNF,), and &y may of course be the empty set @.

Throughout p, ¢, * (with or without suffices) denote primes, and
¢, 0y ..., D, D, D,, ... denoteabsolute constants (> 0 except perhaps
D) unless the parameters on which they depend are explicitly indicated,
for example by Cy(m) in Lemma 12. _

Let.1 > &> 0, d> 0 be arbitrary, and define

2 = (loglogm)*te,
2
T e ml[(loglogm) ,

y = (loglogm)'—,

2A4-8
?

14

14 w = (loge) .
where 4 is the constant of Theorems 1 and 2. Assume that 2 is sufficiently
large for p <<y when p|W;(0). :

Lomwa, 7. Let T(w) be the set of all prime powers ¢ such that ¢ <
but |W;(q)| > v, and suppose that for an infinite number of », T'(x) = @.
Then 1o each y > 0, there ewists v, such that for all £ > w4 for which T'(x) = O,
every ¢ eT(w) satigfies : S

¢ >

Troof. Suppose that the lemma is false. Then there exists 7> 0

such that there are arbitrarily large & for which T (#) s @ bub some ¢l T ()
satisfies ¢/ < n;?. Then ¢, § and therefore W,(g) are bounded, so

(18) WD < Dila)
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where D, (n,) is & constant depending on #, but independent of #. Chooge
an @ for whieh y > D,(#n,) and the conditions in the second sentence of
the proof are satisfied; then on using (15) we obtain a confradiction, for
we have for some ¢'eT'(x), |W,(q)| < Dy{n,) <y but by definifion of
T{m), Wy (@)l > y.

CoroLLARY. Let T (@) denote the set of all positive indegers n << w for
which f(n) is non-zere and has a prime divisor ewceeding y, and suppose
that for an infinite number.of , T%(z) + @. Then to each n > 0, there ewisls
2, such that for all # > x, for which T"(x) + @, every nsT"‘(m) satisfics

7> pt

Proot. If'for some prime p >y, pif(n) 5 0, then there exists a
prime power ¢’ such that ¢ |ln and p|f(¢’) = W;(g) 56 0. It J‘.ollow.s that
to each nel™ (), there corresponds at least one ¢/|n with ¢ T (w), fov

f(n)] = p>y.

Thus the result of the lemma is applicable and the corollary follows.
Imva 8. If p < (logloge) =" and (p, d) =1, then

1 1
> =>n, loglog®  loglogay™,
= szj »

guect(mod p)

Fd<ngu and [Wig) =

'

where X is given by (14).
Since the relation

2 1 = m(v; 70., h)

pew
ped (mod k)

v

holds uniformly for k< logv whenever (&, h} =1, thix lomma follows
in the samé way as Lemma 1 of [1]. '

LrwmA 9. If pe# Ny and p < (loglogw)' ", then
2 1 == o(w/(loglogw)*),

NE
#1An)

.
where 3 signifies that the sum is over squargfree n satisfying the given
conditions.

Proof, Let n denote a squarefree integer, so that

= [{W.g

gln

icm

- otherwise #{W,(0) contradicting (n, W,(0)
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Binee ped”NFy, the congruence (13) has a least poqltlve solution d (so

0<d<p) I ptfin}, (p, Wilg )} = 1 for all ¢|n and hence in particular
¢ = d(modp). Thug :

g'ug Vo1g pX :L_

n<a
pff(n) g dmodplygln atnifg=dnodp),g<X

where n i not restricted to squnarefree integers in the final sam and where
A ix defined in (14). We can apply Brun's sieve to the sum on the right
te obtain that it does not exceed

ne T

qwd,(mmlp)

< D,Lmexp( — (loglog o))

by Lemmwa 8, and the result follows. (For Brun’s sieve, see pp. 71-78

of [10] or, for a more general form, Theorem 4 of [57].)

Liomya 10, For any prime p with (p, d) =1,

O 1

2 —< D,
pgEn g
et {Mod p)

logp +logloga

This is proved in the same way ay Lemma 2 of [1], on using the
Brun-Titchmarsh inequality in the form quoted thele {see [Dheorem 2 of
[147). Exddts considered the case d = 1.

Recall that p(g) denotes the number of roots {if any) of the congruence
{13) (with ¢ instead of p); when p{g) > 0, let the rootz bed, (s = 1, ..., g{g)).
It is well known that g(g) < max(q, %), where k is the degree of W,.

Lemma 11, Let N denote the number of sguarefree integers n < @ such
that ( s fim )) > 1 and the least prime divisor in & of n (if there is one)

~ewoeeds @ Then

N, = O(m/(iqglogw)“).

Proof. Firgt we examine the implication. of the condition {n, f(»)) > 1
for n contributing to N;. Since » is squarefree and (%, WI(O)) =1, on
using that p | Wy (0) implies that pes” and p < y, we conclude that there
exist distinet primes ¢, v dividing n such that (g, Wy(r)) > 1, whence
() >0 (8o ge¥) and r = d,(modyg) for rome ¢, 1=C4< p(g), where
i, + 0. Moreover since ge& and g|n, ¢ > #. Also Wy(r) s 0 for rin, for
} =1, and it iz easily seen that
Wy <7 (Vr=2),
where as usual < means the same as the O-notation. Hence sinee g|W, (),

< Wy (r)| €#* -
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and so ‘
> ¢°  where w = k7l

Using these facts, we see that the number &, of the lemma does not
exceed the number of multiples not exceeding = of g7, where ¢ and r satisfy
the conditions derived above, whence, since each d, 50,

(7]
Wl &
LA D N
= L qF
a<gsm =l qier<e
qeF redy(mod @) '
' 1 logg +logloge .
=0(w Z —Q(Q){—m +q }
F<gsL q
geF

by Lemma 10, where we include the term ¢—* to account for an » satisfying
q" € r<Cq. Since o(¢) < %k and since by well known arguments

1 Io logz N, o \NT i o
DL o[, Nt—ow,  Yetr—oe,
By g Ry o7 . Z e
we have
: 1 logl |
N, = O(m( sz + ogzOgm +z“")) = O(a/(logloge)’).

DEFI}\TITION. Let B,(m; o} dencfie the number of squarefree positive

integers # <C # such that (n, m) = 1, where m is independent of », and such

that the least prime divisor in .%° of »n exceeds ». -
Lipyma 12. Let m be an integer with p < v for all plm. Then

B, (m; #) = 02(m)(1+0((10gv)“‘)) E—-——-{—O(%+4v),

{logn)’
. where the O-constawls are independent of m, and where
- (16) Calm) = Oy [T @ —p [T (1 +p™0)
: pF Jﬂj)(\:ig'::-

Here O, and A are the constants of (9), and (4(m) satisfics

(17) 0< Cym) <Oy [ [d—p7%) = 0.

nes

icm

(In our applications, v will be small compared with @, but v—+o0 as

#—»oo, and m may be large.) :
Proof. Define By(m;a) similarly to B,(m;a) except that the word
“squarefree’ i omitted. Then any = contributing to Bj(m; @) bub not

The property (n, Ftm)) =1 for & oluse of mulitplicutive functions 411

‘o By{m; ) is divisible by a square of a prime p. The number of integers

% << @ that are divisible by p® with P > v does not exceed

1 & ¥
i 0 (Vﬁ) .
~ o
kehed ] » v

We caleulate the number N, of positive Integers <C @ that are not divisible

by a square of & prime p << 9, by a prime plm (80 p < v), or by & prime

pe With p < o3 from the ahove remak, it follows that
e
(1) B,(m; ) =N, +0 (@)

We use the ideas of the sieve of Kratosthenes. By {m; 1) is the number
of positive integers < ¢ that are not divisible by a prime dividing m or
. ¥ 1
19 Brmit) =[]— M 12
19 Bimi) =1~ S|+ Y

e and = ¢. Hence
. t
. T e ’
= PR D1Ds

plnorpes” Bylit or &2 (1+1,2)

. the sum clearly being finite. Moreover by similar reasoning,

. Y @
(20) N, = B¥(m;0)~ 4\.4 B, (W"ET) + 21 B (m;——~:02)—
e ‘ <y hi
¢tm gf;;: b =1.2) ‘

On substituting (19) with ¢ = o, /¢, #/glq}, ... in turn in (20), we obtain
an expression, the number of whose terms does not exceed

[ ()

This number is the error incurred by replacing [1] by ¢ throughont in (20)
after the substitution of (19), IMence using (18) we have

a (v)

ﬁ(v))) =20 < e,

(21) - B.,,(’}’i‘b; )
"7 o - o
m{ - *;’\,4 bl , m}‘
: ‘ ay<hyin PPy

P
3t ped a2z e (tm1,9)

\T @ 1 @ | X o
e P }_2’"_ 4 el
,rp;:éua t [ T vy Py <Py e APl
itk plmoeped iyl ov e (1=1,9)

aim
>“1 @ ) 2 ’ i N
Aomed e

\ ! v )
LT v Py Ty
= 1P =i GGep,p . -

2 4
PR Gz (
@, 4t Blmorpes Pymares ({=1,9)

Q1rq§3'rm
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— +0(4”)+0(f;—)
. T | e v, %3,
~a [T 0o []a-aofen 7]
plfrgiogi‘%ey g?sg
gtm

the O-comstant is independent of m.
We now consider the main term. The product

(T—g™%
S, atm
ig convergentf, and

(22) 1= [[a—¢nz[]-? = exp(—mZ’Q"WO(Zq"f’"))

g=n Qv [
wF

ool -s+of

Thus, on observing that we do not need to distingunish between the primes -

p and g any more, and on using (9), (21) and (22), we have

Bymsa) =a | [ a—py ]| (H&Z) [ a— (1 -m(%)) -

i e n<s
+0 (4”+ f)
_ w
B p B 2 PR
= Uy(m) (1 4+ 0{(logw) lj)m-l-o(é't 'f_‘?):

where ¢, (m) is given by (16}. It follows from the proof that the O-consiants '

are independent of m. The inequality (17) follows immediately.
DrwvrtioN. Let D, (m; @) denote the number of squarefreo positive

integers n <@ with (n, m) =1 and with p the least prime divisor in

& of #.
COROLLARY. If m has no prime divisor ewceeding p, then in the notation
of the lemma (with v =) . '

a &
B (_ + 4)
p(logp)’  ~ \p*

_ 4. Proof of Theorem 1. Every integer n can be written uniguely
in the form ' '

D,(m;a) = B, (m%) = Cym)fi+0((logp)

T (23) B =m0, Wh_ei*e (0, ng) = 1, By squarefree, n, squarefull;
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these meanings for"nl and n, will be assumed throughout the rest of the
paper. Since f is multiplicative,

1= {n, f(n}} = (nyng, f()f(n,))
if and only if
1= ('"'uf(nl)) (”17 f(nz)) (%2, f(”:)) ('”fza f(“z))

Hence

(24) Yi= ¥ 2 1= > Zm;a),

NG Ty WL Ty e My Ny&L
(1 fimp)mel (g fingl)=1 [ny,mpfting)=1 (g, Jing))==1
(Fing)iig)=1
(ny, fing))=1

say, and in order to estimate the sum on the right, we must investigate
further 2'(ny; #). We accomplish our aim by consideriﬁg four different
categories of integers n,. We can certainly assume that fing) # 0 for every
Ny, congidered, since we require (na, f(ng)) = 1 in the sam over n,.

Case 1: n, > u. We use a resuli of Erdés and Szekeres [3] on square-
full integers, which states that

(25) _ =0 +h(m))ml?2
Nye®
where 0, = £(3/2}{7'(3) and h(w) = o(1). Hence by partial summation
1 1
(26) ‘ o= Os—Coar™? + o (a7,
) hpm 2 . .

where
O; =20+ [ noesea,
. 3
the integral being éonvefg'ent since h{w) == 6(1). Using (14), it folloWs that

1
oo = O 0w = O(loge) =),

7

Lo P ]

- From the trivial estimate

(g )< wfmg,
we obbain

(27) | Z Zing o)< w Znia = _O(w/(:logz)‘“”“).

W[ U<ny s
(g, fing))ml
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Oase 2: n, <% and ¢|ns for some ge\5,. Since ¢|n, for some
geFNF,, we have

('nzif(ﬂ‘l)) =1 = gffin,)

and hence
¥ )y @l oo @\
(ng; #) £ 1 ./, 1 =of-—|loglog — )
n]/r]n) Ty e Ny Py Hy
(v, Fimy =1 a1 fny)

by Lemma 9 gince certainly
. 2 I—-gf2
VT (loglog n_) for 1< n,< u.
2

Hence by (26)

(28) E Zing; @) =
NgeLite
(71, f(ﬂgl) =1
8|7 1 Ny

i 1 w
(‘(Yoglogéé)” Z ‘4;“‘) = "((loglogmw)'

Case 3: n, < 4, Q¢S NP Vqin,, and ¢ < yVq|f(n,). This case will
give ud our main term. We first split the sum X(n,; @) (a sum over a,)
into three parts; in X" (n,; @) the least prime divisor in % of n, is less than y,
in X"(n.; @) the least prime divisor p in & of n, satisfies y < p < ¢, and
Z" (ny; ®) containg the remaining #,. Note that (n,, W,(0)) =1 if =,
contributes to I (ng; ), or T'(ny;2), for if g|{n;, Wy(0)), gln, whilst
ge& and g <<y by the remark before Lemma 7. The first two sums
contribute to our error term, and we. deal with these first.

We have by Lemma 9, since y < (loglogmu)*~"* < (loglogm/n,)t
certainly for ny < 4, and since if p .57 for some p |ny, (ny, fin,) = (2, f(p)
] p, .

(29)  Z(ng0)< Y 1< ¥ Y1
ey RySxing DY My
P {ny,f(ny))=1

HEJ”\./’D » ’”‘(ﬂl)
e=loast prime e and l7ey )

~d
. <JO( (loglog ) )m%c)(my(loglogm)“"‘)_
. 2

by

= %p(m{loglog‘m)"l) .

since n, <
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For 2V (%2, &) we use ‘fhe Corollary of Lemma 12 since we are assaming
that ¢lf(n,) implies that ¢ <y < p. We have

N\ \ 1
B R D N P R
U'I-':')i{*-:-:z N SNy yspss "
filig (e myfng))=1 pesF

pe=least peime [y and 52

1 1 »
— -}_{ {az(ang,f(nz))(l +0(logp)™)) - A—r 40 (4 + %Z,z )}

yepe nyp{logp)
pesf
< -2 (1+0{(togy)Y i, B
My (10 ((togy) ) (logy)* WZ)Q —I—O(éL + T )
e
G 1)) 2 1 -
GT(l 4 O((log) )) Togef o(1) +n_2 O(a/(logloga)'~").

We are assuming that n, < w in caleulating the error terms, and using
(17), the definitions of ¥, 2, w in (14) and the estimate for 3 1/p given

NEY,pe”
by Theorem 2. We recall that the O-constants stand for something not

dependent on n,.
Tinally we have to consider 2 (n,; @) and we show that this supplies
our main term. More precisely we show first thaf
EW(W@; ( of (M2} 5 a’/nz)
Note that (n,, f(n,)) =1 for all n, contributing to Z''(n,; x); for .¢|n,
implies that g¢%\ %, and if g5, and ¢ |#%,, then g1 n, since (ny, 1) = 1,
and so it easily follows that gt f(n,) ]'[ W, (r) for any q|n,. Let

r nl
(1) m = nyf ().
Then
0< Bim;o/n)—2" (ny; 8) = E 1— 2 1
nEEi Ny Nyemefny
(g, m)=1 (fg,m)=1

By, ped >z BNy, PeF >z

(ny, A }}=1

@ @ \7" 1
= Z 1SN, =0 (_— (l_oglog—m) ) = —— O{s(loglogs)~*)
nysafiy Mg ‘_'"’2 Pz )
(rg,m)=1
Py, pesF > pa
(npTing))>1
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by Lemma 11. Hence by Lemma 12 (since the condition ¢|f(%,) = ¢ <y <z
holds)

1
I (mg; @) = B (m; @/ny) + . O(wj(logloga)’

@ n 42)4_ 1 ( 2
My (logloga)* )

m) is stated precisely

= (C,(m) (1% 0( —!—0(

1 @
logz ]/ n,(loge)?
Whele m is given by (31) and depends on n,y, and O,(m

n {16). Thug by (29) and (30), we have in cage 3,

_ Oa(naf(na)) ( 1 )) ML ( s _
m)f Ny (1 O\ Togs ) Togar T wy ° (logz)*)'

From the Corollary to Lemma 7, it follows that if n, << n™, every
prime divisor of f(n,) is less than or equal to y if # > a,(x), and by (A7)

(82) Z{y;

and (26)
' Oz(ﬂzf %2) { 1
1< 3 Delmarlna) 0, 3 == ot = o
ng>m" nzzﬂ
!(nz);&o

as @-»oo gince x > 0 is arbitrary. Note that C,(m) is defined for any integer
m # 0, although Lemma 12 requires that m has no large prime divisors.
We can write

and using these remarks and (26) after substituting (32) in Lhe left side
below, we have

& 1
(33) . Z(nys ) =—_—(1~4 O( )) Cg+o(1) —I—o( )
n%; 2 (logs)* log (% ) (logz)*

{re.flng))=1
WFNFpvaing
_qgwalf(nz)

@

(G o ) (100 loglogm)

.where by (16)
(38 G= N Oa(naf(na))

Ty
Hp=1
(nasfingh)=1
Q¢?\?0Vqlng '
=af[a-py 3 =[] w+p
Py fig=1 2 Blngfling)
{ng,f(ng))=1 Y

WS\ ¥ aing
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Case 4: ny<<uy, @49 NFVq|n,, and Igif(n,) with g>y. From
the Corollary to Lemma 7, we know that every #, in this case gatisfies
By > 02 i B > @, (n). To deal with this part of the sum over u,, we show
that we can replace f there by a simpler polynomial-like multiplicative
function f; that does not have unduly large prime divigors, but which
has the same values as f at primes o that the set & remains unchanged;
in this way we find a bound for our sum. Define f,, a multiplicative
function, by

fulp) = f(p) = Wy(p) for all primes p,
fip?)y =1  for all primes p and all j 3= 2
Then in the notation of (23),
. (35) Ju(n) =fi(ng) = f(ny), fuln) =1

and fi(n)|f(n) for all n. Henco
(36) (n, fln)) =1 = (n, fy(m)) =1

and (%1, Naf1(Na)) = (11, Ng). As we saw in case 3, the conditions (ny, n,}
=1 and ¢\ Vyq|n, 1mp1y that (g, fi{n,)] = (1e, finy)) =1. TIf

follows that
Y -
o 3 fwms Y ¥ i< ¥ 3
Ny 1i<nggu nypswing 9~ 2<nggu. ny<sing _
(g, Fingh)=1 (ngsflrgl)=1 (n.m37(ng))=1 WINFyalng  (ngma)=1
PN Valng WINFgyang  (nflg))=1 (npfing))=1

dlfingha>y

on using (35) and (36). Since the sets &, ¥, are the same for f; a8 for f and
Ju(ng) == 1, f; Lultils the conditions of case 3 above, and so for the n, nunder
consideration here, (32) holds with f replaced by f,. Then (37) gives

V! Galmadto(d) o

(38) E(ng; @) < -
(125 @) T (logz)*
(ng i) o
Tigef(rig) ) vl Ny ain .
WP\ ity ITovala

3alH{mo)iqiny

) - \Y L 2 = 2
o (03‘5"’(1))( 2; —l,};") (loge) 0((10gz).1)

ng>n %

B8 @00 gince # > 0 iy arbitrary and (26) holds.
Combining (24), (27), (28), (33), (38), we obtain

b
1 = (Gt 0(L) ey
n; (G | ) {iogiogiogar
(n.Jin)}e=1 . _

ag @ —>oo, Whére 0; is given by (34), which is Theorem 1.



418 - E. J. Seourfield

5. Some special cases of the theorem. In some cases, 05 has a simple
expression, and next we investigate some instances of this. We also con-
sider some special functions f. We state our results as Corollaries to The-
orem 1. To prove Corollarvies 1, 2, 3 below directly, the ahove argument
may be simplified ; for example, for Corollary 1, we need not write n = nn,
ay was done In § 4, and it is sufficient to em.lua:te Bi(l;a) instead of es-
tablishing the more general Lemma 12. However the main ideas remain
the same. '

CororraRy L. 1Y f is stromgly or completely multiplicative, then

O, = (.

Proof. The argument in the two cases is essentially the same sines
in both cases (n, f(n) )j = 1if and only if ptW,(q) for all primes p, ¢ dlwdmg
n; for we have, for all primes p and j =1, 2

flp’)y = Wi(p) o (Wl(p))
according as f is strongly or completely multiplicative.
By definition of &, glf(n) = ge9; also if g|n, and g%, so g1 W, (0),
then (ng, f(n)) > 1, whilst if g|n, = g¢%, then (nz,f(ng)) =1. Hence

by (34), -
Go=0[fa—pn D= =y
ms n2=1 ql-n:,
: iy qing

Since the sum is absolutely convergent by (26) and the terms are multipli-
cative, we have (on recalling that =, is squarefull) that

k]
D o R ey ] B R R BV )

fig=1 ’ qlng ws

M yglng _
- e

[l
Hence, as claimed,
= Gl'
COROLLARY 2. If &\, is the spt of all primes, then
Oy =0 =e¢7 and 1=1,

Proof. In thiy case, from (16), y(m) = ¢, {(independent of m), and
the sum over u, for 0y, given in (34), has one term only, namely n, = 1,
Fence, since ‘

LI
'we have the result of the corollary.
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Taking f = @, we obtain (4). This corollary is a special case of
OoROLLARY 3. If for cach ng, qlf(n,) = ge\&#,, then

1
o=a I )
Proof. IF for j =2,3, ..
7y = {p: Iz with p|W;(a)},
then for this corollary,
;<
T2

IE glny = geF\G,, it follows that gff(ns) and (ng,f(n,)) = 1. Hence
by (34}, since ¢S\ %, means that ¢¢& or ge,, .

osmolgu—p Z n;wl

fy==l qlno
WF\Fpvaing @ Fy

-01Hi p [ a+atg gt +g+ 0%

DhF [N .
><H(1 +g g7 )

qey

In particular, this corollary holds if f(n,) = 1 for all squarefull n; (see
the function f;, of case 4 of § 4 and Corollary 4 below).

Let €, (f) denote the constant given by (34} for the particular function f.
Next we compare the results for general f with those for three related
multiplicative funetions fy, fa, f*, where f, was mtloduced in the proof
of case 4 of § 4. For all primes p, define

fulp) = filp) = f(p} =
Hlp) =1 and  fi(p?) =0
and let f* be the strongly or cowpletely multiplicative funetion given by

F*(p) =f(p) = Wi(p}

as in Qorollary 1, it does not matter which of the two possible functions
J* we select. We observe that the sets %, &, and the constant 2 of Theorem
2 are the same for f, f1, fa, f* since W, (@) plays the same role for all four
functions. Xf f satisfies the conditions of Theorem 1, 80 do fi, fp, f* (with -~
the same A) and we have

PN P

=0, n(

ey

Wilp),
for j = 2,3, ...,

for all primes p;
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COROLLARY 4.

: = o [T st
Oy = G(f) < Gol) < Golf) = Oulf )ﬂ =]
In particulor if &= G,
Gﬁ{f)*{: Gﬁ(f*) = 01-

Proof. As we remarked above, 04(f1) i given by Corollary 3, and
Os(f*) by Corollary 1, so the relation hetween them is immediate. The
inequality Cy(f) < CGs(f) follows from applying (34) to f and to f1 and

comparing the corresponding sums; for clearly f,(m,) = 1, ('ng, f(na))

=1 = ('”‘2: fl(”?‘a)) =1, and

[] wre < [l wswp .
Dlngflrg) Bng
wF PEF
Note that C4(f) < Ci(fy) if for some n, contributing to the sum in Cs(f2),
f{m,) has a prime divisor ¢4 or (m2, f(ns)) > 1. Since fy(ng) = 0 for all
fg > 1, the sum in 0;(f,) consists of the term n, = 1 ouly, and so by (17},
Cs(fs) = Cy; hence the left hand inequality of the corollary follows from
(34), and this inequality will be striet if the sum in Js(f) hag 2 non-zero
confribution. from some m, > 1.
H &=, so that whenever (13) has a zero solution, it alte has
& non-zero solution, the given result follows immediately from-above
and Corollary 1.
We consider next the divisor functions o, defined in {6).

COROLLARY 5. If » 4s odd,

e e
T e R
neE log logloga
: (m,0y(nj)=1 _
If v is even and 2¢ |y,
T G

Toom "
i {logloglog »)*

where Oy = Oi(o,} is the constant given by (34),
Proof. For f(n) = o,(n) (» a positive integer), we have
W@y = o7 4o -V | 1,

Write » = 2%y, where v, is odd and B 2 0. Then the set & conwists of the
prime 2 and all primes p of the form p = 1(mod2#+h), and &, = @; for

Wig) = a"+1 = O(mod_p)
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hag asolution (necessarily non-zero) if and only it p = 2 or (o —1)%(p -1
We observe that if » is odd, 80 8 = 0, & is the set of all primes and so the
result follows by Corollary 2. If » is even, the result follows by a well
known cage of Theorem 2, and Theorem 1.

Finally, as mentioned in § 1, we investigate what happens when the
degroe of W, is zero, for example in the case S = = (see (6)), This situation
was excluded in the above discussion, but we can apply our method to
obtain the cerresponding result, We have

Tymormy 3. If W, (@) is & non-zero constant, then as g-»co
M1 = (040l

)

{r, o)<l
where €y is a constant satisfying 0 < O, < 1.
Proof. Let
Wiz) ==k #0,
¥ a, is squarefree,
| fln) = Rete
where w(n,) is the nuinber of prime divisors of n,. Consider the sam in
(24); since for my 1, (mymy, f(ng)) =1 i and only if (mymy, k) =1,
we have
N . p)
(39) oY1= 3 D 140

-] Ng=ir g
(e fim)=1 (g, &fng) el {1y fompfing) =1 B

“where by (25), the term. O(#'®) acepuntr for the fact that when n, =1

the condition (n, k) == 1 need not hold. With > 0 and arbifrary, we
split the outer sum into two parts according as n, < %72 or 77 < 1, < ;
by the Jorollary to Lemma 7, if #, < 172 and @ > @,(%), f(7) has no prime
divisor exceeding y. We shall asswme that # is sufficiently large for -
# > max(y™, wy(n)) = o, (1), and then 5> < 2. By (26)
(40) > DTS 7‘;"— — O(wm) = o(a)

7 Ay nyEINg Nt <ng e

(g Jefimg)me1 (1 dingfing))e-1
A% &—»o0 sinee y iz wrbitrary, To deal with the inner sum of (39) when
Ny K 972, 80 f(m,) hag no prime divisor exceeding ¥, we use the ideas
of Lemma 12 with v = y, m = knyf{(n,) and & = @; then by (21) and (22)
we have here '

ﬂlﬂwnz :
(0, Fong Fing))ms1

1
[ a +1r1>“1(1 + O(_)) +
Pllngfing) : 4 :
‘ *
Yy} )

+O(4v+'
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Hence by (26), we have since 4V9~* = o(mfy) tor 4% < &2,

(41) Z Z 1

g sy—2 Sy
(g, Rftngh)==1 (1> Tngftngl)=1

& 1 . o
= Fay 2, (L4+p ) -+ Olafy)
£(2) e |
Ny * plkiaf(ng)
(72, el tHa ) =<1

0o

Gas 1
== D = ] aserytoten 0w
e By 2
fig=1 Bllenn f(no)
(na, Feftng)) =1
= (C;+o(1))a

as ¢ —oo since # is arbitrary. The result now follows from (39), (40), (41).
We observe that €, satisfies '

6 ‘ -
0 < —;n A+p )< 0 < ]Y(lmp“l) <1
L ik nlk
since the sum in O, does not exceed

j ?};H(l +p7) = H(_l +p”l)‘ln(1—;p*2)*l_

ng=1 plkng - ’ ik ik
(1&3,k)=‘1

Applying this result to the divisor funection » (defined in (6)), in which '

case Wi(w) =j--1 (j = 1,2,...), we have, on taking k = 2 in Theorem
3, the
- COROLLARY.

Z 1 ={C;+o(l)}z where %&E&,:{_%.
. ™

. NS
(1, T =1
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