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On the solutions of diophantine equations in units
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- Epwarn I, Grossman (New York, N.Y.)

1. Introduction. From the work of Siegel and others it follows that
il f(x) is any integral polynomial different from + 2™, the equation f(#) = &
hag only a finite number of solutions in units %, £ from a fixed number
field K. For f(z) = 2™ ~1, m>2 and K = Q(f,), where p is a prime
and {, = exp (2ni/p), the solutions in units of f(») = & have been studied
by Mordell [3], Newman [4],' [6] and Ennola [1], [2]. Tn this paper
we will generalize their results in two directions. For a class of fields
which we call almost real (see § 2) and which includes all abelian exten-
sions of @ we prove: o

Tunorem 1. Let K be an almost veal field. If m > 2 the equation

1) A1 ={

has no solutions in units n, & of X, where 4 is ot a root of unity.

For the case of cyclotomic fields @ (£,) we prove a further refinement
of this result. Namely, let @,(z) denote the mth cyclotomic polynomial.
‘In § 3 we prove:

TurorEM 2, Let K, == Q (L), p = 3. If m > 2 and m 5 3, or 6 then
the equation ‘ .

(2) Dp(n) = £

has no solutions in units v, & of K, where 5 is not a root of unity. For m = 3
or 8 the only solutions to (2) with v a unit, not a root of unity, are provided by

(2a) m=3, n=—(1+H 1<a<p-1
and "
(2b) m=6, 5=+ 1<agp-1.

2. Almost real ficlds. In what follows K will always denote a finite
extension of . It K < € we let K = {acC: ac K}, where & denotes the
complex conjugate of a. The class of fields we will consider is given in
the following -definition. ' :
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DEFINITION. A subfield K of € is called slmost real if K = K and
for every isomorphism o of K in €

(3). cr(ﬁ_) = o(a)

for all ae¢ K.
It is clear that every finite abelian extension of @ satisfies this defi-

nition. Moreover if K iz an arbitrary almost real field its normal elosure -

over ¢ will also be almest real. The ]ub‘blflb&'blon for the terminology is
provided by the next proposition.

ProrosIvioN. Let K, = the mawimal lotally real subfidld of K.

(i} If K is an almost veal field then [ K K, ]< 2.
(i) If K is normal over @ and [ : K< 2 then K iz an almost veal
field. o :

Proof. (i) Let K =¢(0) and observe that by (3) the polynomial
(¢ — ) (x —B) has coefficients in K.

(if) We may assume K = K,, With K = K,(0) it suffices to show
that (3) holds for 4 Let p{x) = a?-+ba--¢ be the irreducible polynomial
sabisfied by 0 over K,. Bince b and ¢ are real p(f) = 0 and since X = K,,
0 # 8. If o is any automorphism of X in € then o(8) and o(8) are the
digtinet roots of &2+ o ( Jo+o(e). As o(0) is also » root and o(0) is not
real we have o(f) = a( ) and so K is almost real.

Prooif of Theorem 1. We note first the following inequality valid
for all integers m =2 and all complex numbers 2.

{4) & —1| = max(|z|, 1)™*

=1

Suppose then that 7, & satisfy (1), where % is not a root of unity and let
B =1y .00y My b= [K : @], be the complete set of conjugates of # with
respect ‘ro K. Since 7 is not a root of unity it follows from (3) that ln,| 5 1
for all 4. Denotmg by N the norm map from K to @ we have from (4)

that _
L=V =1 = [[ 1r =1 [] max(nl, 17§ (g =1)] > 1
14l Ll :
ginee |y/2—1 iz a non zero ml@ebra:m integer in K. This contradiction

establishes the theorem. ‘
Remark. Tn fact it may be shown that 1t § =™ -1, 5 not a rook

of unity, then N(&)> Vam-.
For m = 2 the inequality (4) yields the following corollary.
CorROLLARY 1. If K 48 an almost real field and

(5) _ ni—1=¢
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has o sobulion in units u, & of K, where 7 is not a root of unity, then # is
folally veal.

Proof. Observe that when m = 2, (4) becomes [*—1|3 | [2|*—1]
and equality holds if and only if z is real. Hence if & = #*—1 is a unit

we have
=[] ]mm—li;l

JEe e

= |N(&

and by the remark #; is real for all conjugates.
Remark. Solutions to (5) for eyclotomic fields may be found in [3].
As a second corollary we give another proof of a result due to Mordell
[8], Newman [4]; [6] and Ennola [1].
CoroxrArY 2. Let K, = Q (L) where g“ = exp( 9m/p) P >3 o prime.
Let
1—¢%
N = EP
Then ny, is never of the form n™ for any m > 1.
Proof. Observe that », and &, = »,—1 are units. Moreover since
t 2 +1modp, Iyl > 1 so that 5, I8 not a root of unity. Noting also
that #, is. not real, the result follows from Theorem 1 and Corollary 1.

3. Cyclotomic fields, In this section K, will denote the field §(Z,)
where £, = exp{2wi/m). We recall that K, iy an abelian extension of @
of degree ¢ (m) with Galois group given by the substitutions ¢, ~ &2, (b, m)
= 1. Moreover if (m, n) = 1 then ¥ K, = K, and K nE, = @. Finally
if e K, is a unit then 7§ = %y and if m = p is a prime we have in
fact 7 = ko _

The proof of Theorem 2 depends on two lemmas.

Limyiva 1. The equation D, (n) = &, p > 3, has ne solutions in units 7,
& of K, where n is not a root of unity.

Proof. If « ig (totally) real we have from (4) that for 1 < i

<k<p-—2.

~<\T—1:

&) = = max |ngl, 17~ ;41|

| ne—1
and multiplying these inequalitics gives the result in this case. If 5 _is
not real then 7% == £hy where (%, p) = 1. If @,{5) is a unit so is its divisor
n—byk
Since _
n—{p" = Gn—8 = L(n—1)

it follows that ﬁml is also a unit: Hence #»* —1 = (5 —1) £ is a unit, Whic_:h
is impossible by Theorem 1.
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LEnvwa 2. If p>3 and ptm then for m > 2 the only solutions fo
(2) in units u, £ of K,, where n i3 not a voot of unity, are given by (2a) for
m =3 and (2h) for m =6, : .

Proof. It &,(n) is & unit we obtain that —{, is a unit in X,,.
Thus 5 —Lp = o(1—Lm) Where @ = ={3C,. Using that # = 2y we
obtain ' :

(6) (Gy—o)n = tn' —Lmo-

If 5 = ,g then also {5,* = ¢ = {7 which implies that £, = 1 eontradicting
the assumption that m > 2. Thus (6) gives

, It —lno o S Al
7 * E= =1 -
™ K (—a e

Since ne K, it is invariant under the automorphism of K,, which takes
{p—>{p and £,,— ;). Applying this to (7) gives

N N Y il o
SN G
which after cross multiplying and simplifying becomes
(8) (Go— 80 (G — ) = (G =127 (5™ — 3.

. It I3 =1, the right side. of (8) iz zero and we obtain since m > 9
that £ =1, hence s =0modp. Thus from (7) e K,nK,, =@ and
since » is a unit, = =1 a contradiction. Therefore wo may assume
&y # 1, and we show then that none of the factors in (B) are zero. This
is clear for ({7'—{,) and (£t —¢£5). Assuming that i =) we mush
have ) =1 or £, = £l Substituting this in (7) gives

w8
éﬁ'j:;f) 7;;1

which contradicts the hypothesis that % is not a root of unity. Hence (8)
yields ‘ '

n = =g

'5711 - Cm AR é‘s
9 g . I b
®) g T Lo

Since K, N K, =@ both sides of this equation are rational and as
we show are equal to +1. Let & = {7, Since (% # 1, & i a primitive pth
root of unity so that (2 = % Then '

B e '

Lo~ g—g '

(10)

iom
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which is clearly a unit, henece equal to +1. Thus
P

(11) o1

= {5

Congidering (11) modulo (1—=z) we obtain b—1 = Flmodp. If b =0

mod p Wwe have {7’ = 1. Otherwise b =2 mod p and (11) becomes L1

= {je”". Since —1 is not a pth root of unity we must have {p =& = (2.
Returning then to (9), in all cases

it 1)

=

and this gives
1T &) = (AF 5h.
Hence either 17 £, =0 or

. LFE

_ —i
moaFd £l

We summarize thege results in the following four cases.
1) & =15 & = +1.
(i) {5 =1; & = 400"
(ifi) &5 = &5 & = +1.
(iv) & =035 b = £82°
Cases (i) and (iv) give respectively upon substitution in (7),

(12) (Sl =1 4 0n
and
(13) (L EL (7 = Lt

Hence £, --£5! is o rational integer and the plus sign must apply. Then
the left wides of (12) and (13) being units require that [, 4" = +1
which iy pousible only if m = 3 or 6. In these two cases, noting that @, (%)
is a wmit if and only if &, (1/n) and @, (%) are units, and recalling that
7 = {4 we must consider only ®y(L+¢3) and Py —(1L-+(2). Sinee in
fact these are both equal to . '

o 1___;36
LG+ = 1_;;.;

which is a unit, we obtain the listed golutions to (2) for m = 3 and 6.

3 — Acta Arlthmetiea XXX.2
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Tf (ii) holds then we obtain again from (7) thatb
et ek
I e« v

since n s~ 0. Applying again the automorphism Z,—{,; C,~>En' (14)
vields

(14)

W
Lt+ia  tia
which upon simplification gives
=) = (o' —Ln)

and so {7 = 1, a contradiction. Case (iil) is treated in a way similar to (ii)
and is omitted. This completes the proof of the lemma.

Remark. The case when » is a real unit, ie. {F =1 iz given im-
pleitly in [5].

Proof of Theorem 2. Letting m = p*n where p t #, we use in-
duction on k. If & = 0 the solutions are given in Lemma 2. Xf ft = 1 then

obgerve that
(18) Dpn) = [] ol )
c;’,aél

where (2, y) = y*™ & (z/y). Thus &, (%) is 2 unit if and only if D, (ml")
i3 a wnit for all v == 0 mod p. If n > 2 and » 2 3 or 6 this iz impossible.
Hn =1 or2 then since @,,(n) = D,(— x) the result follows from Lemma 1.

In the remaining cagses # = 3 or 6, letting ¢ = {p it suffices to show
that there exigts no » sabisfying for all v, Ige<p-1,

(16) . = {7 (L- L)
where e, = 41.
Suppose first # satizfiey {16) with €, # ¢, for some v = %. Then with
§ = g, and t =g,
A+ A+ =

and considering this equation modulo (1) gives a contradiction for
P s 3. Thus we may assume in (16) that e, = 1 for all ».
For v =1 or p—1 (16) gives, with @ =s,, b = s

pn—11
(17) | 7= L{L+L%) = (T ).

Comparing complex conjugates in (17) gives b = a-+4 mod p which on
substituting in.(17) gives ¢ == —2 mod p and therefore 5 = ¢+ ™% Now
consider (18) for v == 2 go tha.t N o= L4¢7 = *(1+£°). Again comparing
complex eon;uga.tes gives ¢ = —4: mod p s0 that {41 = C” % from

icm
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which {* =1, a contradiction. Therefore (2} has no solutions for m = pn,
with p ¥ #n. For m = p*n, k> 2, let m — p@ where pp. Then &,(n)
== @z (17) and the proof is completed by induction.
Remark. I follows easily from (4) and the factorization
ln) = [ [ (o =1y
ajm

that if K is any almost real field then for m > my([K : Q1) equation (2)
hag no solutions with 5 not a root of unity. T do not know whether in

. general a lower bound for m, may be found independent of [K :@].
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