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AOTA ARITHMETICA
XXX (1976}

On two conjectures of Katai
by
P.D.T. A. Brurorr (Boulder, Colo.)

1. An arithmetical function f(») is said to be additive if f(ab) = f(a)+
+f(b) whenever a and b are coprime integers, and completely additive
if thls relation holds whether they are coprime or not.

In this paper I establish two conjectures of K4atai, the one a particular
case of the other.

Let f{n) be an additive arithmetic :Eunctlon For each real number

=1 define

M () = max |f(n)],
n<w

B(o) = max |f(p-+1)

ol

where in the definition of (), p runs over prime numbers only.
TeROREM. There are positive absolute consionts A, B and ¢, so thal

M(z) < AB(a®)+ AM((logz)®) (x=0).

CorOLLARY 1. Let f(n) be a completely additive arithmelic function.
Then there are positive constanis A, B and c (possibly different from those

-~ in the theorem) so that

M) <AB@F) (2> o).

COROLLARY 2. Let f(n) be a completely additive arithmetic function
and let

f(p+1)] < Alog(p+1)
hold for every prime p. Then there is a positive absolute constant B so that
|f(n)| < ABlogn
CoROTLARY 3. Let f(n) be completely additive and satisfy
| flp+1)
logp

Then fin) de idmtically 2ero,

(n=1).

=0 (p prime).

P
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The Corollary 2 of this theorem was conjectured in 1960 by Katadi [10].
He established the inequality |f(®)] < klognlogloglOn, where % depends
- weakly upon f, subject to the validity of the Riemann—Piltz conjecture
for IL-series. He conjectured the validity of Corollary 1 in another paper
1], guestion 5. :

To deduce Corollary 1 set y == (loga)®. Then if @ is sufficiently large,
y i <y oand

(A-+1) M(y) < M{y*™) < M(2) < AB (2™ + 4 M (y).

Hence M(y) < AR(2®) and so M(x) < 2AE (&)

To deduce Corollary 2, let # be a positive integer, n > 2. Choose an
integer k> 1 so large that #* > ¢, where the constant ¢ it that which
appears in Corollary 2. Then ' :

[f(n)| = —]Jllf(n")l < %Alognw = ABlogn,
i

and Corollary 2 is established.

Corollary 3 ean be similarly proved. _

Remark. We ghall use ¢, ¢, ¢, to denote constants. These will
generally be absolute. From time to time it will be convenient to renumber
them. ‘

Thiz ends the remarlk.

2. We need three results eoncerning the distribution of prime numbers
in arithmetic progressions with large modnli.
For each real number @ > 1 and pair of integers D (1) and I, let
s (%, D, 1) denote the number of primes p not exceeding # which satisty
the congruence p =/ {mod D). _
Lunvya 1. Let & be o real number, 0 <& < 1. Then there is a pogitive
Teal number ¢ = e(s) so thal the estimate
o
_ _ p{D)logw _
holds uniformly for all 1 prime to D, for all moduli D not emoeeding ° with
the possible exception of certain moduli, all of which are waultiples of a par-
ticular D,. ' ' _
Remark. Although D, may depend upon ¢ and @, it will satisty
"Dy > (logo)®1 for any fixed €1> 0 and all sufficiently large values of a,
Proof. We recall the explicit formula '

: f
@ DumAm) = Bo-8,5%~ ¥

n{x 1

(@, D, 1) = (1+6e) (222, 100<1),

2
Z o (—;— log* D + B a*log D
<7 ] ’ .
where y is a Dirichlet character modD, 22122, B, =1if yis principal,
and zero otherwise, and #, = 1 if an exceptional zero B exists, and = 0
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otherwise. The sum which appears on the right hand side of this estimate

runs over the zeros ¢ = S+4v of the associated Dirichlet L-series

Iis, ) = 3 a(myn,

except for the possible exceptional zero f, and its companion 1--j,.
(See, for example, Prachar [14], VIL, § 4, p. 233.)

We shall need an estitnate involving N (e, T, ) the number of zeros
of L(s, ¥) which lie in the rectangle e <Ko <1, < T (8 = o-+il). We
count here the possible exceptional zeros ay well. To he precize we need
the result (Fogels [8]) that there is a pogitive absolute constant €, so that

(2) | > N(a, T, ) < 100~
% (mad )
uniformly tor all T2 20, 0<a<<]. ,
Suppoge now that no L-zeries defined (mod .D) vanishes in the rec-
tangle 1—n < o<1, [§{| <P, where > 0. Then

5, ' af R (wlfzn_@cg_[_ >‘“1 mﬁ)

o o] s
gimod 1) ' ¥ <0 % (mod D) 12=5p<1

1—7

-
—1 /2 71iCy 1/ f o mdo‘)
L <qeRTBD+ D) (aloga + g

%(mnod ) 172

1—n

< 2972 P T Dlogw + f N{o, T, g)a"logzde.

12 x(mod.D)
We can estimate the size of this last integral, by means of (2), not to exceed.
1t
o

TC%logx f (T—OZ—) do < 2z(wT~%)~"
12

provided that #** = T%, say.

Multiplying (1) by #(¢) /o (D) and summing over all characters y(mod D),
we deduce that ‘
O @ ‘

(3)

nesd (mad 1)
e

B ah | om0V 1% Dlogw -+ 2 (@27 n
TelD) B ' p(D)
wlog® D #'*log Da
+0 ' 1
_ x (D)

We recall two further results from the theory of IL-series.
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Let N be a.real number, &N > 2. Then the L-seriey formed with real
characters y (mod D) have no zeros in the region

€3

——le =0 (w>0),
log

c=1
for all moduli I not exceeding N, with the possible exception. of certain
moduli, all of which are multiples of a particular modulus D,. Tf ¢ > 0
and ¥ is sufficiently large then we may assume that Dy > (log ¥N)%. (See
Prachar [14], Satz 6.6, p. 129, and Satz 8.1 {Biegel’s theorem}, p. 143,
respectively.) : ‘
There i & positive constant ¢; so that there are no zeros of any L-seriey
(mod D) for any character (mod D), which lie in the region

(4) 8 % ) <ol (¢ arbitrary)

Fat log D(jt| +2
with the possible exception of at most one real zero §, (the so-called
exceptional zero). For this result we refer to Prachar [14], Satz 6.9, p. 130,

We apply the first of these two remarks with ¥ =% 0 <e¢< 1.
Then if D is not an exceptional modulus, and x is real, L(s, ) does not
vanish on the line segment ¢ = 0, ¢ > 1 —¢,(ologo)™ . Moreover, from (4)
with T = D%og’De (6> 0 to be chosen presently), there are no zeros

of any L-series (mod D) (other than possibly g,), in the rectangle

12 o2 1—6(3(1+ 8)log D+Blogloga)™, |t < T,

say. This -certainly holds if #» is sufficiently large in terms of &.

Since D < o° we conclude that there is a positive absolute constant e,
80 that for o = m,(6, ¢) no L-geries (mod.D) vanishes in the rectangle
G5

Lo
st olons <<

|t| < D’log® Do,

For such a modulus D we can set 5 = ce{e(L+ d)loga}™? in (3).
Then it ¢ is sufficiently small (but fixed) \

7@ T%Dlogw = 022 (D°log® D)% D (log ¥ - O (e {p(D)logx}™?).

Since W, = 0 for the modulus under consideration

> A

n=l(‘Ec§laD) ) “P (D)
ne .

L exp(_ s )+0( ® ) ’ z
(D) 2(L+d)e @(Dloga + (D"log.Dm)'
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The eghimate of Lemma 1 may now be deduced by removing the contri-
bution of the prime powers p™, with m > 2, and integrating by parts.
Thig will be justifiable if the size of ¢ is slightly decreased.

We are left with the exceptional moduli. They are all multiples of D,
and this modunlus satisfies .D; > (cloga)™, for each fixed ¢, > 0 and all
sufficiently large values of a.

This completies the proof of Lemma 1.

A value for the constant ¢ (in termns of &) could be computed if desired.

Tmmma 2. Let D be a prime power, D = g™ Then there is a positive
eonstant ¢, so that there is @ prime p, not exceeding D™, which satisfies

P = —1(mod D), p & -1 (modgD),

Remark. In our application of Lemma 2 essential use will be made
of the fact that g divides p+1 exactly to the mith power. The condition
p = —1 (mod D) could of eourse be replaced by p = I {mod D} for any !
prime to D. ' .

Proof. We first remark that the reduced residue-class groups (mod D)
and (mod gD) are cyclic, so there will be exacily one real character
x1 (mod D), and one real character x,(mod ¢D). Moreover, y, will be
induced by x,. Since no L series vanishes on the line & = 1, the L series
formed with y, and yx, will have the same zeros in the half-plane o > 0.
In pariicular they can only have (or not have) the same exceptional
zero fiy. ) .

If neither y, nor ¥, has an exceptional zero then the result of Lemma 2
follows from Lemma 1 by choosing ¢ = 1/8 say, and ¢ sufficiently small
that -

2 1 2 1> T G
— > —
f< fryeat 8p(D)logw ,  8p(gD)logw
Ppe—] (mod D) me—1 (moedgD) )
T 9
= | ] e 0.
8p(D)logw ( m) g

Suppose therefore that y, and g, both possess an exceptional zero §,.
According to a result of Linnik (Prachar [14], Satz 3.1, p. 349) if

Ay
—_—— 1
. logD b<

(t =0)
and il we set 8, = 1—p,, then in the region

=1 4, log oy
P T oD (a4 1) ° & log D +1) |

(B} 8,log D (|t +1) < 4,
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there i3 no zero ( £ f,) of any of the L-series (mod D). Here the constants A,

and 4, have positive absolute (prescribed) values. Moreover, since f,

is also a zero of y, (mod ¢D), if
4,
logg
then we can assert a similar result’ concerning the zero-free region of
the L-geries (mod ¢D) provided only that in () we wreplace .D at every

occurence by ¢D. 4

We now follow the proof of Lemma 1. We set 7' = D, and include
the contribution of the exceptional zero into the main term, thus if (1, D) =1

< <1,

¥ o, 7 o
Aln)— LA
et {m0a D) ¢(D} (D) £

<

Dt — iz ( 7t T2 log

mlogsz) ( #M*log D )
, + +0
p(D)

(D) T T
where # is chosen to be the largest value consistent with (5), using Dy
in place of D, and T = DY, _

Subtracting a similar expression *concerning those integers % which
satisfy # =1 (mod ¢D) we deduce that :

S io-dh e

[ ]
n=!{mod D)) exactly

Begt (i ( n 2 T% gy
¢ (D)

(6) }

=

: mlogzl)m) 40 ( #'*log D .
¢ (D) T T

Here we note that it follows from Dirichlet’s class number formula (see
Davenport [4], Chapter 6, and Prachar [14], p. 145) that there is an
effectively (computable) constant ¢, > 0 so that 8, > 6o D', In particular
771 < De;ty and for D < a° and ¢ sufficiently small the last three error
terms in the above estimate are :

slogiey
0 (——D—*;o-) .

If now 4, > (loge)™"", then arguing as in the proof of Lemma 1 we can
deduce Lemma 2 at once (essentially, both D and ¢ will be non-excep-
tional). Thus without logs of generality 3§, < (logw)™ " and this in com-
- bination with the above lower bound for &, shows that D > co(loga)™,
Hence the size of the last three error terms in (6) is

@
O ~———]).
(_Dzlogzx)
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Moreover, since ¢D < D*

o exp( 4,loga ( ed, ))

" 2log D (DY 1) 8\ G log DE DO+ 1)
provided that &log.D*(D+1)< 4,. Let & logD < &y, where e, will pre-
sently be chosen to have a positive absolute value. Then for ¢ sufficiently

srnall this last error term will not exceed ¢ (6, log DY g (D).
Altogether, therefore,

1 1 ath
2 Az (e

g
el (muel £) exaolly
— O(w(6,1og D) jo(D) + o/(D*log?w)).
Here the main term (in an obvious notation), exceeds

zd Jog
4p(D)

+ provided d,loga < ey, & is sufficiently small, and # sufficiently (absolutely)

large. If we set @ = D with a large enough value of u (> 1/¢) then all
of these conditions will be satisfied when 6&,JogD < g;/p. ITn this case

- 08, logs ( (8, log D) » )
logp = _ _ 4
°62 > (D) o) Tegs) 2 A
DL n=p"t<n
pw{mod D) sxnetly . mz=2
xd,log.D ‘ ( @
2 e 1 — O, logD — 1z
cyzlog D o
> D? +0(1)210g2w)

_ epzlogD | ( 1 )l
=7 "\ g n ) 70

provided u is Su:t‘:l’,icient]y large (which ensures that & is sufficiently large).
This proves the lemma if. §;log.D < ,u~", where g, and x are certain
absolute constanty, If this last inequality fails then

B, < L —sou~ (log D),

and we can apply the method of Lemma 1.

This completes the proof of Lemma 2.

Our outline of thiy proof was a little longwinded, but it was desirable
to show that all the constants involved could be computed.

Our next lemma concerns fthe average distribution of prime numbers
in residue clagses to large moduli. Here a direct application of the Bombieri—
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Vinogradov theorem (see for example Bombieri [8], Gallagher [9],
Montgomery [13]) is not useful, gince we shall be dealing with too few
moduli. In such situations the Riemann~Piltz conjecture that no L-series
formed with a Dirichlet character has a zere in the half-plane o > 4 has
more powerful consequences. An example which shows the limitations
is the following.

Let z(n) denote the Dirichlet divisor function. Then an asymptotic
formula can be given for the sum

s= 3

e
. peslimod 1)

z(p—1)

"whenever D does not exceed a fixed power of logs, but not if D is any
larger, say in the range z'* < D < #'%. Indeed, not even a decent lower
bound ean be given {the so-called exceptional modulus may divide D),
However, the Riemapn—Piltz conjecture allows one at once to assert
that if D < &7, 0 < & < 1/2, then for a suitable constant ¢ = ¢(s) > 0,

8> ox /D,

We shall need an estimate of the type

* N{e, T, 1)<

m<Q x(modm)

0o (T +2) Q=M logQ(T +-2)%, T =0,

for certain positive constanis 4, and B,. Here * denotes that summation
is restricted to primitive characters (rmod m), for each m. A rewult of
thig type may be found in Montgomery [13], p. 99, with 4, = 5, B, = 14,
.and valid for 1/2 < a<<1. Tt is of course classical that if a = 1/2 then
we may set 4, = 4, By = 1. (See Prachar [14], Satz 3.4, p. 22.) We shall
assume (a3 we may without loss of generality) that 4,> 4.

As is usual we define .

(Y, m, 1) =

Ry
nssl (modm)

LEMMA 3. Let @ and @ be positive real mfmbers, and let D be o positive

integer. Then
DY | By+3—d
max max |p(y, Dd,l)— ¥y, D, 1) ' 2 (log pyPo
deg ¥ysz (1dD)=1 qg(d) (_D)

’

provided that 2(Q_D)*‘-’“D w, where
each integer d satisfies g > (logz)4.

indicates that every prime divisor g of

icm
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Sianilarly
. 1 . loo g\ Bota—4
N max max a(y, DA, 1) —~——a(y, D, 1} | < f‘f,(m?_g,ff),_m
it vew (,aD)=1 p(d} o(D)
with the same restriction on the d, but with
QD)4 z (loga)Buti—,

Remarks., The results of this lemma are valid with no restriction
upon the prime divisors of 4 provided that D does not exceed a fized
power of logm. This will follow imamediately from the Bombieri~Vino-
gradov theorem. In Lemma 3 we gain control over large moduli D at
the expeose of the small moduli d.

In our applications Lemma 3 will be combined with Lemme. 1. This
ends the remarks.

Proof. Uonsider first those moduli d for which (D, d) > 1. Let the

. prime g divide both .D and d. Then g > (l'ogw)“i, and if QD < 2% then

z(logu)t =4

— (loga)~tloga <
Bel s #(D]

Z w,Ddl<Zﬂ

dmﬂ (muc‘lq)

It ig clear from this remark that the oontmbutlon towards the sum(s)
in Lemmsa 3 which arises from these moduli d is at most

a{loga)t \~ ( z(logw)*—
O R, . A — S 0 e ||
(o % 1 o)

Congider now @ modulug d which i3 prime to .D. Then every character
y(mod Dd) can be written in the form x,x,, where y; is induced by a
character (mod. D), and g, is indused by & character (mod @). If x, is
the principal character (mod @), then we say that y is a Karacter (mod D)
and write ¢y is K. We note that even in this case y need not be primitive

 (mod D).

Let now the character y (mod Dd) be induced by the character
oo (mod w), say. [ w, =w(D,w)™" =1, then it is easy to see that y
is actnally a Karacter (mod D). :

When x I8 not a Karacter, w, > (logw)* is satisfied.

We are now ready o complete the proof of Lemma 3,

‘Trom the explicit forrula (1),

' % 1 - ' Y‘l
Ny(l, y) = A(n) — ———e () > x(n)d(n)
, MMI(%..DM ' zp(.l))q:(d) 92%11{ 15511/ .
LI v’ O(ylog”ﬂ?y | y”‘logy)
) £ Tyl T (D)

% (mod Dd) |y<T



350 P. D. T. A. Elliott

where o' < logdD (1 +2) fqr avery zero of the L-series (mod Dd), the -

contribution of the image of the exceptional zero (if it exists) being ab-
sorbed into the term involving y*™. Here '’ denotes that yis not a Karacter,
Let B; denote ‘

max max Ng{l, ¥).
vz (L,D)=1

Then summing over the (special) d not exceeding ¢ and. prime to D, we
have

1o 1 S
(1) > By Y~ =y
rz'/; ¢(D) z% (d) x(moszDd) 1%4._« Iy
(&, D}=1 (. )=1
+O(leog%v @ (logm)®
T p (D)

Tet us first estimate the contribution of those zeros with 8 1/2. We
ghall agsume for simplicity that T will ultimately be chosen so as not
to exceed afixed power of x. Thenifﬁ < 1/4, wehave |o|™" <€ loge {1y},
whilst it §>1/4, |o|™ € (14 y])™" so that the desired contribution is

1/2

) ‘ < w(i?) Z 97(1-01’) 2” Zlﬁwl )

x(mod Dd} |y <2’

X 1 1 1 ~
gqjﬂ) Z; al(d) . Z Z(l—]—T-'_mf (1-;2&)3)

x(mod.Da) |y[<T

(d,D)=1 -
2" logx 1 (
‘ + ) < Qz** (log w)®.
@(D) (;%; w(d) z{m%m) f 14w

Consider now the contribution towards (7) which arises from those
zeros with 1/2 < g < 1. From the identity

;o
(9) of =2+ [ &’logads

1/2

it is clear that at the eﬁpense of an error of at most (8) we can-replace
each ' by the appropriate integral in (9). Next,
1 1 3

L fm
T4y 14T o (1—|~@.a)2
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so that the sum which we wish to estimate does not exceed
1 e
1 1 Y
(10) > ) fm"logw +fN(G’u’ % 3o,
§ Atup

(p(D) @(\) (p(d) x(mod L) 1/2
(TNl

Let g bo a primitive character (1nod w). Let (as before) w;, = w(w, D)~* > 1.

Then the zeros of the L-series formed with characters which are induced

hy %, and which lie in the half-plane o> 0, are those of L{s, y(mod w))

itwelf. Therefore each will be counted in the (appropriate) SUmS (1), (10),

with & multiplicity of at most

_lY(a:—T:%)
14T

o 1og@
p(D)(logwy*

1 X 1._',‘1'121
p(D) & eld) T oD pie) L p(m)
dmi(moding)

Therefore the sum (10} does not exceed

__tlog@ Ny g™
(D) (logan)*

N, T, ) fN(a, u, )

1
1\”1 .
f“" Ogm{ 1+7T 1)

WG xmodw) ]}2

du} do.

Making wse of the estimate given fmmediately preceeding the statement
of Lemma 3 we see that this iz not more than

o.,ollot,Q

! : T
* T+2 -+ 2
22 1o Agfl-e) B, d
LI£¢ loga(QD) 4~ log QD (T +2)) o{ T +ﬂf Y u}dcr

{log Q) Foti=4 yPo+s—4

(logm
¢(D)

1

(QD)AO(i—a)mada, <
1/2% )
this last step being valid if 2(QDyv<<a. Since A, 4 holds, this
condition will ensure that the earlier condition .0 < #*" is amply satistied.
Altogether we have proved that

#(loga) - Qulogz = o (loga)’
dzu By € ;“()”) T ogar+ T 7 (D)
This will be : : .
' m(lowm)ﬂﬁ -3
T g()

it we set T = @' (not exceeding a fixed power of w, as was assumed

~earlier), and note that @D < «"*
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We now examine a typical term N,(I, ¥). We have

Fafl, 9) = | A(n)—Mo(l, )|
ne=d (mod Ixd)
nKY '
where
1 1
Mylly) ~ ﬁm%”“g’“"w”’
1 O Z ) y{n)
=— M4 .
o e (’n)xu(n)x(mw) oD}

Here the ner sum tung over all character y (mod D), and zq(n) denotes
" the prinecipal character (mod d). This last sum is therefore

1 : 1 %
W AT 2 Ao

nsy
#=l(mod I m&l(mod.l))
(n,d)>1

" The second of these two sums does not exceed

loga ( @ logw 2" (log &)
14 i ) 1 20800
@2 Z a2t
g0 that .
g 1 Byh3—d
Zmax max |y{y,.Dd, l)—_——ww(y,p’l)l & fﬁggﬁ_ﬁﬁm
iS4 v<e D=1 @ (d) (D)

83 was asserted in Lemma 3, the only proviso being that 2Dy < &
and each 4 has no prime factor g < (loga)4.

To prove the second assertion of Lemma 3 we first Temove from y
the contribution of those prime power p™ with m > 2. This will not exceed

. 12
2{( 2 logp + 2 10gP+,.,)+O(wﬁ———)l
a<g , psallt pell? (D) J
2 -Z(moqiDd.) p3e](mod Dd)
oM
< D't € ——.
rz% @ (D)

In the usual way we seb

0y, m, ) = 2 .Iogl"
. : oy
p=l(modm)
and integrate by parts,
o v
wly; m, 1) = Qogy) 0y, m, )+ [ 0fu, m, i
. & Y u{logu)
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Therefore
det 1
] ——— D,
Fy= n(y, Dd, 1) o (d) m(y, D, )‘
6(y, D, 1) ———=0(y, D, 1) 6(w, Dd, 1) ———6(u, D, 1
(¥, ’ )M‘P(d) ¥y, U, s 400, (@) Dy 1)
< S au
= logy ’ . ulog?u
and.
3/d Y i

\ﬂ SN OO0 Foyt ey

- m
nax max ¥, € ——- - B, -
2411 g € v (D) Z 4 £ D wlogou

Tag ver LPhm a<q P

The first two of these majorising terms are O (@ (log )P0~ /o (D)} provided
that 2(QD)% < ». Het 2 == 2(QD)%. Then for the range 2 < v <z in the
integral we obtain

yBuka—4

logu @
e e e ] 1
< j Dyulogtu < (D) (logz)

Bytl-d

For the range 2 — = % < # we use the crude estimate
1

u U u
—_— — R 1
<5 1+(1)+1) @ <T@t

1
1 6(u, D, z)-\mme(u,p, 1)

and obtain the upper bound

du 2log@
< 2f%{ } ulog?u < Dlog?z +@ <

2
34—9-

#'* D" and the whole integral, and therefore the sum mvolvmg

Here @ < (Q_D)Ao e

7y, will be O{w(logw)™+*=4/p(D)) provided that
2a (log wyPat3-4, '

This completes the proof of Lemma 3.

3. We next prove some resaly concerning the posmble golution of
certain equations in integers and prime numbers.

LuMMA. 4. Let @ be a real number, 232 2. Let dy < dy < ... < dk dencie
those (squarefree) tnlegors d, not ewc@edfmg @, for which the equation

p+1=d(g+1)

i goluble with primes p wnd g not exceeding @, p+1 squarefree.
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Then thers ave positive absolute constants ¢, and o, o that

I
-T 1 - i
—d—' = C1108%

il

(2 ¢).
T
Proof. Except for the condition that the p-1 be squaretree this
lemma is established in the author’s paper [5]. It is straightforward to
modify the proof which is.given there in order to add this extra condition.
Limvwa 5. Let w2 2. Let my < my < ... < m, be @ sequence of seorefree
integers not eaceeding . Lel g < g, < ... < g, e a sequence of primes
not exceeding w. Suppose that there are no solutions to the equation MWy === gy )

where the integer 1 is vomposed entirely of the primes g,.
‘Let

1
8 = —_
4:

i

e

Then theve is an absolute constant e, so that

»

e N1
31/2> —<gloge (03> 2).
j=r

Bemark. This lemma implicitly forms the fundament of Behvend's
treatment of primitive sequences of integers [2], and Trdos’ treatment
of cerain distributional problems concerning additive funetions ([6],
see also HErdés and Wintner [7]). '

Proof. For each positive integer n not exceeding  let a(n) denote
the number of divisors. of # which can be found amongst the ;. Clearly

Iy
det N1 wul it
A= Ddam) = M2l N =g
Pl dmd P
"L e gun ],

We ghall now ohtain an upi)er bound for the sum 4.

; Let g denote a positive real number. Consider those » which are
divisible by at most g of the primes ;. Then

- \ 1
a(n) <27 ¥ ue(dy)
. ) dll'n
where d; denoctes that the divisor &, has no prime fac

tor ¢;. The coniri-
bution towards 4

that arises from these integers » therefore does not

exceed
i 2 H (1--1/p)
K ] -
20 ) wilay [ﬁJ S S < golegatie S,
& Y T
=]
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If mow » iy an inbeger which has more than g prime factors g; then
we can write # = ny%,, whers no ¢, divides #,. Each divisor d of w has
a corresponding decomposition d = d,d,. Consider those divisors d with’
a particular (temporarily fixed) value of d,. Clearly we cannot have d,|d,
for any two divisors'd, &' (taken from amongst the m,) otherwise

& =i,

contradicting a hypothesin of the lemma,

Lat &, ..., I, denotio the prime divisors of the (snquarefree) integer ;.
Then to each divisor d, of #, there corresponds a set of suffices, no one
of which sets 14 eontained in another. By a thecrem of Sperner [18] any
guch collection camn contain af o8t

|4
H
2
members. Jere the symbol denotes the appropriate binomial coefficient.

; ; : : . ) By—1)2
Trom Stirling’s approximation this expression does nof exceed O(2°57'7)
go thatb

o
e;2
a{n) < ——— -k
¥
where »{n) denotes the total number of distinct prime divisors of fhe
integer #. Hence these integers # contribute towards the sum A at most

s 2'1 cewlogw
g T(’j’b) & ———
Vg Py Vg

=
Altogether therefore
I

? y 1
2 L croge et @
vy

~m logx

%
b

Dy d ’ r
Choosing ¢ == max(§, 1) we complete the proof of Lemma b.
For w2z 2 dofine
B{x) == max|f(p+1)l

man
Let the sequence m, < ... <2 m, 0 Lemma 5 he the integers d; of Lemma_ 4.
Let the primes g < ... < ¢, in Lomma 5 be those primes ¢ for which
o)y = 25 ().
Then any equation my = m;i, with ¢ dividing A (say), would lead to
the contradiction . _ :
2B (@) = flmg) —F(my) = fla) > 2B (a).

[l

4 - Acta Arithmetion KR4
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From the results of Lemmas 4 and 8 we dednce that
' Y1 (c,, )2
— g =] < oo,
= % 01

'Arg"uing similarly with those primes ¢ for which f(g) < — 28 () leads to
the result: . '

Lewmia 6. For a certmin absolute constant ¢,

1L
D S<a (@32
e ¢ .

IFl@)l >2E ()

Lmvnea 7. Let a and & be positive real numbers, 0 < a < 1, & > 0. Then
there is a further positive real number 8, 0 < f < 1, such thot if © exvceeds a
certain value depending upon a end &, then for some number y = 2° we have

1
Z Z<e (#32).
Yooy
@) 2 Efz)

Proof. Let M be a positive integer. From Lemma 3

A :
z-w -k 1 1
\ﬁ —= 2 —< &,
=1 Q:a‘l’t‘l-{qg{zﬂm—1 q o g

where ’ indicates that summation is vestricted to those primes for which
If(@)i > 2B(z). 'We choose a fixed value of M > g,/e, and set g =a™.
Then at least one of the innermost sums with y = #™" does what is
required. .

Our last preliminary result concerns. a form of the Selberg sieve.
The result which we need can be proved along any of the standard lines,
and is of the type known as a “fundamental lemma’. (See Kubilius [12],
Chapter one, and Barban [1].)

LeMMA 8. Let oy < @y < ... < &y, denote a sequence of positive integers.
Let i< gp<<...<q, <7 Aonote a sequence of primes not exceeding the

number v. Denote their product by Q. Let g(d) be multipliontive on the divisors
of @ and satisfy 0 < g(p) <1l and

N1 ¢(p) =0('1)
iy L9 (D) loga

uniformly for oll 22, Let' X be a real number, and define

T=g(d)X+Riz, d) (d)Q).

a;e=( (mod @)
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Let Ik, Q) denote the number of members of the sequence of the a; which
are prime to @, that is to say, not divisible by any of the q;. Let 2 be a further
reql number e =vr =2,

Then there are positive absolule constanis ¢, and ¢, so that

106, 0) = {1+ 0uonexp ( ~engoief 3 [ [ (1 —gtai)+
dal

+ 6201 2 ¢ n (1—g(2) 2 IR(X, &)1,

i) pld
de5ed

where 16| <1 (j =1,2).

4. Proof of the theorem. Let o, 0 < 4a <1, be a real number, o
be chosen presenfly. Let » > 2 and ¢ be further real numbers, and let y
be a number determined by Lemma 7. Let D be an integer which satisfies
D < ylji]. ) . .
Ouz first step is to estimate the number of solutions to the equation

(11) p = —1 (mod D),

p prime ¥*<p<y, qE+L)D=g< logyyt or g9

Here (and in what follows) p éJnd g will be generiq symbolg for prime

numbers. ] '
We apply Lemma 8 taking the a; to be those primes not exceeding

y for which p = —1 (mod D). Seb

i ot
X =¢TD7“(3/:D: """1)1 - g(d) - tp(d)

and let @ be the product of all primes ! in the range (logy)* < T <<y

Then
N I =

alogy

Ik, Q) :.{14—0101@3{1)(""02 L
. Qozyyd<iy®

--error term R,

wheré

| e

% d) - d)i.

}R|40124 H(l w(p)) \R(z, d)]
i o
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By means of an application of the Cauchy—Sehwa,u inequality this error
ferm is seen not to exceed
el AR

L o] ] (
| 63, et \za

dIQ d=ce? pld

1z
A B (= d)} .

The first sum in curly brackets does not exceed

8 L R
H(l*i"m(l_m) )<(;0gy)ﬁ-

Ag for the second, if # iz sufficiently small, say ¢ < y"™, then by the
Brun-Titchmarsh. theorem (Prachar [14], Satz 4.1, p. 44),

p(d) B(w, d) <y{rp( Mogy}™ + Dy*.

- Applying Lemma 3 with 4, = 5, B, = 14, the second sum in curly brac-
kety is therefore

¥ yllogy).
¢(Dilogy (D)
provided that 2(2D) < y (logy)™ .

We set 4 = 28, so that B < y{p(D)log*y}~".
Ag for the main term, it will be as large ag

loglogy'

it Jond- XA D. —
Zalogy ﬂ(yi L 1)

(% 2 Yo},
provided that logz = Cology, and 0 is chosen go large (but fixed) that
6,eXp( - C) < . The number ¥, may depend upon «, but not 1. Tn order

ta satisfy all of our conditions upon z and. I} it will be enough that D < y"*
and 40Cq < 1.

Let us assume for the moment that D < 9% where ¢<<1/8 and is
a sufficiently small positive constant so that the result of Lemma 1 applies
with an << 4. Let us assume further that D is not a nmultiple of the

{possible) exceptional modulug D,. Then the numbm of solutions fo the
equation (11) iz at least

(12) : . yloglogy
Sap(D)(logy)*
provided only that ¥ > y,(a).
We can write the solutions of equation (11) in the form

13y ' P+l = Dm
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where if g|r then q > %, whilst m is made up of the primes ¢ not exceeding
(logy)™. Let us show that there are few solutions where # is divisible
by the square of a prime. In fact their number does not exceed

D ]

L (mad])q"} e

and for a fixed a > 0 and large values of y this last expression iz muech
gmaller than that in (12).

Consider next the golutions where v is divisible by a prime ¢ for which
Dg >y, Let

p+1 = Dmgr,
say. Here any prime divisor ! of r, would satisfy 7 > y° so that for all
values ¥ =1

2y ;P +1 - mylh-(aﬂ)ya ; ?!1'1'(“/2)’

which is impossible. Therefore r, = 1. We note that if « is sufficiently
small, Dg > ™%, so that Dm < 2y/g = 2Dy/Dg < 2Dy** < 29°*.
For a fixed value of Dwm, the number of solutions to the equation

(14) p+1=Dmg (p,q<¥)
is at most
Y
—_— 2, absolute, ¥ = ¥,)-
Gaqo(Dm)lOgEy (e ) ¥ = Yo)

The number of solutions to (14) (and (13)) with g free to vary over the
primes ¢ > D71y~ iy therefore .

Y 1. < oy loglogy
p(D)log*y (m) ~ @(D)log?y

1t « is sufficiently small this will not exceed one thirteenth of the amount
(12). 'We consider o now to be 80 chosen.

After removing these, so-to-speak, unwanted solutions, we are left
with at least

¥l

Cy
me{logy)it ?

1 yloglogy
da p(D) (logy)®

solutions to the equation (11), now with certain additional restrie-tigns.
Our next step iz to remove solutions to (13) for which some ¢; divides
(p+1), ¥* < ¢; <y~ “P D7, where ¢; is defined as in Lemmas 6, 7.
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‘Wanead an upper bound for the number ¥ of solutions fo the equation

(15) p+1 =Dgr; p<y, Dg<y™®

where if g is a prime dividing », then g < (logy)®, or ¢ > ¥°

Let a, be a positive number, 0 < ay < a. The number N does not
exceed the number ¥, of golutions to the equation (15) where the condilicn
on ¢ is weakened to g > y™. We estimate ¥, by Selberg’s sieve method.
We apply Lemmsa 8 with the @; chosen to be the integers #--1 in the
range §¥ < n <y, which satisfy

n+1 =0{mod ¢D); nF#0(modyg) if
(m4+D) D g % 0 (mod q)  if

<y ¢t(eD);
(logy)™ < g <y

In this case X = y[(Dg;) and

2 if
1 it

(logy)® < g < ¥, ¢1 (g.D),
(logy)® < g < y™, ql{g; D}, or <

For each d|f, where now ¢ = []g, 2< g <

| pg(p) = \
(logy)™.

¥, we have

. y
R(X,d
02, 0) <75 +1) @)
- 50 that '
24,(::)[] 71— g )~2 |R(x, d <J y%v(d)( )
o i |
y{logy) Y (logy)~*
¢ X8I et  YIOEY)
| Dg; (D)
provided that a, is sufficiently small, but fixed. Hence.
V< y“H—Nl .' R | S
3 o Yogy™ iy '
R I () ()
D .
. : Q_’;q:( ) Da; g{logy)?8 - !;l q{zl
—3 3
< gy Y08y yloglogy ) te,.D < . fyloglogy
g:p(D) Dg;(logy)* "o(g D)  go(D) (logy)®

for a certain constant ¢ which depends upon «, only. Choosing for a,
*the fixed value a/12, we see that for all absolutely large values of y:
oY
YO <
¢:-D(logy)?
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Here (a¢ earlier) we make essential nse of the fact that gD <.y'~@®2.
The total number of solutions {o the egquation (15) for the varions g;
is therefore mot more than ‘ '

yloglogy S“\ 1
o (DYlogty —

L Gey 1oo~logy
; plD)logty

Yoy

‘We choose s in Lemma 7 so small that Ge < 1/(20a). This fixes a value
for § == 0.

We have arrived at the existence of at least
1 yloglogy

Ba o (D)log*y
solutions to the equation

(16) p-+1 =Dmr, p=<y,

where # it squarefree, and every prime divisor g of » safisfies y° < g<y.
Moreover, no g, (of Lemma 7) divides ». Bvery prime divisor g of m satisties
¢ < (logy)®. All this holds subject to D being non-exceptional (in a certain
well defined sense) and satistying D < ¢, for a sufficiently small constant c.
Tt we vestrict ¢ by ¢ < o then (D, 7) = 1 must hold. We denote the result
go far by (16). '

We can now exercise some control over the vize of m. We do this
in two ways, according to ity absolute size, amd according o a cerfain
function of itg prime divisors.

~ Define the function '

n{m} = 2 wlogyg.
AP
’ qﬁ%log"z)‘d
Then { ‘
8= n(m) = log g™ 2 1
Py, p41=Dmr g(lognd p+1=Dg®m,r

where ' indicates that we count primes p which appear in aoluuons of

the equation (16). If Dg* < y'~® then exactly as in the previous step,
an inner sum will not exceed

yloglogy 26yloglogy

¢(Dg)log’y = ¢°p(D)log’y
The total eontribution tow&rda S which these prime-powers ¢ make is
therefore at rmost

2@Gyloglogy 2 1ogg"’
p(Dloghy &t  0°

log)

yloglogy
¢(D)log®y

‘loglogy

for some absulute constant H (y = Yo)
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icm

Tt Dg¥ > y'~“* then y"¢g¥ > y** and

logy
4 Aloglogy

logy
alogg~

= Wo,

say. The contribution towards § which arises from the corresponding
prime powers §* is at most

Zlogq D 1/)

Wy

y(logy)™

——wﬂfﬂ, <
@{D)

Thus Ior all ¥ > 2, and a suitable constant H,

A 2Hyloglogy
7 (m) < —- ——--loglogy.,
PH1=Dmr h ¢ (D)loghy soed
<y

It follows that if we set 4 = 28 and repla,ce 5a in (16) by 10a, then we
may assert that m satisfies

m = exp(n(m)} < (logy)"".

Here 20¢H is an absolute constant.

Define the function -
A(m) :Zi';.
q

qlm

An argament similar tio that given above shows that for a certain ahsolute
constant J,

Y Aim) < J yloglogy <
i ichor ST e Dyiogry (7Y
sy

80 that replacing the (now) 10a in (16) by 20a we can add the further
condmon that

4(m) < 40ad .

- We suminarise what we have proved so far in two results.
Let g, be a prime divisor of the exceptional modulus Dy, Let D be
an integer not exceeding #°, and which is not divisible by go. Then D

is non-exceptional. If every prime divisor g of D satisfies g> (logy)*®
we have

f(D) = flp+1)—f(m)—f(r)

since (D, wzl = 1. Here m < (logy)*¥ and r iy squarefree, consisting of
at most o' digtinet prime factors g, for each of which |f(g) < 2E ()
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Hence
(17) F(D)

Suppose now that D is still non-exceptional, but does have prime

< M((logay™ ™)+ (2/a) B (a)

~ factors ¢ < (logy)*. Consider a solution to (16). Write D = D, D,, where D,

is prime to m, and D, is made up from those primes which appear in m,
but possibly with exponents different to those in m. Define m = m,m,
whare m, is made up of primes which appear in Dy, and m, is prime to m;.
Then we have

(18) J) = f(p 1) —~f(Dymy) —f(ms) — f(r).

Everything now goes as before, save for the introduction of the integer
Dym,. Let us call this integer Dy. Tt satisfies Dy < D(logy)**?, moreover
A(Dg) < A(m) < 40aJ. We notice also that Dy, is non-exceptional, since
it is not a multiple of g,.

" 5. Non-exceptional moduli with 4 (D) bounded. Let ¥ be an integer,
N« 2, which is not divisible by ¢,, and so is non-exceptional in the
senge of Lemma 1, assuming for the moment that e is chosen, 0 < & < 1.
Here d may need to be sufficiently small. Leét ¢ be a prime divisor of N,
Then if we strengthen the condition upon the size of N to N < 2”® we
ghall have ¢¥ < ¥ < #°, and ¢ will also be non-exeeptional.

Let 4 (N) < 40a. We apply Lemuma 8, with @; running through the
primes not exceeding » which satisty p» = —1 (mod D). Let ¢ be the
product of the distinet prime divisors of N. We set

—1

X = a{p(N) and  g(g) =¢

for each prime ¢ which divides N. Then the number N, of solutions to
the equation

logw)

P—]r"lﬁﬂi, (D,8) =1, P w,
is ab least
logz 1
{1““’1@3‘]?( “Cy Togr )} -1—0;; ]Y( .—)u—error term I,
where
EEX A (ZL’ml)ﬂz w(w, Nd, —1) — o
) pith i q p(Nd) loga
ded
v 1\ 1
S 4 (1 —_ _M) -
¢(¥)logz % M[ d .
& 4 1 =2 (%71 '
PN 14 |l exp (44 (N
p(Mloga Q( | ( ) ) > (F oga P44}
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We set »r = N, and then 2 = N*, where u is chogen so large, but fixed,
that e,exp (— 6au) < . With this value 2° = ¥ < ™ and if s is chosen
sufficlently small (here we make use of the fact that 4(N) is absolutely
bounded), then ' :

N,

A%

6y ————18xp{ — 4 (N} —wsexp dA (N = —=
o Toge 1R A =5 ( )I’
with a certain positive absolute constant e; (# = @).

In a manner exactly similar to the treatm?nt of equation (11) we
prove that there exist many solutions to the equafion

p+1=NmM; (¥N,mM) =

where the prime divisors ¢ of m satisfy g¢<(log#)®, and m < (loga)”
for a certain absolute constant L. Moreover, every prime divisor of M
exceeds (loga)™. Hence

F() =f(p+1)—f(m)—f( M)

so that
) < B{e)+ M (oge?) - (gl - (% +1) (),

since M falls within the scope of inequality (17).
Making use of this lagh inequality in (18) with N = D,m,, we see
that provided & is chosen sufficiently small, and D < o”%, then

(19) DI (3 +4) Blo) + (0oga) (0,1 D),

where K = max (L, 20aH).

6. Completion of the proof. Let y = 6/(3¢,), where ¢, is the constant
which appears in Lemma 2, assumed, without logs of generality, to satisty
¢,z 1. Let ¢ = ¢’ be a power of the exceptional prime. ¢,, < 4*. Then
by Lemma 2 there it a prime p, not exceeding 2™, so that

(20) P+l = (21 D).

Here the integer D is one to which inequality (19) will apply, and go
|F(8)] will satisfy an inequality exaetly similar to (19) gave that the co-
efficient of H{#) is increased to (4a™' -+ 5). '

Finally, let D be any integer not exceeding a*. Write D = ¢.D'
where g,1.0". Then from (19) and (20)

1F(D) <) f(ad)] -+ If(D )l S(E-M)E(w} +2M((loga¥) (@32 @)

icm
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We replace z by #Y” and have then proved the theorem for all suf-
ficiently (absolufely) large values of x with

8
Am(-a —}—9), B = rnax( K+1)
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