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3) I ewiste une constante réelle ' telle que, pour tout P n’appar temmt
pas auz fibres dégénérées:

h(P) < @ (P)+2h,(P)+C.

4) L’encodrement obtenu en 2) et 3) est le plus fin possible, en ce sens
que, dans le cas ¢ = 3, sl ewiste vy, ry, C dans R tels que, sur le complé-
mentaire (2 des fibres dégénérées, on ait:

VE2'(Q)  P(P)+1h(P)—C K (P) < D(P)-Froh,(P)+C

alors ¥y < 1 et 1,22 2.
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On basis problem for Siegel modular forms of degree 2
by

Mroaro Ozexr (Okinawa)

1. Introduction. In the theory of modular forms of a complex
variable there iz a famous problem so called as “basis problem? (for
the details see [3]). In [1] van der Blij treated the special casec of the
above problem. His main regult can be stated as “the space of modular
forms of level one and of weight k is spanned by the theta-series attached
t¢ positive definite even integral gnadratic forms of determinant unity
if and only if the weight & is a multiple of 4”. In this paper we shall treat
the corresponding problem in the case of Siegel modular forms of degree :
two. Our main result iz the following:

- THEOREM. Let M(2,%) be the linear space of Siegel modular forms
of degree 2 and of weight % (k is an even non-neguiive integer), then M (2, k)
is spanned by theta-series atlacked to positive definite even integral quadratic
forms of determinant wnity if and only if k is o mulliple of 4.

" The proof of this theorem rests partly on equipment and precise
observation of certain positive definite even integral gquadratic lattices
of determinant unity and partly on the work of Igusa [6] which deter-
mines the graded structure of Siegel modular forms of -degree 2.

2. Some preliminaries. Let §, be Siegel upper-half space of degree
2 and ¢{r) be a Siegel modular form of degree 2 and of weight %, then
¢(r) can be expanded in a Fourier series

(1) . w(x) = D a(T)e™,

.p

where T runs over the set T of all pesitive semi-definite semi-integral .
matrices of size 2 and ¢(T'r) means the trace of the matrix T ([11), [61).

Prorosirion 2.1. Let

(1) = X (D) and
2“0

= Np(T) et
I

2 - Acta Arithmetica XXXT1 - '
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be Fourier expansions of Siegel modular forms of degree 2 with weights &,
and by respectively, then the product o, (v)ey(r) is of weight &y + %y and ils
Fourier expansion is given by:

@ 1 (T}ps(7) = ZC(T) e,
T
where o(T) = 3 a(T)b(L) and Ty and Ty rum over all possible pairs
T14+Te=T"

of solutions {Tl, Tz} of Ty +Ty =T with T, Ty and T in T.

The proof of this proposition is clear and we omit it.

After Witt [12] and Eichler [4] we shall consider positive definite
integral guadratic forms in the langnage of lattices in the linear space
over the field of rational numbers ¢ with positive metric. We ghall assume
this settings throughout this paper. We shall say a lattice I is integral
if we have (@, ¥)<Z for any pair ¢ and ¥ in L, where ( , ) means the
positive metric of L and Z is the ring of rational integers. ¥ L is an in-
tegral lattice, then (x, ) Iz & positive integer for any x<L other than
zero vector and we shall call ¢ in L as m-vector when « satisfies (#, &) = m
with some positive integer m. We shail denote by Aut(L) the group of
all automorphisms of the lattice L. An integral lattice I is called even
integral if we have (w,s) = 0 (mod2) for any @eL. The determinant
of a laftice L is defined Dy the determinant of the quadratic form eorre-
sponding to L. It is known that if I is an even integral quadratic lattice
with determinant unity then the rank of L is neccessarily divisible by 8.
Now we define theta-series #(2, L) of degree 2 associated with even
integral lattice I which is essentially the same thing as theta-geries of
degree 2 for positive definite even integral quadratic form. Let 2z and y
be in L, then we denote by [z, y] the mfmtrix

((m: @)  (# 9))
(2, %) ‘ (¥, %)

and theta-series #(2, L) iz defined by:
(3) . $(2, L) = D¢ t=),
. =¥

where # and ¥ run over on L independently and = iz a variable on $,.
By Satz D of Witt [12] ¢(2, L) becomes a Biegel modular form of degree 2
with weight equal to the half of the rank of I when L is an even integral
lattice of determinant unity. Sinece L is even integral lattice with posi-
tive metric, (v, y] is always positive semi-definite even integral matrix
of degree 2 for any @ and ¥ in L. Let T be in ¥ and a(T, L) be the number
. of solutions of pairs # and y in I such that [z,y] = 27T, then #(2, I)
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can be expanded as:

(4) #(2, L) = Z'G(T’ L) etelT),

TeX

Yt is clear that a(7, L) is @ finite non-negative integer for each T and L
and (4) is Fourier expansion of #(2, L). From now on we shall restrict
ourselves to the case where I I8 even integral.

We shall equip some suitable lattices. Let 4,, D, (n>>4) and B,
be even integral lattices given in [6] or [8]. We shall conventionally use
the following notations:

A, = [6y— s, 62613+ € — nyy )
D, =665, — 6y ors Gy Cpy €t Enlz;
8
By = [Bi’““ez: vy €5 6qy B T8y, %Zei]z
- g==1
where é,, ..., &, are orthonormal vectors and [6; — €y, €3 — €5y «..y €, —Cpiilz
means the lattice spanned by e;—2s,...; 6, —fpq Over Z and so on.
PROPOSITION 2.2. When and only when n+1 18 o square integer con-
gruent to one modulo 8 there ewists an even integral lattice A,, of rank n and
of determinani wnity containing A,,.
Proof. After Niemeier [8] we use the dnal lattice A5 of 4,. Since

”

e, —

+1 &

fam]

AE[A i

- +1 e,y modulo A, ([8]), it is easy to see that »+1 be a square
n

(say r2) if A exists at all becanse such ﬁﬁ must satisfy the isomorphicity
condition AF/4, ~ A,]4,. In this case A, /4, is a cyclic group of order r
and- the representatlve of 4,/4, must be of the form:

jru with 1<j<r and (j,7) =1.

But there holds A, +Zj,ru = A, +Zj,»u for each pair of integers j;
and §, such that (31,1) = (f,, 7) = 1. S0 we can take A, as A, +Zru.
Since 4, is even integral, the mecessary and gofficient condition that
A, is even integral is (ru, ru) is a positive even integer and we see that

m"*‘ . omir I
(e, 1) = iy Yy

Thus r*--1 is an even integer and we ean say that »--1 is a gquare in-
teger congruent to one modulo 8. Conversely, if »+1 is such a number,
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then A,,; = A,-Zru with 2 = %1 and

= )je L
_ﬂ—{—l,_lJ L

is an even integral lattice of rank » and of determinant unity. =
ProprosITION 2.3. When and only when w is a multiple of 8 (n > 8)
there exmists an even integral lattice D, of determinant wnily containing D, .
The content of this proposition is already discussed at Pp. 330-331
in [12] and we omit its proof. We only give the basis of D, (n = 0 mod 8)
by:

D, = [@1_32: R . T e L %231']2

Gl
D, is nothing else but H,.
3. Some auxiliary lemmas and propositions. Let L be an even

integral lattice, then we denote by V(m, L} the set of m-véctors in T

for each even infeger m. We shall use the symbol ||§] for the cardinality
of a finite set S.

Lmvva 8.1, (1) V(2, 4,,) =V (2, 4,,) and IV (2, A,,)|| = 600, (i)
Vi4, .AM) congists of two framsitive clmsses 0, and O, under the action of
Aut(d,,), where C; and 0, are given by:

O {31'1‘}‘%2 e — 6, | 104y, 1y, 1y, 1 <25,

1y 4s, 1y and iy are different from each other},

={i[§22i’e,; o ey ey, oy + )| 1 <'i1<i2<i3'<44<¢5<25}.

=1
Proof of (i). Using the fact that

24 : 25 25
1

24 1o
Bu :-:5'_ G.im—'g*@% = E“Eﬁi—ze,i n’lod-A24, i
i=1 D=1 i=2]
we see that A, is also expressed as Aoy +Zw with w =; Y ¢, — Ye,.

'i==1 431

As Niemeier remarked. p, 150 in [8] w has the following property:

(5) (w, w) < (10}, w—}—*v) for all ved,,.

w hag the order 5 modulo 4,,, that is, it holds that we have Lw = Jw -

mod 4 with integers 2, and Ay if and only if 4; _/’L (mod B).
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It can be observed that:

25 25
— 2 _'I
2 =3 28 mOdA24,
i=1 =14
25 ﬂ 25

3w = 2 2 e; mod A4,,,

25 25
dw =1V, 23" mod A,
i =
and

5w =0 mod .A24.

25

25 25 .
wy = %Eei—Ze,-, Wy = 523 231: and w, = 526 - Me; hewetheprop—

i=1 =1 T

erty (5) (see a.lso Pp. 148-150 in [8]) and We see Ghat (w,i0) = 4,
(s, wy) = 6, (ws, ;) = 6 and (w,, w,) = 4. By the above diseussion we can
say thai V(2 Ay = V(2, 4,,). By calenlating combinatorially, we get
IV(2, Ayl = 600.

Proof of (ii). Sifee the series Z‘em(" ", where z is a complex

ued.

variable with pomtwe imaginary part, fé 2 modular form of weight 12
of level 1, ¥ (4, 4,,), the number of 4-vectors in Am, is given by the

“formula (11) of [9] with # = 2 and 1104 —384s = 600. Hence || V4, )0

is 182160. Cleaaly A,, contains the following two types of 4-vectors:
0, = {ei

iy T By ] 1<dy, 12:%:""4‘-95}:
a5 .
¢, = {:t[lz‘e — (e, +e;, —}—313—}—6 -{—eis}]i Sy <y <y < iy < 5 < 25}

=1

It is clear that O; and C, are disjoint sets. By calculating com‘bina,toriadly
we geob J|Cy|| = 75900 and ||0,ff = 106260 and [Cy||--||Csl = [V (4, Az«;) B-

- This means that V(4, 4,) =C,u0, (disjoint -union). Since Aut(AM)

contains Aut{4,,) as a subgroup it can he seen that C, (resp. C,) is tran-
sitive under the action of Aut(4,,). If there exists an element o of Aut(Aﬂ,,)
such that ¢ carries an element w of ¢, into an element ¢ of 02, then

mthout loss of generality we can assume. that % = 6y ey~ —8,;,

2‘ e;— > e and gu = v. Consider the 2-vector 6,—¢;, and we
1.==1
have (u, 6,—6) = 2. But (ow, ole,—e5)) = {v, g(ez-ea) is not equal to
2 because of the shape of v and becamse p{e,—e,) is another 2-vector
in 4,, and has the form &, — &, with 1<j;,7,<25 and j, s j,. This _
means that such ge.Aut(A24 does not exist. m
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Lemma 3.2. (1) V(2, ) is transitive under the aclion of Aut{#,)
and |V(2, Byl = 240, (ii) V (4, Hy) is transitive under the action of Aut(#y)
and [V (4, Byl = 2160.

The transitivity statement of this lemma is asserted by Hilfssatz
(6.4) of [8] and |[V(2, B, ~ 240 #hd |V (4, By = 2160 are merely
caleulations and we omif those.

LevMa 3.3. (i) V(2, Dy) = V(2,Dy,) (b3 2) is transitive under the
action of Aut(Dy,) and |V (2, Dy,)ll = 16n(8n—1), (i) V(4; Dy) consists
of three tramsitive classes Oy, €, and O; under the action of Aut( D), where
Cs, €y amd Oy are given by:

={i23 l1<ig 16},

= e, 1<y < gy <y < iy 16}

={2ms wﬂnm}

i=1

(i) V{4, .ﬁan) (n > 3) consists of two transitive classes Ug(8n) and C;(8n)
under the action of Aut(Dy,), where C;(8n) and Or(8n) are given by:

C4(8n) _{izeil 1<i<<8n}y)
C,(8n) -—{ie +e; iela;l:ewlll iy < iy <1y < 8, < 80}

Proof of (i). Sinece V(2,D,,) {(n>2) consists of e,te with
1< i < § < 8n, the transitivity is clear. By calculating we get |V (2, D,m)[[
= 160 (8n —1}. .

Proof of (ii). Since the séries Y’em(“ “ i35 a modular form of

weight 8 and of level 1 and the éhmensmn of the space of modular forms

of weight 8 and of level 1 iz one, 3 "7 must be equal to primitive
-sz
Eisenstein series of weight 8, namely, to

1 —}—480 Z o,(m)e"™™  where o,{n) =!2d7.

=1 dln
S0 we can say that |V (4, D)l = 4800,(2) — 61920. Tt can be seen that
0., 0, and C; are mutually disjoint subsets of V(4, D). An easy com-
putation shows that ||yl = 32, MO = 29120 and {|C,|| m~32768 and thas.
ICsli+ 1Ol + 105l = {V (4, Dyg)ll. This means that V (4, Dy) = W0, V0,

{disjoint’ union). Since Aut (D) i3 generated by reflections with respect -

to 2-vectors in B, it can be observed that €,, €, and O, are transitive
clagses under the action of Aut (D). :
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Proof of (iii). Since we know Dy, = Dy, --Zu with u = 26 and
has the property (see p. 150 of [8]): CooE=1

(w, ) <{ v, %-+0)  VoeDy,

we can say that ¥ (4, f)ﬂn) = V4, D,) for n=3. It iz eany to verify
that V(4, Dy,) is a disjoint union of C,;(8n) and C,(8n) and that they
are iransitive classes of Aut(D,,). m

It should be remarked that

10,(8n)} =16n and  [|C;(8n)l| = §16n(8n—1)(8n—2)(8n--38).

Now we shall describe the process of calculating Fourier coefficients
a(T, L) of #(2,L) for some TeT and for some even infegral lattice L.
For the later convenience we seb:

00 10 20\ -
TD =(0 0)7 Tl_(o 0)) T‘l =(0 0)3
10 13 i 10
Ts =(0 1): T4 =(% i): -Ts 2(0 2)5
143 20 2 %
T :(% é)’ T’=(o o) s =(1} 2)
21 '
T9=(1 2).

It is obvious that a{T,, L) = IV (2, I} and &(Ty, L) = V4, D) for
each even integral L. To calculate a{Ty, L) we need the number of pairs
of 2-vectors # and v in I such that (@, %) = 0. a{T,, L) is the number
of pairs of 2-vectors # and y such that (x, y) = 1. a(T;, L) iz the number
of pairs of 2-vector @ and 4-vector y sueh that {«, y) = 0 and so on. We
shall number theta-series attached to special even integral lattices of
determinant nnity as follows: '

& =0(2, L) = Y a(T, L)eﬂﬂwﬂ’ﬂ = ¥ q(T)em e,

TeT Tex

where Ly = By Ly = Dy, L3 = E{DE,®E, (orthogonal sum}, L, = ,’DM,

I’ = -5-24’ L = s@Es@')Ea@Ea; Lq = —ﬁu@Em Ly = q4@E3, Lq - Dsz:
Ly = ES@EB@Ea®E3@EB: Ly = D24EBE5@E8: Ly = A24@EE@EBJ Ling
= Dy,®F8,, L,, = D,,. We should keep in mind that #, is Siegel modular
form of weight 4, #; is Siegel modular form of weight 8 (i.e. #ye M (2, 8)),
By, &, and 9, are in M(2,12), 9, O, 9, and &, are in M (2, 18), 14} P,
Diay By and &, are in M (2, 20). As typical calculations of (T, L) we
show how o, (T}, a,(T;), a,(T;) and a;(T;) are caleumlated.
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Taking 2-vector ¢, — ;e B, then we must look for all 2-vectors yel,
such that (e,—é,, ¥} = 0. Solutions of such #’s are given by:

£ (e +ea}, de;te, 3Li<j<8
and :
8 8
ﬁ:%(31+82+28i84)7 §; = &1, nsi'ﬂ 1.
i=3 . =3 - .

(Tt is understood henceforth that the indices 4y dy ... of €, 6, ... are mu-
tually different in their range of running.) The number of such 4% is 126.
By Lemma 3.2(i) we can say that to any 2-vector w<¥,; the number of
2-vectors ¥ such that (#, ¥) = 0 is equal to 126, so we have a,(T,) = 240 x
%x126. Taking 2-vector e;—eé,¢B; and looking for all 4-vectors yeH,
sueh that (e;—e,, y) = 1, we get solutions y as follows:

bozey e, e, 3K <iy <y <8,
—ey ey e tey, 30 <, <iy;<8,
8 8
B
%(361'5‘324‘2 81:31‘)3 8 = 41, H‘S'i = —1,

=3 fe=d

8
%(_31"“3"'2""231'31:)7 8= 11,

=3

ﬁ 8 = ~1
i=3

and

8 8
%(el —e,+ 38, 01, + Z'S,‘ie,-i), 8y, = 1, Hsiz = —1.
De=ed i=3

The number of snch y’é iz 576. By Lemma 3.2(i), {if) we can say that to

any 2-vector ek, the number of 4-vectors y such that (=,y) =1 is

equal to 576, so we have a,(T) = 240 x 576. .Caleulation of a,(T,) is
16

a little complicated. We pick up 2¢;¢Cy; 6, 465163+ e,eC,and § 3 6, ¢ O
Tl
as the representatwes of transitive classes C;, C; and 0; in Lemma 3,3(ii).
4-vectors ¥, GD” such that (2e;,y,) =0 are given by:
+2¢, 2116
and,
e e, et 20 <l <y <d, <16,
The number of such s is 21870. 4-vectors y4eD19 such that (81+82+
+ 3484, Y,;) = 0 are given by:
+2¢, B<ig16,
Hle;,—e,) e, de, 1<, <i,<4,
:}:e{l:}:_&ig:&e{ai&&, 5 7/1<"'2 <’l/3 <’b4 16
(et — e —e)y - {igy dyy gy 6} = {1, 2, 3, 4}

B <y < i, < 16,

icm
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and

{e; —}-eﬁ)

(§e+yse)
Y

The number of such y,’s is 23406, 4-veetors yseDm such that (1 E

4==]

1<y <ip< 4,

1y Us) =0
are given by:

€y T8, — 6, —e

i s Ty 1S4y, 0, 0, 1y <16

and

16
1 2 8,64
im1

The number of such ¥, is 23790. It can be seen that to any 4-vector
zel; (i = 3,4,5) the number of 4-vectors ¥, such that (z,,) =0 is
same and we ha.ve

ag{ ;) = 21870 x fO,|| +23406 x ||C )1+ 23790 x |0, = 1461833280.
We piek up

5
_26{602
i=1

asg i;he representatives of transitive classes €, and €, in Lemma 3.1(ii).
4-vectors yye Ay such that (6, --e;—e;—eg, ) = 2 are given by:

2
b1l —e,—e,eCy;  and %2@—

=l

ert+es—(e,+e,), DB <idy, 4,25,
—(eFeg}+leg+ey), <5 i< 25,
_ 6,'1"‘%2:‘:(3;5*‘3,'6), 14<2, 3*~<~7:2-<=_4: b < i, g < 25,
25 *

LN e—(ateto e, e), B <is, i, < 26,

—%Z 4+(31+3z+315+916+317)5 B iy dgy 1< 26,
=1

The number of such ¥,’s is 4760. 4-vectors yze}iﬂ sneh that

(5 Feuv) =3

i=1
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are given by: _
_ — (e eg,) e ey, 1y, 83K D,y 6Ky, 8,525
and ‘

25
%Zeia—(eil—I—e.l-z—l-eis—l-eu-}-eis), 154y, 80,05 B, 64y, 45 < 26.
g=]

The mumber of such y,'s 18 3800. We have
ag(Ty) = 4760 X [[01] 4+ 3800 ¥ ||| = 765072000,
Lemmas 3.1-3.3 will be sufficient for caleulating a,(T;) for 0<<j<< 9
and ¢ =1,2,4,5,9,14. To calculate a,(7T;) for 0 <j<9 and i =3,6,7,
8,10, 11, 12, 13 we have only to utilize Proposition 2.1 and the following
facts (1), (XL} and (ITIL}. )
1) By == ﬁi? g = ﬁ?: 9y = 794#1: By = BBy, P = 195{;
"9]1 = ﬁ@"’ﬁy Py = 'ﬂsﬁi; ?913 = Fyt.
(IT) The decomposifions: :

= (000 (Y ()

2

1 .
10y /18, /13
ot) =1+

21} {00y [Lo), {11}
~(i 3]0 3) (o o] +113)
are all posaible decompositions of T; (3 < j < 9) by elements of T.

(III) Let g(r) = Y a(T)e™ ™™ be Fourier expansion of Siegel modu-
. T : . .
lar form ¢(z) of degree 2, then it holds that a(T) = a(*UL'T) for any
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unimodular matrix T of degree 2, where U denotes the transp“ose of U
(formula (48) in [113). As special case we have -

efir)=olo o) =20 1) =<(2 73)

e N N I O BT A O W e g
- 1) 7% ) )T 1) T Tl o)

2
aoo_@zo and aft 0
o2 "o ' 12 Tlo1)

Aiong the above way we get the following table of a,(T;).

K 0 1 2 3 4 5
4
1 1 240 2160 30240 13440 181440
2 1 480 61920 175880 26880 15914880
3 1 720 179280 436320 40320 88672320
4 1 1104 170064 | 1022304 97152 131300928
5 1 §00 182160 302600 27600 74685600
6 1 960 354240 | 812160 |- 53760 259925760
7 1 1344 437184 | 1552464 110592 453420288
8 1 840 328320 821840 41040 | . 210889440
9 1 1984 B75424 | 3456128 238080 876067680
10 1 1200 586300 | 1303200 67200 571147200
11 1 1584 TOLOOL | 2257824 124032 951862848
12 1 1080 . 532080 | 1055280 54480 466325280
13 1 2924 1053744 | 4438688 251520 | 1909003200
14 1 3120 1462320 | 8779680 474240 © | 3702628800
N 6 7 8 9
4
1 138240 1239840 - 967680 604800
2 6727680 1461838280 953948160 225388800
3 19768320 15579220320 7503805440 757296000
4 27202560 14744809824 6283791360 777313152
; 17001600 16928677600 7844538240 765072000
8 30260160 . .
7 85405040
8 31827840 : . .
9 128880640 1080951684288 60702781440 5226570240
10 65203200 226106935200 _ B3973606400 3074256000
11 110238720 383278632864 92830417920 5668117632
12 53105280 185566037280 46332150400 2485756800
13 212823040 734060529568 176848696320 11095370880
14 421125120 1422589435040 335355970560 22126615680

The blanks in the above table are not neccessary for our purpose. -
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PROPOSITION 3.4. The dimension of M(2,4) is one and M(2,'4) is
spanned by 9.

Proof., The former part of the statement is obtained by Corollary
of p. 194 in [5] and the latter part is clear because #; is a Siegel modular
form of weight 4. m

ProposITIoON 3.5. The dimension of M (2,8) is one and M{(2,8) is
spanned by B,.

Proof. The former part of the statement is obtained by Corollary
of p. 194 in [5] and the latter part is clear because #, 18 a Siegel modular
form of weight 8. m

Remark. B, Witt [12] obtained the result ® =49,

PROPOSITION 3.6, The dimension of M (2,12) is 8 amd M(2,12) is
sponned by 0y, 4, and H;,

Proof. The former part of the statement is obtained by Corollary
of p. 194 in [5] and we have only to show that 9, 4, and F; are linearly
" independent because they are Siegel modular forms of weight 12. Since
we can verify that the determinant of the matrix (a,i(Tj)), where 7 = 3, 4, 5
and j = 0, 1, 3, is different from zero, we can conclude 4y, ¥, and &, are
linearly independent. w :

PROPOSITION 3.7. The dimension of M(2,16) is 4 and M (2, 16) s
spanned by §;, ¥, 9 and &,. .

Proof. The former part of the statement is obtained by Corollary
of p. 194 in [5] and we have only to show that Ds, By, 05 and &, are linearly
independent because they are Siegel modular forms of weight 16. Since
we can verify that the determinant of the matrix {a;(Ty)), where

1=6,7,8,9 and j =0,1, 3,4, s different from zero, we can conclude

D¢y B7, Bs and &, are linearly independent. m

_ ProposirioN 3.8. The dimension M(2,20) is 5 and M(2,20) 4¢
spanned by By, By, dhp, 4y ond Py

Proof. The former part of the statement iz obtained by Corollary
cof p. 194 in [5] and we have only to show that &, #y;, 1, , Pig and 9y,
are linearly independent because they are Siegel modular forms of weight
20. Since we can verify that the determinant of the matrix (@;(T3)), where
1 =10,11,12,13,14, and j = 0,1, 3, 7, 8, is different. from zero, we can
conclude 9,4, &y, #y,, i3, and &, are linearly independent. w

Ag the immediate consequence of Propositions 3.8, 3.7, and 3. we
have the following:

LrwMa 3.9. Let y), be Fisenstein series of degree 2 amd of weight &
(see p. 645 of [11] or p. 189 of [5]), then (i) v; and vy, are expressed as
Uinear combinations of 0y, 9, and By, (i) vavyp i5 expressed as linear com-
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bination of dg, &, ¥ and 4, and (iii) iy 18 capressed as lineay combination
of P10y Poay By, Buy and By,

Remark. p,,— .9, may be one of interesting Siegel modular forms
of degree 2. This is unique eusp form of weight 10 (up to a constant factor)

and is not expressed asg linear cornbination of theta-series. But we have
the following equations:

BN 5472502433572 (P10~ v, 06

= 2783 TETITTI41 7168, 4 2048 8y, + 2320 9, — 3591 Byo— 945 8,,)
— 66:’711‘0'(1’71.“)_462nia{.i"31]+eir:ia(1‘gz)+ . .

Levwa 3.30. Assume that % is a positive integer divisible by 4, then
the non-negative integer solutions of the linear Diophantine equation

(6) & = 4p+6¢410r-£12s
are exhausted by the following types:

(i) g =r =1 (mod 2) or
(i1} g =7r = 0 {mod 2).

Proof. Otherwise we get a contradiction. m

4. Proof of theorem. Since the rank of even: integral lattice I of
determinant unity is divisible by 8, #(2, L) must be of weight % divisible
by 4. So the proof of “only if” part is clear. For the brevity of later de-
seriptions we denote by 6(2, k) the linear subspace of Siegel modular
forms of weight % which is gpanned by all theta-geries in case of & =0
(mod 4). We shall prove M (2, k) = (2, kyfork = 0 (mod 4). By Corollary
of p. 195 in [5] M(2, k) is spanned by 742y}, %5,, where the exponents
P, ¢+ and ¢ are non-negative infeger solutions of the equation (6), Hence
to prove that M(2, %) = 6(2,%) for & =0 (mod4) we have onlyto.
show that

(=) each yplylvlypl, of weight k, wherek = 4p 4 6g+107 +12s, belongs
' to @2, k).

We shall prove the statement (+) by induction on %. For % < 20 the sta-
tement (%) is proved in Propositions 3.6, 3.7 and 3.8 and Leinma 3.9.
We can assume that k> 20 and that the statement {*) is proved for _
by <k with &, = 0 (mod 4). Since % is divisible by 4, by Lemma 3.10

the exponents ¢ and 7 in v 97w}, 5, are of the either typeg = r =1 (mod 2)
org =r =0 (mod2). In case of ¢ =r =1 (mod 2), we rewrite v yly], v,
a8yl eyl v s, then by induction hypothesis we have
Yive vyl <0(2, k—16) and by Lemma 3.9(ii) y,y,,<0(2, 16). Hence
Y vivlwl,, where g =r =1, belongs to @(2,%). In case of ¥ =¢q =0

(mod 2) with ¢ > 0, we rewrite y?plyi,yf, as yffgﬂ‘g‘ﬂ'zpiowfzwq)"‘;, then by
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induction hypothesis we have w” Pty il e@(2, k—12) and by Lemma
5.9(1) vEe®(2,12). Hence in this case we bave also y¥oful,v@(2, k).
In case of r =g =0(mod2) with r>0, we rewrite ofvivlvl, as
wiplylo *yla-vhy, then by induction hypothesis we have ¢fuiyii®yl,
€@(2,k—20) and by Lemma 3.9(ifi) v, ¢ (2, 20), Hence this time we have
wulylvhe@(2, k). In case of ¢ =+ =0 and p or ¢ > 0, we can’ easily
see that yfvf,e@(2, k) by using Lemma 3.9(i} and Proposition 3.4. We
hawve thus proved our theorem.
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ACTA ARITHMETICA
XXX (1976)

06 ommoii cymMe B Teopd M3era-(pymkmun Pamana
Ax Moser (Bpatucaasa)

IIpespe gen choPMYIEPYEM COOTBETCTRYIONIYE) TeOpeMY, BBeTeM HYH -
uee ofosuagernd. IMTomomem ([4], crp. 94)

(1) : Z(ty = ™Iz (L 4it),
e ([47, crp. 383) '
(2) . () = Mint—}(In2n+1) - Fm +O(1]2),

(4], cTp. 260)

(3) o &' (1) = tIni— 3In2n+0(1)t).

ITycrs {t,} o003HATAET NOCHEIOBATENLHOCTE OIPEAETEHEYID COOTHO-
OleHHeM (TaR Kak, B cHuy (3), ¢yrmmma &(i) — Bospacraioman)

(4) B(t,) = 7,

e » — Henoe MomommTesbHOE (cp. [4], cTp. 261).
IIycrs, makogen, '

(5) S(a,b) = D) g b < Vi,

t<asn<b=<2a

offpsHayaeT 2IEMERTAPHYID TPHTOHOMETDHYECHYIO CYMMY.
B aroit pafoTe moxameMm, UTO MMEET MECTO CIemyROINar
Trorrma. Fean

(6) . |8{a, b)) < AVat?, 0<d<},

ma .

(‘?) | 2 ' Z(t,)i < A(A) PRI T,
Tt <THH

20e -

g.

(8) " - 0<H<VT.



