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The distribution of f(d) (mod 1}
by
R. R. Harn (Heslington)

Introduction. Let f be a real-valued function defined on the positive
integers. I shall be concerned with the distribution (mod 1) of f(d) as 4
rung through the divisors of an integer m. As wusual, z(n) denotes the
number of these divisors. We write

D,(n,5) = card{d: din and f(@)< 2 (mod 1)}

and say that f is uniformly distributed if there exists a gequence of natural

pumbers # with asymptotic density 1 on which Dy(n, 2) ~ v{n}2 uni-
formly for ze[0,1]. The discrepancy of the distribution is defined as

A(n) = dy(n) = sup [Dy(n, #) —Dy{1, 21) — v (n) (22 —24)|
Iz <Ep K1
and so f is uniformly distributed if Adn) = o(r(%)) for almost all =.

Tn order to see whether f is uniformly distributed & natural approach
iz to look at the Weyl sumg

o, (n, f) = Z @ e,
aln

Tor uniform distribution we require that this is small compared to z{n)
for small, non-zero integers »; more precisely, a well known theorem of
Erd6s and Turdn [1] states thabt (in the present context)

n) =l
Ay < T+ D1 lotn, £)

=

where T is any positive integer, and the constant implied by Vinogradev’s
notation <« is abzolute, here and throughout the paper.

The tunction f(d) = logd was studied in Hall [31-[5] and Erdds
and ¥all [2] Tt is uniformly distributed. In this case the Weyl sums
are multiplicative since logd is additive: this helps considerably, and I
understand that Professor K#tai has found & compact necessary and
sufficient condition that an additive f should be uniformly distributed.
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We therefore look at the simplest non-additive functions defined.
analytically rather than by number theoretic properties, such as {loglogd)®,
(logd}®, d°. At present I can only deal with functions similar to (logd),
and I give the following result. .

TemorEM. Let f satisfy the following conditions
i) uf’{(u) 48 monoctonie, '
(i) log™®u < |uf’(u)| <log”w, max (8, y) < log;.
Then f i3 wniformly distributed. (The conditions need only hold for
sufficiently large u.) ’
I think that (logd)® is uniformly distributed for all a > 0, thus the
correct condition in (ii) should probably be simply 8 << 1. There are
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a number of losses in the present method, which involves several partial -

summations. One complication is that it is not the average order, but
the normal order, of the Weyl sums which concerns uns: substantially

- this .means that we have to neglect numbers with abnormally many prime

factors.

Tt seems likely that in fact (loglogd)® is uniformly distributed pro-
vided « > 1, and this would be best possible. To see that loglogd is not
uniformly distributed, notice that if » has a prime factor p = 2=, which
happens for a positive density of the integers, then for the divisors d
of n which are multiples of p, loglogp < loglogd < loglogp -0{4). Thus
hslf the values of loglogd (mod 1) are in a sub-interval of [0, 1} of length
< 4.

" Before embarking on the proof of the theorem, we establish two
lemmas. Note: At various points I have written down the functions
loga, logloge, and implicitly assumed that their values are = 1 when
is too small for this to be the case. This conld be avoided by writing
log(z-+3), loglog{z+30) and so on at each occasion. '

Luywma 1. Let w(n} denoie the number of prime factors of n counted
according to multiplicity. Then there ewists a fumetion C(y) such that for
each figed y,0 <y <2 and uniformly. for 2> 0,

ofn) _ -1 %
M;Z;y G’( Jalog? m+0(log —‘”.q:)

This is straightforward and I omit the defiails.

Levma 2. For each fived w, 0 <y <1, and uniformly fo'r @ >0 and
k=23, 4,.. we hove

2 y*® = C(y, k)awlogh w+0

nesx
© (nk)=1

aloglog
(W (loglog 75)'4)
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where A i3 an absolute constant and

/
1—= < Oly).
L6

»

Oly, &) = 0{y)

Proof. The result is trivial if (loglogk)? > log since the error term
is then of greater order than the sum on the left, by Lemma 1. We there-
fore assume that (loglogk)? < logw and choose » and H so that

1
= W <1, rlogH = 2logloge.
If A>1 and » iy sufficlently large, as we may assume, then VH < a.
Next, ' '
\ r.u{ﬂ) w{d} om) S 8
pla)y Y +
n%c/c dzll; m;z;d :
(n, 15) 1
say, where
z x @ &
o ald) - y—-17 ~log¥t -
8 Zﬂ(d)y {0(9) - log d+0(d og d)} )
dalk :
dH .
. & wlog H }
— a(d) = y—1 .
= D@y {o(y) ~ log ni+0(dlog2_um)
&

1 e (d)] y—1 ( aklogH )
= ; _— T =)
W{O(y,7)+0(% T elog o0\

Pt

Algo
| G
= w(d) Pt
a'ﬂir - a>n
But

2 Iu(d

dlk
a2

s[5 [ )

and the product on the right wonld be greatest if % were the product of
small primes, say il
= Hp =exp Bz

P
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for some absolute positive constant B;. But then

[Tbr55) - [Tt Tk

, < exp{e™logl(1+7)} < (loglogk)4.
Therefore :

Llog H Ty
- 8y+8, = Oy, k)zlog ‘1m+0( aklog #(loglogk) )

o(k)log® Yz log2x

Substituting the value of logH, and notlng that %/p(k) < loglogh, we
obtain our result.

Proof of the theorem. By the result of Hrdds and Tuardn [1],
we have

T

Aln) < Al(nm%ﬂ, where 4, (n) —_—_Z% 1oy (7, )]

y=]

We chooge T == T'(x) where T'(¢)-+co ag #->oo: therefore to show that f
i uniformly distributed it will be sufficient to show that A, (n) < s(&)z(n)
for all but o{x) integers » < », where e(m)~>0 By the Cauchy-Schwarz
inequality,

7
1
A3 -
(n) <€ (JogT) 2
=1 a‘.lln dain

dy, "’)}*(dzr ),
where A(d,») = ¢™P and so for 0 <y <1, we have

. T .
2 1
D Bmy® < (logT) Y= S(a, )

nsL peal
where S(w, v} i3 defined below. We require a good estimate for

S(w, )= D'y B ¥ i(dy, 5)7(dy, »)

n<s diin doln

= 3 Dy i, wid, S g

dysa dosw masaf [dy,dol
= 0 3 Ay, ), ) Y Y.
rEL fdy.dg] =7 mexfr

Bub

1= [](2a+1) <30

[Epdyi=r 4l
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50 that provided ¥ < 1/3 we have
- @ @ -
8@, = 0w Dy logr 2 N id, 0)2(dy, ) +0( ) 'fbgv—zi’i).
r s ¥ r
rEG ) s do]=r T
We write d, = dym/k, r.= d;m where k|d, and (m, k) =1 so that

, w{may) imd
Sto,n) =0t 3y 3 3 B top (M
1 1

disie . kidy m<ald,
(m, kY =1

+0(xloglogx),
the constant implied. by the O-notation being independent of ». Thus

: _jqw(d) ‘a:(m) & s.rul_ md
RTRES L Y o=l L T F

il
d<s k4 m<mid
(m,l) =1

where we have replaced d, by d. We ertimate the inner sum by partial
summation employing Lemma 2, noting that if

) & \V~ 11 md
gim) =— (Ogmd) ( T
then gince |f (u)] <€ %~ (logw)” (0 <y <y, we have
. ” , @ Wl
lg{m) —g(m+1)| <§w(1og$) (logm—) .

The partial summation gives

D y*™g(m)

m<gz/d
(k) =1 |
. 5\
= O(y, k) 2 log”‘lmg(m)-i"o(‘v(iogw)”(logg) (loglogm)A-l—l).
e/l '
Now
ST (djtogr 2 < « S 3 gt
d
<o < max/d
< } log?~'m 2 (29)~@
HiE d=a/m

< Z 2 1og™-1Zlogh~tm < slog”a.
Vi e

Tomn
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Therefore

|8, '”)]

log'"‘lzs—ﬁ( )'+

+ vmlog"”"“l"””w(Ioglogw)““”l +wloglog

e Z[ log

d<z kld  m<ol d

'Again, the inner sum of the right is to be estimated by partial su
tion. We have

loge

Ziﬁ(ﬂ) == { exp {~ 2i wuf (6¥d/k)} dw O (vlog® w) |
m=g " k 6 ‘

‘and we mnotice that if uf () is monotonic and luf’ ()] < log™Pu (¢
then by Lemma 4.2 of Titechmarsh [6], the integral on the right i

1 d
v k

and 8o

] y—1 "

) log”tm 1ot & 7(ME) o (log® +,,10gpm) Jogh
» md k ¥

msz/d .

Therefore

. 1
|8z, v)| € vrlog® 7z (loglogm)?*! -+ = zlog™ 5 ploglogx
. " .

and

Z 8{z, »)

< Tzlog" 1" z(logloge)d+! + wlog“‘” 1485 + m(log T)loglog

We select y = 1/3 and T = T'(2) = [loglogs]. This gives

Az( ) A4z
DS <allogay(loglogaj*™,

nx

where % = max(f, ). We may neglect those integers n <& whi
not satisty : '

logloga — (logloga)’® < »(n) < w(n) < loglogw -+ (loglog @)™
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as they have zero density. For the remaining integeré, either A,{n)
< (@) z(n), with e(x) = (logx)™", or

HO) 15)- 3

31w(n) > (IOgm)]ogma) *,

¥rom the above, the number of such integers is
& il’}(logm)""’a"_l“gw”{loglogm)“‘{"‘z,

and thiy is o(#) provided 5 <log§. This completes the proof,
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