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tive Obengrenze fur
max([Nm (@), [Nm{y)l, ph'r, ..., plsle®s).

Schlieflich merken wir an, daB der Satz aus § 2 in unseren Unter-
suchungen als eine Hilfsbetrachtung benutzt wurde. Aber sie ist alg solehes
interessant weil die Analyse der bestimmten Xlasse der Diophantschen
Gleichungen auf die Analyse der ganzwertigen Losungen der Gleichung
der Form (8) zuriickgefiihrt wird.
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On the frequency of small fractional parts
in certain real sequences, IV

by
W. J. LeVeque (Claremont, Calif.)

L. Introduction. For real 1, let ¢ denote the distance between ¢
and the nearest integer, so that O < i< 1/2, and let #, a, a5, ... he
real numbers which may without loss of generality be taken in the mter-
val [0,1). Let @y, a,, ... be an increasing sequence of positive integers,
let f(1), f(2), ... be numbers in [0, 1/2] for which }'f(k) = oo, and put

n

F(n) =2} flk). Finally, define ¥, (x} to be the number of positive in-
1

tegers k< n for which '

(1) ey — ] << £ (%)

The problem addressed in this sequence of papers is that of finding con-
ditions under which

{(2). N, (x) ~Pn) as  n-so0,

this being the rate of growth of N, () one would expect on probabilistic
grounds for “most” » [6]. Relation (2) does not hold for almost all {a.a.) =,
for some pairs of sequences {a,}, {f(%)] as described above [2], but a:number
of conditions on {a.} and {f(k)} together are known which guarantee {2)
for a.a. 2. (See Parf IIT [6] and its bibliography, and also see [7], [8],
for example. For a complete list of the literature in this avea, see my Re-
views tn Number Theo?y, vol. 3, Section J24, American Mathematical So-
ciety, 1974.)

In the firat part of the present paper it is shown that if F(n) > n°
(1/2 < a < 1) then {2) holds for a.a. # no matter what {a;} may be.

In the second part the case a, =k, a, =0, f(k} = ¢/k (¢ 2 positive
eonstant) is studied, so that N, (#) now counts the number of solutions , ¢
of the inequality : '

(3) lge—pl<elg, qg<n

and one would expect N, (x) ~ 2clogn, Thiy is true for almost all but
not for all #, and either of the two quantities &, («) and logn may be of

*
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smaller order of magnitude than the other, for suitable x. (H.g., # and ¢
may be chosen so that N, (x) = 0 for all », and again so that logn = o(N,).)
It is shown, however, that if N, (z) counts the primitive solutions of (3) —
those with ¢g<n and (p,¢) =1 — then N}(z) < logn for all @ without’
exception. It would be interesting to obtain more general theorems of
this sort; the present proof, using continued fraction theory, is clearly
restricted in scope.

2. A metric theorem
TumorEM 1. Let {f(k)} be an arbitrary positive sequence such thot

= QS'f(k) > n'

Then for each £ > 0, and for arbitrary {a,} and {a.},

Jfor some fized ae(1]2,1].

(4) - N,(2) = Fin)+0(n"log**n)  for a.a. zx.

In particular, if {f(% } is non-increasing end (%) > 5, then (4) holds.
Remark. In the special cases a, = p(k) (p a polynomla.l) and «;, = @

(> 1 an integer), Schmidt {8} and Philipp [7] have proved strengthened
versions of this theorem in which all restrictions on f(k) are dropped and
the error term in (4) is replaced by O (F**(n)log****F(n)), which is gener-
ally smaller than that in (4). But it seems unlikely that much more than
(4) is frue for arbitrary {a,}. Specifically, I conjecture that even the relation

N, (#) ~ F(n) does not bold for a.a. =, for a, = 0, f(k) = &*~! {ee[0,1/2))
and suitable {a,}.

- Proof. Let p(t, y) =1 for [[t|] < y and = 0 for other t, and put

Iy = f {v(@z— o, FR)) — 27 () Hp[am — oy, £(1) — 2f (1)} ds,
50 that
n 1 ’ .
Iy = [{{¥a(@) —F(n)) — (N, () — F (m)) 2 du.
K l=m41 [ .
It was shown in [6] that
2 d; ' Fk i —
I i =2 i1 9 ( ) . e f (1) Gy 0y — G O
TR @y 0y g ! 1]19 R " iy

with dy = (@, @). Thus if [-, -] is the LCM function,

&
%
ki g
T o g 20
A

i (a5 @)
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a relation first proved (in a special case) by Koksma [5]. Hence
1

. ~y (G ag)
(3) Z Ig< 2 [%; al} <cn(10g10gn) ,

R, l=m-+1 kJ=m+1

the second inequalify being a theorem of Gal [3] which is valid for all
increasing sequences {a,} of integers, for some absolute constant ¢. It
has been ghown by G4l and koksma([ﬂ, Theorem 3} that if u, (%), us(z), ...
are in L?(0, 1) and

f {31 (@) + -+, (2)}2dn = O(F(n)

uniformly in #m, where ¥(n}/n is a non-decreasing function, then for every
&> (0 one has

[y (2 & .o+, (@) = 0[P (n)log* *4n)

for almost all z<[0,1]. This result, in combination with (b), gives the
theorem.

3. The inequality |sz —r| <t ¢/s. It was asserted in the introduction
that the total number of solutions with s < may be of either smaller
or larger order of magnitude than logn. In fact, if 4 has hounded partial
guotients, the inequality will have no solutions at all for ¢ sufficiently small.
On the other hand by continued fraction theory, using the notation (6)
helow,

P 1 1
T——1 = 3 < 2 1
% G {Bppr + G1 [} Opr1k
80 '
mpy m2
myy gy 1 (MGy)?

"0 we have imprimitive solutions of the inequality [sz —7| < ¢/sfor s = mq,,

m=2,..., [Vﬁ]. Indeed, these values of s can form an arbitrarily
long arithmetic progression with difference g,, and each new a;.; can be
chosen so large in comparison with ¢, that the total number of solutions
Wlth LR [i/ca,kﬂ]gk = T4, i85 substantially Veog.a ¢oy.y- Thus, the ratio

N, (@)n can be made to go to zero arbifrarily slowly as a functlon of ny,
for snitable # and suitable values of #;.

In fact, the partial quotients do not have to increase at all rapidly
to produce an overabundance of solutions. Adams [1] has shown that

it v =¢=1{2;1,2n, 1}n_1, then N,(e) grows like cl(lognjloglog%)”“.
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THroREM 2. For real @ and ¢ > 0, let Ny {(x, ¢) be the number of pairs
of iniegers p,q with (p,q) —~ 1 and 0 < g<<n for which lge — p| < é/g,
Let Z,(z) be the number of denominators g, of convergents lo o Jor which
g < 1. Then for each real

(2, 6) < CZy(m)+ 0,

where ¢ = 1+4e(l4clog(e+1)) and ¢ = clog(e+1).

COROLLARY. For all real x, ¥’ (x, ¢) < logn.

Remarks. For e< 1/2 the theorem is a weak version of the well-
known fact that all rational numbers p/y counted by ¥'(x, 1 2} are con-
vergents. The corollary follows from the fact that for all @, ¢, > &* for
some absolute constant a > 1. In the paper mentioned above, Adams
showed that N°(e,1) ~ 6,7, (8) ~ t3{logn/loglogn), and used this to
obtain the above estimate for N, (e).

Proof. The theorem is frivial for  rational, so suppose # is irrational.
We will make use of the following standard relations concerning the
continued fraction expansion @ = {a,; a,, a,, ...} and its convergents
Prlty and complete quotients z,:

(6) Pris _ Pit1®ern +pg.

5 = Plt1Tht2 + Dy
. 2 e
e, Q1000+ G

b
Cer1%pyst+ O

BB coc B

_ o 9 - UES e

To he definite,. let us consider the approximations on one side of z, say

the p/q for whleh.(l <#—plg<efg*; the other case is treated similarly.
As usnal, def_me the quasi-convergents between p,/q, and Prralliis

Oy = [Fpia],

GePro1 — Ge—1Pr = (—1)%,

by

Pra Ppt Py, .
ra Tet Oy ; 0S8< s,

so that for & even we have the following ordering for the “left” quasi-
convergents:

Pe _ Pw _ Pu Doy g1 < Priro _ Prs
I Qo 1 Trap .01 Tht2,0 Dita
A gimple computation gives
{7} - GePresr —OhariPre =1 (b even, 0 < a < ap, ).

Among the pairs of integers v = p and s = ¢ > 0 for which

(8) o <t l
- s 82’
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only finitely many have ratio p/g less than [r] = py/gu; for then & < 1/g
<Py Pplg < x—plg < /g, whieh implies g <¢ and pg—c/g <p < P

so the nmumber of such pairs is < Y ¢g < clog{c+1). Bach of the
qg<c :

remaining pjg s either equal to a left gquasi-convergent or lies strictly
between two successive gquasi-convergents. By a standard property of
Farey sequences, (7) implies that a fraction between two successive
quasi-convergents has larger denominator than either. Hence if
Pra < 3\‘; Pra+1 <3
Qi q
and p/q satisfies (8), so algo A0S Py 4.1/sq:1- The proof will therefore he
complete when the following assertions have been proved:
I. For each k, at most 4¢ quasi-convergents pp, /g, with 0 < a < .41
satisty (8).
II. At most clog(e+1) rational numbers strietly between two suc-
cessive quasi-convergenfs satisfy (8). ' _
Proof of I. From the expression for # occurring in {6}, form

{1 — Pr) + @ {dpe1 @ — D)

Q)’:,a—;—l

obtaining
By — G

QT Trc1Pkn

Thus if gp.%—Pre = B/, then

G3a®— Pia = for O0<a<ay,.

g = (Trpa — NG+ 0G5 r))  (Lpe— 00 G + g /G (Tpq2— )0
. Ot Tppalest Lry2 Qi1 T Gl T pa Tyr2

- |te £ 0<a<im,,

>

gy —a) M im0 < Ty
. a2 and 0 < a < Fag,, O -
=e¢ if :
a5 B, —26 and 3oy, < 0 < Xy

Hence f < ¢ at most for a =1, ..., [2¢] and,for ¢ = {®,,—2¢]+1, ...
veey [T42a] —1, and these comprise at most 4¢ values of a.

Proof of JI. For simplicity, rename the two successive left quasi-
convergents as P,/Q, and P,/Q,, so that P,g, —P1@, =1, and suppose
that : .

Py P P, e
e — < =< & <
: : Qs q Qs ’ T
Then
P, j e
‘_ﬁ _,1_J.<_,
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80
g < ey
7, PF’
Qs q
while _
p_bB _P, D
g @ Q. @
80
Pr
%4
70, B,
Qs ¢,
Hence
p PPy p APy Py '
9 : < ¢ =a.
) ‘Q’Q1 &, Q" Q: &

By another standard property of Farey sequences, the reduced fractions
P/g between neighboring Farey points P,/@, and P,/Q), are given by equa-
tions ' :

= wP,+ vP,,

q = ul)y +0Q,,

where w and o are coprime positive integers. Introducing these ex-
pressions info (9} gives

DU << e,
and there are fewer than

e+l
cf o7 e = elog(d41)
1

such pairs u, . .
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