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. X. Introduction. Let us associate to each real or complex-valued
arithmetical function f the arithmetical function f' = psf (defined by

7o = 3 wiaf ()

The following results are known(?).
{a) If we have

(1) < 00,

then f ig limit-periodic (B}).
Moreover the Fourier-series of f is, after a suitable grouping of its
terms, the Ramanujan series

(2) 2 a,0,(n)

g=1

whers ¢,(n} is Ramanujan’s sum

k
> =k

1€h=g
(A1
and the coefficient a, is given by the formula
| S ma)
(3) 6, = Z e
. . mw=1 .

@) See Wintner, Eralosthenian averages (Waverly Tross, 1943), paragraphs
26, 27, .33, 36. :
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(by T we have not only (1) but the stronger condition

(4) Z d?(an,)if%}(:q—Jl << oo,

where d{n) is the number of divisors of n, then for each # the Ramanujan-
series (2) is absolutely convergent and equal to f{n).
The proof of (a) is very simple: By Mdbius inversion formula we have

for every =
= D).

din
For each positive integer & define an arithmetical function f, by

= D@

din
a<k

Then f, ir obvmuwly periodie with perlod kl. Moreover we hanre for
each n

o) el =| X Fid) < SIr@|°
é’ﬁi =,

It follows that we have for > k-1

Dl —fini< > Jf'(d)l[%],

nEx hod<s
and therefore :
| 1 1 1 ()]
— E [fin) —frlm)l < E ——
@ d
nsr d=k+1

Since the right-hand side tends to zero as % tends to infinity, this
jimplies that f is limit-periodic (B).

Moreover its Fourier-coefficients are the limits as k tends to infinity
of the Fourier-coefficients of f,, which are very easily computed. .

If a = h/qg, where h and ¢ are integers, ¢ > 0 and (h, ¢) = 1, this

gives
f
hm f jexpf 21—@ on)

qld =1

[=-]

T [ (ma) _

my

It iz mterestmg to consider the particular case when fis a Imﬂti-.

plicative function (?).

(2) An empty sum ig asgigned the value zero.
(3) Loc.- cit., §46. To avoid any misunderstanding we emphasize that in our
" terminology a funetion fis said to be multiplicative if we have not only f{ma) = f(m)f(n)

whenever (m, ) = 1 but alse (1) = 1 (we exclude the function which is Ideutlca.lly
ZeT0).
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Then f i3 also- multiplicative and therefore (1) is equivalent o

s ;1:’)1" <o

b.r

where in the summation p runs through fthe set of all primes and » runs
through the set of all positive integers. .
Bince f(p") = flp"y—F(»"™") this reads
. o r—1
- o N —fe T

pr

B,r

Similarly (4) is equivalent to

Z( r1) L2

f(p"l)f

{or the same with 11151:9&(1 of r+1).

Our main purpose here is fo prove that {b) still holds if (4) 45 replaced
by the weaker condition

Sl

n=1
where w(n) is the number of distinet prime divisors of n.

The proof is very simple and it is surprising that Wintner did not
obtain this result.

Tn the case when f is multiplicative (6) iz equivalent to (6}.

Thus, +f f 18 o multiplicative function. satisfying (B), then we can assert .
not only that f 4s Uimit-periodic (B) but also that for each n its Ramanujan-
series is absolutely comvergent amd equal to f(n) (%)

We will also prove for that case a formnla which expresses the coetf-
ficient @, by means of an infinite product:

Let
y i pf
0=, i pug, a1

3,5

n r=gyla)

‘where the series amd the imfinite product are absolutely convergent,

Then we have

(M) ay =

(*) This has already been proved in special cases by E. Cohen {(Bull Ame:_.
Math. Soc. 67 (1961), pp. 145-147)



262 ' H. Delange
It f'(p") is replaced by its value, (7) becomes

oo (IS 5T e 275

r=0,(0)
We -will conclude by some remarks on Ramanujan series of multi-
plicative functions.

2, Proof of the main result. We suppose that the arithmetical func-
tion f satisfies (6) (which obviously implies {1)). We will prove that for every
positive infeger # the series (2), where the coeificients @, are given by (3),
is abgsolutely convergent and equal to f(n)

We consider a fixed n.

2.1. We first show that it suffices to prove that the double series

: I (mg)
: 2 g
(8) > g )
. m,g==1
is absolutely convergent.

Suppose this has been proved. Then, since

Z r (mg cq('n = @, 0,(n),

m=1"

we see that (2) is absolutely convergent and its sum is equal to the sum
of (8). The latter iz equal to

oo

. _ 1 (m ! 70
wy,  where 1w, = z f gng") eg{n) = f—](g-)"' S‘ C{n).
k=1 : my=x% q ﬂﬁ:k

But we have

,;qz::: Cq(m) -~ 2 expl(?nltfi P—;—)
ZE exp (21:@' i;—) = Z ( Z exp (2m3 th))

Be=l mik lshsk
(h, ) =m

Eooit E,
0 otherwise.
In fact,

and, since “mlk and (&, k) = m"” is equivalent to “k = mg and b = mh’
with (}', ¢) = 1%, this is equal to

2 ( Z exp (27:@—}?’5-—)) = 204(%)‘

me=k lhg mg=k
{h, @)=1 i
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Thus . '

fiik) it km,

Wy = :
0 otherwise,

and therefore

oo

Dl =Y f (k) = f(n)

Toma1 kn

2.2, Now the absolute convergence of {8) 15 equivalent to

. T f (m

Wy < oo, where ‘ 1 (mg)] leg(m) ?

Ly

=1 mg=k ) atk
That this is implied by (6) follows from the following
Levma. For every positive infeger T,

2 leg ()] < m-2°W)

alk

2.2.1. Proof. Define arithmetic functions g, and h, by

gull) = ¢p(n)  and R, (k) = N lg, ().

alk
We have to prove that h,(k) < n-2°®.
It & well known that the function g, is multiplicative and that

%
(9) Inl@) = () = dy( 0

di(g,n) _
Since g, is multiplicative, &, is also multiplicative. So it is completely
determined by its valnes for the powers of primes, i.e. by the numbers

P

ha(3") = 3 iga (sl

F=0
Now, if ptn, () gives g,(p") = u(p"), so that
hu{p") =2
¥ pYn, a1, then (9) gives

for every r=1.

min(r,a) pr__pr-—l it IT<rLa,
IO . .

Iall) = >, Pp(@T) =12 i re=atl,

. 0 it r>atl,

(%) See, for ingtance, Hardy antl anhfs An Introduction to the Theory of Numbers,
theerems 67 and 271.° :
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and it follows that

7" it I1grga,
ha(PTy =14 . .
2p i r>a,
80 that 0 < A, (p") < 2p° for every = 1.
Thus we always have 0< h,(p") < 2p%" for every > 1, where oy
is defined as in formula (7).
This gives
(k) = n I, (o) < 290 ” poln) gw(k)” peplt) — . 200
ik 2l(En) pin

2.2.2, Remark. It is clear that

Zlc {(#)] = k(%) =n-2°®  when % is a multiple of »' = n”p
alk ' Bln
So our lemma iz best possible.
Wintner used the crude estimate

PUECIES

o(n)d(k),
gk
which follows from the fact that (9) implies [eg(n)i =5 o(n). He was probably
not aware of the multiplicative property of Ramanujan’s sum.

3. Proof of formula (7). We now suppose that f is a multiplicative

function satisfying (5), and therefore (1), and that @, is given by formula (3).
We will prove that we have (7).

3.1. (5) obviously implies that for each prime p the series
(e
PT

r=oy(0)
ig abgolutely convergent and that the infinite product

® 125

P r=eylu}
is absolutely convergent.
We also see that {7) is trivial for ¢ = 1.

3.2._ We now suppose that ¢ > 1. One of the following circﬁmstances
oceurs:

(i) There is & prime p dividing g for which f'( $7) = 0 whenever

0,(g) (s0 that Z PNl =0);

r= op,{a)

icm
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(ii) For each prime p dividing g there is some r >
f@) #0

In case (i) we have f'(mg) = 0 for every m (for g,(mg) = o,(g)) and
therefore a, == 0. Then {7} holds since the infinite produet (P) has a zero
factor. s : o

Now consider case (ii). For each prime p dividing g, let g,{q)+a,
be the smallest » = g,(q) for which f'(p") # 0.

Set 6 = [] p*r. We obviously have f'(dg) # 0.

pla

On the other hand f'(mg) = 0 if é{m, and it follows that

1 I (vg)
g = Zl »dy

It iz very easy to check that for every positive integer »

o,{g) for which

f(vog) = {5919 (»),
where g is the multiplicative function de’ngrmined by
. @) it pty,
= g guatomsn ) it glg.
Thus we have .
"(dg) g{»)
10) | wqug o
(6) obviously implies '
ig(zi I ’
nr P
ral

and it follows that =~ . .

S -T155)

Now it is very easy to check that

”(Zg ) fgﬂ(ij%)‘)

r=gy(q)

so that (10) yields (7). .
First, for each prime p which does not divide g,

29 prf

r=0 P re=0
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On the other hand, for each p dividing g,

= 7 (@3+1n ‘H’
2 g{®" T yf (pre@iootry

(ot eyt
p— " =c| PP pt?
We obviously have
[=+] " a o
ANTA i R B 17
_{J pepliitaptr r !

r= gp(q)J—ﬂ

and this iz equal to 2 F(p")[p" since, if o, > 0, f'(p") = 0 for g,(g) <

r=pp{a)
< Qp(g) + Oy

It follows thab

] (Se)- (17 i (11 3 55)

Bg  Cr=0 Pl r=eyld)

( ) f’(p )
r=epld)

4. Remarks on Ramanujan series of mu]tlpllcatwc functions

4.1. Let us consider a multiplicative function b satlsfymg (5) and the
coefficients @, given by formula (7).

4.1.1. Looking at (7) we see that a, # 0 if and only of -

NV
2

Jor every p.

Moreover, if this holds, then ayfa, is a multiplicative Sfunetion of g.
In the general case, denote by X the set of those primes p for which

O F )

F must be finite for we have

Zf(p ;1+4f1, where ung%f’(p’)

= ~ p’
and (5} implies 5‘5 | < co.
Let o =[] p.
pel

~'We now see that a, = 0 if g is not o multiple of o, for in that cage

icm

On Raomanujan expensions of cerfain arithmelical funclions 267

(@M
pr

op(g) = 0 for some jJeD But a, 5% 0 (for T = —1 when peH)

and /e, is @ multiplicative funclion of m.

4.1.2. If f is strongly multinlicative (ie. f(p") = flp) for every p
and every r > 1), then a, = 0 whenever ¢ is not squarefree (for f'(p7) = 0

for » > 1).

4.2. Tt is interesting to consider specially multiplicative funetions
satisfying
(1) Ifm)l <1 for every n.

4.2.1. For such a function (5} is obviously equivalent o

(1'2) Y [f{p)—1i <

e P

So, if f is a mulliplicative function satisfying (11) and (12), then f
is limit periodic (B) and, for each n, the Ramanujan series (2), where the
coefficients a, are given by (7), is absolulely convergent and egual to f(n).

21‘
It s easy to see that vf (P ( )
. r=0 r=0
cannot be zero unless we have _
(2 = —1  for every r= 1.
In fact, we have for each P
0 . 0
I () Y AP —f (") =(1m i) (1 MY f(zﬂ’))
" r=1 ] _‘pr "p r=1 ‘pr
Since
‘ 5""1 o V11
P ]
& r p—l
this cannot be zero if p > 2.
Besides we have
V(@) _ N1 L+ Ref(2)
mf $120) - SrEmse,
r=1 Fo=] =
Since all terms of the last series are non-negative, this cannot be

zero unless they are all zero. But, since [f(2")] < 1, Ref(2") = —1 implies -

727 = 1.
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In the case when f{27) = —1 for every » > 1, we actunally have

1/ (2
2 7 0
r=0
The results of §4.1.1 yield the following conclusions:

If f(27) # —1 for some v > 1, then a; 0 and a,la, is o multiplicative
funetion of q. '

If f(27) = —1 for every v = 1, then a, = 0 for every odd g, but a, 5 0
and Gy fay is a multiplicative function of m.

In the latter case we can indeed say a little more, namely that a, =0

if ¢ # 2(mod4), (so that Gom @ 18 Z€ro when m is even).
This follows at once from the fact that we have

1 £ (27) : | |
2 T =0 if a=0ore>1,
r=a . : .

for f'(2) = —2 and f(2") =0 when r > 1.
We may add that, sinee f is bounded, it is actually limit-periodic (B*)
for every 1> 1. Therefore we have Parseval’s equality, which gives

o S [T §20)

g=1

. : . 1_ 2
In fact the series Z—WH—IIJ:@— iz convergent, for

L—1f () = L+ (pN)1L — [f (o)) < 217 (p) — 11,

and by a known result(%) | F{n)|? has a mean value equal to the right-hand
side of (13). ' '
+ The results of thiy paragraph contain ag Darticular cases some resulis
Pproved by W. Schwarz in a recent paper (7).
4.2.2. () Now consider again a multiplicative function I satistying (11),
but replace the hypothesis that we have (12) by the weaker assumption

() H. Delange, Sur les Jonetions arithmétigues multiplicatives, Ann. Sei. Eeole
Norm. Sup. (3), 78 (1961), pp. 273-304, th. 2, p. 275. : '
RU) Ramanujan- Butwicklungen  stark multiplikativer zahlentheorelischer Fumnk-
tionen, Acta Arith. 22 (1973), pp. 329338, :
(%) The results given in this paragraph are eontained in resulis stated without
proof in H. Daboussiet H. Delange, Quelques propriéiés des fonations multiplicalives
de moduls au plus égal & 1, C. R. Acad. Sel. Paris, 278 (1974), série A, pp. 657-680.
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. 1—f(p) ; . . . .
that the se msZT w8 convergent (which holds in particular if f

possesses a non zero mean-value (%))
Then we cannot apply the above general theory.
However it can he proved that in this case too f 4s limit-periodic (B).
The proodf runs as follows. Let ¥ be any real number = 2 and let Iy
be the multiplicative function determined hy

' Ty it < .
Jy(p") = 7 . sy (for every prime p and every r 3 1).
_ 1 i p>y
We have :
' ‘ ooy i p<y
fp7) = ’

0 i p>y,

and by fhe 'above_ theory f, is Hmit-periodic (B), and even limit-periodic
(B?% since it iz bounded.
Using the equality

|f () —Fy(m)[* = |F G2 —F(n)f, (n) —F(m)F, (0) + 1, (m) 2

and applying the known result quoted in note (%) to each of the functions
[f1% ffy, ff, and [f,|% we see that as « tends to infinity

2 3 itm) — s,
<y

tends o a limit which can be expressed by means of three infinite products
and a finite one. This limit iz seen to tend to zero as ystends to infinity.

This proves not only that f is limit-periodie (B?) but also that its
Fourier-coefficients are the limits as y tends to infinity of the Fourier-
coefficients of f,. S

It follows that the Fourier-series of f is still, after the usual grouping -
of its terms, the Ramanujon series (2) where the coefficients o, are given by (7).,
Buf now the infinite product in (7} is convergent but not necessarily absol-
utely convergent(®). The properties of a, given in §4.2.1 are still valid.

It is easy to see that the series (2) is absolutely comvergent for no
n_if we have mot (12). Tt suffices to consider Y |a,c,(n)| it a, # 0,

2 layge,(n)| if @y = 0.
P>2

(®) H. Delange, loc. €it., Th. 1, p. 274 . - o
{(**) ThLe convergence of that product folliws at once from the fact that Y f* (p™)/p*
. . .

- 1—]—"15pr where 3|uy|?< co and Yu, converges. The convergence of the series
2(1—F(p))fp is indeed a necessary snd sufficient condition for the eonvergence of
the infinite product.

5 — Acta Arithmetica XXXIL3 |
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On the other hand one can prove that the series

converges for ¢ > 0 and that its sum tends to f{n) as s tends to zero through
positive values. So, if the series (2) converges for some o, 1ty sum must
be fin).

Added in proof. It has been proved by . Schwarz that the series (2)
actually converges for every n (Aeta Avith. 27 (1973), pp. 269-279).

EReceived on I19. 8. 1975 . (689)
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A counterexample to a conjecture on multinomial degree
by

LAWRENCE J. Rismaw (Haifa)

Let K Dbe a field. A polynomial p(z) with coefficients in K of the
form ay+4-a,@™+ ... aze™ with all #; 7 0 is ealled a multinomial of
length d. The d-tuple (m,, ..., mg)is the exponent vector of p(a). An el-
ement 6 in a field extension of K is of multinomial degree d over K if 6
satisfies a multinomial of length  and no multinomial of smaller length.
Clearly, § has multinomial degree 1 over & if and only if some positive
power of § lies in K.

The following conjecture is posed in [2]): H K is & field of charac-
teristic 0 and 6 is an element of multinomial degree d over K so that
there exist d 4 1 multinomials of length d satisfied by 6, p;(%), 4 =0,1,...
.-y d, where the corresponding exponent vectors are mnot proportional,
then [K(6™): K] = d for some positive power m of 6. ‘

Let 9 be.a root of the irreducible polynomial 42 —2+1 over the field
of rational numbers §. We show that 8 provides a counterexample to the
above conjecture. We observe that an element of odd degree m over @
has multinomial degree 1 if and only if its minimal polynomial over @
has the form o™ — a. For a proof see {1]. Hence 6 has degree 3 and multi-
nomial degree 2 over Q. Moreover, every positive power of § has degree

8 =[Q(07): Q1.

Multipiying ?®-wz4-1 by appropriitely chosen polynomials of degree
2 and 4 we obtain the following additional multinomialz of length 2 satis-

“fied by 6: '

o* ot -1 = (o' -2 L1+ x 1),
&2 —1 = (ot - —2—1),
@ 2001 = (&8 — o+ 1) (@' +o® -+ o +1).
Thus § satisties four multinomials of length 2 with exponent vectors

(1,3), (4,6), (5, 7), and (4, T), respectively. Hence 6 does provide the desired
counterexample. '



