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where
T = {il >0}

and the (}; are the non-overlapping Z*-cones defined by (1).-
For each 4, the index of C; with respect to Z" 18

ldeﬁ(alﬁ b a’i—l! a!’ a’i-(-l’ ey aﬂ)l?

and, by (8) and (4), this is
“z—,::' |det{a, '.' L) = s m—1,

Hence by our inductive hypothesis there is a subdivision
O =1J Oy~
iely

of each 0, into at most #™~ -2 pnon-overlapping basic Z"-cones. Since the C;
are also non-overlapping it follows that the Cy, 4<l, jeJ; are non-over-
lapping. Hence .
C = U G@j
fef
jafy

is & Subdlwsmn of ¢ into at most #™! non-overlapping basw Z™.conas,
" and the theorem follows by induction.
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Dedicated to Professor Dr. Theodor Schneider on his 65th birthday

1. Introduetion. In a recent paper [6] I generalized the results of

 'W. M. Sehmidt [8] on real linear forms with algebraic coefficients to include

the p-adic case. By means of the results of [6] we shall derive in this

paper theorems on rational dlopha.ntme approximation, considering special
linear forms.

Suppose n is a natural number, &, ..., i,:; are non-negative integers
and Paoy ««os Pros - ooy Protrs + ;.’Ptﬂ,l_l 1 form a fixed system of primes
distinet in pairs. Let further ey, ..., @, be real algebraic numbers and
let ay, ..., %, be padic algebralc numbers (1< 71l); writing [s]i
= max{|8;],%-., 8]} 0T DY 5 = (81, ..., Sp41) 2™ We obtain

TemorEM 1.1. Let e > 0 be any real number. Then the inequality

ty

(11) 0 <|syapet - +8p Gt Sal n [81 @pe - - +Snan'z+sﬂ+1]p.,0

ntl b

[T 41p.g) 1881 -l < 07"

im] T=]1
is satisfied by at most a finite number of 5 = (51, ..s Sppale Z7IN{o).
OoroLLARY 1.1. Letin additionto the hypotheses of Theorem 1.1 sy, .vy 2agy
be real numbers with

{1.2) oyl (I<i<nd1).
Let 31, ..., 854 be restricted to integers:’of the form
(1.3) g = Pl opd (I<i<ntl),
- where 01 ,'. ey g,;,‘ _ a/mwnon-mgwtivé integers and s; are inlegers sadisfying

(1.4) - 0<lsfl<elel (A<i<ntl), .
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¢ being an absolute constani > 0. Then to every &> 0 there are only a finite
number of & = (81, ..., Sppr) € 2™ with

(1.5) 0< fls]| = Cra e i,

Uyt --e T

bl Sn+1

Clno“l"l. =

TarorREM 1.2. Lot us suppose the hypotheses are the same as in The-
orem 1.1. Let in addition 1, ¢y, ..., a,, de lnewly independent over the
field O of rationals for every v (0 < v < %). Then for every &> 0 there are
only a finite number of § = (S15 ..., Sppy) <2 with for all i (1< i< n+1)

8; # 0, such that the inequality
T )}
3
. n+1 i

(1.6) ﬁ{min (1,
]Y (n |S*|ﬂﬂ) 1 i
€8 satisfied.

i=1
ComrorLary 1.2. Let the hypotheses be the same as in Theorem 1.2 cmd
Oorallary 1.1. Then for every e > 0 the simultaneous tnequalities

— Gy
Spp1

1%, 1

(1.7}

—epl =< (1Lt n)

8ﬂ+l

hawe only o finite number of solutions 5 = (81, ..., 5,4,) €Z™ with 5,y % 0.
The case n =1 of Theorems 1.1 and 1.2 is & result of Mahler [1]

(p. 134 second approximation theorem (I)). When for all i (0 < i< n+1)
t; = 0, the theorems are identical with the theorems of Schmidt [77;
in particular they include for # = 1 the theorem of Roth [4]. There even
is a certain advantage as compared with the result of {77, for in Theorem 1.1
there is no hypothesis on linear independence. For proving Theorem 1.1
by means of the subspace theorem of [6], we do not need anything such
“proper systems” (ef. [7]). When #, = ... =, ; — 0 wo obtain the
results of [5}. If in addition » = 1, we have the theorem of Ridout [3].

Corollaries 1.1 and 1.2 are analogous to results of Ridout [2]1in the #-dimen-
sional ease.

2. Weakly-general p-adic Roth systems. In [6], Definition 1.2, we
said what we shall understand by general p-adic Roth system.

When, however, we are only interested in zolutions x<Z® of certain
simultaneous linear - inequalities, for which none of the real and p-adic
linear forms vanish, we may prefer the following conception of a weakly-
general p-adic Roth system instead of that of a general p-adic Roth system,
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DErFINITION 2.1. Let » be a natural number, ¢ a non-negative integer,
D1y ---5 g Primes distinet in pairs, Ly, ..., L,, real linear forms with al-
gebraic coefficients In = = (%, ..., 2,) and for v (1< <) Dypyeury Ly
pradic linear forms with algebraic coefficients in the same variables as

the real forms. Suppose that g, ..., Gy ...s €yy -+, Gy AT Teals with

21 D DMeg=0 and e, <0 (1<i<n, 1<r<1).

Then we call the system (Lyy, ...y Ly; €109 ooy
Roth system iff for every &> 0 there is a

Car) & weakly-general p-adic

& = Qyle, Ly, seeg

such that the simultaneous inequalities

th Cigy « -y C‘m)

(2.2) 0 < |Ly(x)| < Qo™ (1<i<n),
(2.3) 0 < |Di(®)lp, < Q%  (L<i<n, 1<T<Y

have no integer solution x if @ > @,.
From now on we shall assume that

(2.4) G S Gy, foralli,z (IKis<n—1, 01).
Let 8% be a rational subspace of dimension d > 0 of the n-dimensional
space. Suppose the forms L, ..., L,, have rank r, on 8% Now construet
the niumber (8% in the following way:

When 7, < d put e(8% =1.

‘When 7, = d, let s,, be the smallest integer sueh that L, o = 0on 89,
Le., that I, = has rank 1 on 82 Let s,, be the smallest integer, such that
La.ﬂ,, Ly e hmre rank 2 on 8% and so on. In this way we obtain for each
T {0 << v 1) 7, integers s, ..., 8, . (In particular for 7 = 0 d integers
So1s -~ +y Spa)-

Put

L i
(2.5) e(8 = 3" Ne, .

Satz 1.2 [6] gives us by means of the number c(Sd) a necessary and buf-
ficient condition for general p-adic Roth systems.

Let us have a look at the proof of Satz 1.2 in Section 7 ¢f [6]. We
recognize immediately that for weakly-general p-adic Roth systems
we have to consider only such rational subspaces §% for which none of
the forms vapish identically. According to Satz 1.2 [6] we obtain the
following :
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TEEOREM 2.1. Suppose that L, N are as Definition. 2.1 and
that €y, .., Gy Gre constants subject to (2.1) and (2.4). Let us suppose Surther -
that for (L .-y Lty Groy «- s Cuth WE have

(2.6) c(8H<0 -

for every rational subspace 8% of dimension & > 0, on which none of the forms
L,, vanish identically (1< i< n, 0 < 7<) Then (Lagy ooy Logi a0+ o5 Cut)
is a weakly-general p-adic Both sysiem.

Applying Theorem 2.1 we shall derive a corollary, which will enable .
us %o prove Theorem 1.1.

Let y, ..., t,4, be non-negative integers and Pigy -+ -3 Prgr Prar -2 Poyts
vos Prnars ooy Prg a1 be a fixed system of primes distinet in pairs.
For these primes we consider systems of p,-adic linear forms (0K i< n+1,
1<)

When i = 0 let ay,, ..., Gy, b6 Pg-adic algebraic numbers (1< vty
and let us write '

A<i<n, 1<T< )|
(1< T ).

IO = oy

a.7) 0
Ln+1,'= (i) = Oy + . + am'mﬁ + mﬂ-.«i—l

When 1<i<an+1lisgivenfor all v (1< 71y,

(2.8) 0 —a) (1Lj<ntl).
Let us suppose in addition that a, ..., @, are real algebraic numbers .

and write

29) Lo =5 (1<j<n),)
Lps1o(x) = ap®+ oo A Q@+ @pag-

Tet ggyeevs Gppngy 605 ves 6%01s coes s vy Bhigs oo BT ey o85S
coey 68D L, i, ., De Teal constants subject to the following con-
ditions '

n+l o+l M

" ul

(2.10) Dot M) =o,

Foud fe=(l Ta=]
(2.11) >0 (L<j<n), '
(2.12) =0 (1A<ign, 1<T<Y),
(2.13) GSBI—!,: <0 {I<Tv<th),
(2.14) =0 (1<, j<ntd, j#1, 1<r<y),
(2.15) <0 Agigntl, 1<),

{2.24)
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Now order the forms (2.7)~(2.9) in such a way, that in the real as well
as in the p,-adie ease the corresponding constants ey, ¢f? respectively
are an increasing sequence.

Let 8% be a rational subspace of dimension d > 0, on which none of
the forms (2.7)—(2.9) vanish identically.

Looking at the conditions (2.10)—(2.15) we recognize without. any
difficulty that for such a subspace, we have

{2.18) e(8h <0,

In view of Theorem 2.1, formula (2.16) iniplies

OoROLLARY 2.1. The forms (2.7)-(2.9) together with real consianis ¢y, cg‘,’
subject to the conditions (2.10)~{2.15) are a weakly-general p-adic Roth
system. N

For the proof of Theorem 1.1 it will be more suitable to have another
formulation of Corollary: 2.1:

Let ¢ >0 be any real number. Let

(2.17)  O1pseny (3;-1-1,0? Ay s 01('?3—1,11 e 9(1[;3,: ) cﬂ-i,tuﬁ R
Y, Cgl-(:}ll,)l: ceey 0(1?:,31 seny Cﬁ?ﬁfﬁnﬂ
be real constants with (2.12)-(2.18).
Instead of (2.10) and (2.11) suppose,
n+t nt+l fo
(2.18) 3 (cjg+ 33 < —s .
S o i=D 1=l
and
{2.19) G20 (Igi<n)

Then we have _
COROLLARY 2.2.-The, simultaneous inequalities

"(2.20) 0< Iyl < sl (A<j<sn),
(2.21) '0 <'!31 Otm—l— nan +sﬂaﬂﬂ.+3u+1] é_ |[§Hcﬂ+1,[],
(2.22) 0.< Isjlpy, < 81, KL< <9y 1< o<,y

_ (0)
(2.28) 0 <<|8qq,+ ... + Sﬂan1+3n+1{pw < ”5“%4-1" (1 LT,
<7<

0< sl <Isl”  (1<4 jSntl, i#i1
)

(2.25) 0< lalp, < I8l (A<i<a+l, 1<)

have only finitely many solutions seZtt,
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3. Proof of Theorem 1.1 and Corollary 1.1. Let T be a linear form
in m'2-1 variables with real algebraic coefficients. Let se¢Z™*' be such
that Z:(s) s 0. Using the norm, we see that there are positive constants
€1y sy €y independent of s such that

(3.1) LIl << IL(S)] < esllsli-

Naturally a result analogous to (3.1) is true in the p-adic case.

In proving Theorem 1.1 we may assume since ¢> 0 is arbitrary
that all algebraic numbers in consideration are algebraic integers,

Now assume that the inequality (1.1) has an infinity of solutions
seZ"F!, From this assumption we shall derive a contradiction to Corollary
2.2. To each solution s of (1.1) there are numbers '

(1) , 6(1) c(“"'l) eltl

0
(3.2) ey e 6513-1,»:0: Civs -»-s Gty s n+1,27 0y On, %,H_l

satislying the conditions (2.13), (2.15), (2.18), (2.19).

Complete the numbers (3.2) to a system (2.17) by putting the other
numbers in (2.17) equal to zero. Let the numbers (3.2) be such that s
is solution of inequalifies analogous to (2.20)2.2h). We nofice that the
restriction of the conditions (2.13) is immaterial, since the algebraic
numbers are supposed to be algebraic integers.

By (3.1) we may assume that the numbers (3.2} are uniformly bounded
Let us suppose without loss of generality that 1 is a bound. Take an integer
N large enough that

0
s Crt1,09 G:(ra-)i-l,lﬂ -~y

1 g

(3.3) ° —< —

2(n+1+ X)
im0

We divide the interval [ —1—1/N,1+1/N} into 2N +2 subintervals
of length 1/¥. To the numbers (3.2) corresponding to a solution s of (1.1}
choose the subintervaly of our partltlon, in which they lie. In this way
we obtain:

’ " ’ r 1 .
(8.4) Go< Go < G Band  Gy—Cjy == + (l<jignt+l),
: y 1
(3.8)  offy o<l <V, and o, oW, = +  A<T<h),
1

36 <<l and Y - ==
I<ig<ntl, 1< v<H).

By our construction of the subintervals the numbers ¢, iy, ., ¢ satisty
conditions (2.13), (2.15) and (2.19). Becaunse of (2.18), and ({3.3)—(3.6)
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we further have
' n+1
(3.7) 2yttt 2 ot Ec‘”)
Ta=]

If s is a solution of (2.20)—(2.23) with exponents (3.2), then a fortiori s
is a solution of (2.20)~2.25) with exponents ¢, ¢%, ., . Therefore,
we may apply Corollary 2.2. The conclusion follows now by the pigeon
hole principle.

From Theorem 1.1 we shall derive easily Corollary 1.1.

Using (1.3) we obtain

. ii
(3.8) [ si57% 1571 = 184
=1
Combined with (1.4} this implies

(3.9) Je > Isi H il

If we replace in {1.1) terms corresponding to the right-hand side of {3.9)
by the left-hand side of {3.9) we cbtain, since ¢ > 0 ig arbitrary, the con-
elugion.

4. A generalized version of the subspace theorem. The Theorems 1.1
and 1.2 are dual to each other. However, there seems to be no posmblhty
of proving Theorem 1.2 In the same way as Theorem 1.1:

For the rational subspaces 8%, in which we are interested, it is rela-
tively easy to estimate ¢(8% in the situation of Theorem 1.1. But this
method does not work for Theorem 1.2. In proving Theorem 1.2 we apply
3 method very similar to that of W. M. Schmidt in [10]. In [9] (p. 535-537)
Schmidt proved several versions of the real case of the subspace theorem.
By using the p-adic subspace theorem ([6], Saiz 2.1) these results may
be generalized without any difficulty. We obtain

TurorEM 4.1, Let n be o natural number 3= 2, t an integer 2> 0, and
Pay ey Py primes distinet in pairs. Let Ly, ..., Ly, be independent linear
fo’r'ms with real algebraic eoefficienis. : :

For every © (1< v<1) let v, be an integer with 1< v, << n. Suppose
that Ly, ..y Ly, ore independent linear forms with p-adic algebraic coef-
ficients (1 < v <Ct) in the same variables as ihe real forms. Then for every
e> 0 there are a finite number of proper rational subspaces Ty, ..., T,
such that every point x<Z"\{0} satisfy'ing '

(1) H Lo (2)] H (H 1z

T=1 j=1

(2) tg,,] [

lies in one of these subspaces.
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For the proof of this theorem we have only to observe, that to each
solution x of (4.1) there are suitable reals ¢ (1<i<In), ¢, (1< v,
1<) satisi‘ying

{4.2) Z‘%+ )’ch,\ —5 <0 (1<t 1<),

=1 Je=i
such that ¥ is solution of the simultaneous inequalities

{4.3) ()] < e A <i<n),

(4.4) @)l < Bl 1<zt 1< <0l

It may be excluded that one of the forms in.eonsideration vanishes
in. %, sinée there are a finite number of proper rational subspaces con-
taining all such . On the other hand, the condition ¢, < ¢ is no serions
disadvantage, since we may restrict curselves to the case of algebraic
integers. In Satz 2.1 [6] we have for every = » independent p,-adie forms.
Therefore we complete for every v the independent forms L., ..., Ly .
by suitable forms between Xy, ..., X, to have & system of = independent
forms. By adding some of the trivial relations :

(4.B) |y, << el

to the inequalities {4.4) we have a situation mmﬂar to that. of Satz 2.1 [6] ‘

Then we may proceed exactly as in [9]. .

5. Proof of Theorem 1.2 and Corollary 1.2, We Sl}é,ll denote the
prime corresponding to the absolute value by py. Leb o, ..., g, be sub-.
sebs of {1,2,...,n}. It will be sufﬁcient to prove that the inequa]ity

C (3.1 H H ﬁnisﬂaz,, “s”-,H_

Tl dEo, -pfﬂg 0 F=1

— Ui
ﬂ+1

has for mbltr&rﬂy taken & > 0 and any choice of ay,-..., Oty only a finite
number of solutions seZ™™ with the desired prﬂpertles We shall prove

this by induction on {gy| 4+ ... + |og,|. The cage 6, =0 for all 7 (0 < vy,

is-trivial.

We call a subspace § of Q""? a solution space, if there is.a.solution s.

of, (5.1) with seZ"t'n8, We call § a reducible solution gpace, if there
18 a finite number of proper subspaces of 8, such that every solution
seZ* N g of (5.1) lies in one of these. subspaces.. Otherwise we call § an
irreducible solution space.

LEM.MA 5.1 (Schmidt [10]). There .are .o finite number of “iweduadbla
solulion spaces 8y, ..., 8, such that every solution of (5.1) lies in_one of
Byyeeny S ' -
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Pick one of the irreducible solutionspaces of Lemma 5.1, say 8.
We may distinguish two cages: :
(i) There.is 7 (0. v < %), such that the |01 coordinates s,.;,s;
(teo,) are linearly dependent in S.
(if) Fer every = (0 =< 7 < %) the coordinates s,,,, s; (¢<o;).are linearly
independent in S respectively. ' '
Asg for (i), we may proceed in exactly the same way as Schmidi [10]

(p. 64 1. ).
As for (i), we shall consider linear forms corresponding to the terms
8
r ‘., ie. the forms s, 0,8 (1<i<nt1l, 0<v<t). Wenow
{°n+1

choose for every = (0 << T<%) ¢ =dim8 p-adic linear forms Ly ooy Ly
with algebraic coefficients, which are linearly independent in §. The
hypothesis on the sets o, ..., oy implies that in particular the forms
$pa1 O —§; With deo; (0 < T t(,) are linearly independent in 8. Choose

for every = the ¢ independent forms in such a way that they m;:lude

all forms 8, ai,—s~ with indices i<o,. By (5.1) we obtain.

ntl Y
(5.2) H H 1Te(5) g H H J5slpyy << callsf? %
(5.2} implies
hhirg PR
(5.3) ITT] El, H [ ] 1s1loy < eallsl™
=0 =0 F=1 v=1

Now we are in exactly the same situation as Schmidt [10], (21); Assuming
that (3.1) has an infinite number of solutions with (i), we may construct

~in considering (5.3) a contradiction between Theorem 4.1 and Lemma 5.1.

Thig proves Theorem 1.2.

Corollary 1.2 iz now proved ag follows: First we note that the compo-
nents of solutions s =8y, ..., 8p41) of (1.7) have the same order of size.
On the other hand applying Theorem 1.2 we recognize that the simul-

taneous inequalities

» bng1 ‘ :
@8 | H o[ [ nrtionnss) - < < a<isn)
Tl Tl

have only a finite number of. solutions se¢Z™*' with s; #0 for all 4
(L<i<nt1) :
(1.3) implies

T ]

I ¥ H T



393 H. P. Schlickewei

Combining (1.4) and (5.5) we obtain

b
-1
= [[1silo

=1

(5.6)

Since the components s; have the same order of size, we may conclude

by (5.6)
(5.7) csllsl ™ > H iy (1< n+1),
T=]
and the corollary follows.
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Factorizations of distinet lengths in algebraic number
fields

by

JAN SLIwA (Wroclaw)

1. Let K be an algebraic number field. We shall denote by By its
ring of integers, by P the set of all prime ideals of Ry, by H the classgroup
of K and by & the classnumber,

It iy known (L. Carlitz [1]) that in the case k>3 some elements
of Eyr have factorizations into irreducibles of distinct lengths. In this
paper we shall study the asympiotic distribution of numbers with factor-
izations of m > 1 distinet lengthy. The sef of all sueh numbers will be denoted
by G, (K). In the cage m = 1 we shall write also &, (K) = G(K).

Let @,,(2) be the number of non-associated integers o in &, (K) with
[N (@)} < w. 'We shall determine the asymptotic behaviour of G, (x) (The-
orem 4) and in particular we shall prove that :

) #(loglogw)*
-

-+

Gy(@) = (O(K)+o(1)
. 3

(logz)

where C(K)> 0, a iy 2 non-negative integer and ¢ — {{H) is a positive
integer, which hag a combinatorial meaning. We shall alzo obtain a similar
result for natural numbers < # lying in &, (K) (Theorem 3),

T am very grateful to Professor W. Narkiewiez for valuable remarks
and guidance in the preparation of this paper.

2, To begin with we define two combinatorial constants attached
to a given finite abelian group 4 which we shall write multiplicatively.
¥ gy, gyed, ny, ..., mpeZ and

(1) gt it =1

then (1) will be called a minimal equality, provided -
o0 n<r, =order of g; (i =1,..., k) and

oy S K0y Ly 0D

(Mg -



