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Combining (1.4) and (5.5) we obtain

b
-1
= [[1silo

=1

(5.6)

Since the components s; have the same order of size, we may conclude

by (5.6)
(5.7) csllsl ™ > H iy (1< n+1),
T=]
and the corollary follows.
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Factorizations of distinet lengths in algebraic number
fields

by

JAN SLIwA (Wroclaw)

1. Let K be an algebraic number field. We shall denote by By its
ring of integers, by P the set of all prime ideals of Ry, by H the classgroup
of K and by & the classnumber,

It iy known (L. Carlitz [1]) that in the case k>3 some elements
of Eyr have factorizations into irreducibles of distinct lengths. In this
paper we shall study the asympiotic distribution of numbers with factor-
izations of m > 1 distinet lengthy. The sef of all sueh numbers will be denoted
by G, (K). In the cage m = 1 we shall write also &, (K) = G(K).

Let @,,(2) be the number of non-associated integers o in &, (K) with
[N (@)} < w. 'We shall determine the asymptotic behaviour of G, (x) (The-
orem 4) and in particular we shall prove that :

) #(loglogw)*
-

-+

Gy(@) = (O(K)+o(1)
. 3

(logz)

where C(K)> 0, a iy 2 non-negative integer and ¢ — {{H) is a positive
integer, which hag a combinatorial meaning. We shall alzo obtain a similar
result for natural numbers < # lying in &, (K) (Theorem 3),

T am very grateful to Professor W. Narkiewiez for valuable remarks
and guidance in the preparation of this paper.

2, To begin with we define two combinatorial constants attached
to a given finite abelian group 4 which we shall write multiplicatively.
¥ gy, gyed, ny, ..., mpeZ and

(1) gt it =1

then (1) will be called a minimal equality, provided -
o0 n<r, =order of g; (i =1,..., k) and

oy S K0y Ly 0D

(Mg -
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9T O m <y (6 =1,...,k and g7 ... gi* = 1 then the 'k-tuple

{Mgy oovy Mgy equals either <ny,...,n> or <0,..., 0>
We shall say, that the mlmmal equa,hty {1} samsfws the condition O,
provided
k
- R,
(2 ' =1
(2) ‘2 -

_(This condition has been alzo considered by L. Skula [7].)
 Now let U be any subset of 4. We shall write Ue O, provided every
minimal equality of the form (1) with gy, ..., g U satisfies the condition: C.
Note that for- U = {g} = 4 one has trivially UeC. Hence we can
. always write

- (3) A=,

with suitable U eG :

The minimal number n of summands needed in (3) will be denoted
by I{4}). By #(A) we Sha,11 denote the maximal cardinality of-a set Ue c.

Clearly one has

' 1< H4) < 4—1
- and

a<iA) <Al (f |4]>2).

The following lemma lists the simplest properties of 1(4) and #(4).
. Lewwea 1. (1) If H ¢ o subgroup of A, then

WH) <

(i) If O, is the cyclic group of n elements them I(O,,) = p{n).
. (iii) For a prime p and n =1 one has

WA, HHE) <A,

z(apﬂ) = QO(P")':‘P";I(P"*l): : t('op”\.) == T

oo {iv) For prime p and n =1 one, * has
80 <("““P 1)

nty 12) elements whwh are =1,

- and moreover any U <0 can contain-al most (
Proof. (i) Is obvious.
(i) As C, has p(n) generators, it suffices to observe that if ¢y, g, are

. .distinct generators of 0, and g;, g, U = O, then U¢C. Indeed, a8 g, == ¢f*

icm

As UN{0} = U, t<n and [the- equation] -+
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((m, ) =1, 1<<m < n), the equality g7 ™
not satisty- O.

(iti) -In view of (ii) it is enough to note that for any g generating Cp,,
one has

g, =1 i3 minimal and does

{1, 9,4, gpz’ arey gpﬂ—l}EC-

(iv) We can -consider A = C} as an n-dimensional vector space over
GF(p). Let U be a subset of 4, UeCand let v, ..., v ben linearly inde-
pendent subset of U.

If
5
#= Y(p—a)o, (1<a<p—1)
k=1

lieg in U then from the minimality of

g

A oo, = 0

k=1
we infer that
8

.Eak =p—1.

Fra

Tt g, ..., v; be & maximal linearly independent subset of U and put:

! i
={2(P““k)”k= 0< a;<p—1, ) o w_’p—l}.

k=1 fmm]
.+ =1 has (z+z;1).

golutions in non-negative integers, we obtain
o= (27 <)
COROLLARY,
(i) 1{4) = 1|4} =1,2.
(i) 7(4) = 2<]4| = 3,4, 6. .
(i) 7(A) =3<d = Gz@om 0,200, or OB 0s.
Proof. Tf 1(4) < 3, then 4 cannot contain subgmups 0, with p >5.

" Moreover

CUOw) =21 >3'(k=38), Ulw =2-3%1% 3 (F3=2).
So '

4 = Cod@lr  with k<3, 1<2, m<3,
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Computing directly 1(4) for those groups one obtains the assertion.
Lemma 1. enables us to obtain an asymptotic lower bound of I(A4):

TrEEOREM 1. There exists positive constants C; and C, such that
1(A4) = Cexp(C,log' " N), where N = [A].
Proof. First we prove, that with suitable ¢ > 0, 6 > 1 one has

(4) 0% > C 0% (p —prime, & =1,2,...).
Lemma 1(iv) implies
P
prt—1
%
HOp) = k+p—2
p-1
hence _
L. | 3\k
) o> w3
' 3F—1 3\F
(&) UCY = >
Y
with suitable 4,, 4,> 0.
For p>>b and k= p one has
pF—1 _ 4[5\
and hnally for p=h, kE<p— —1 we have
k-2 _ [3p V7
F)= (2
hencefor p=band all k=1 (A< p—1)
' 3 (4\F
M uch>5(3)
The inegualities (B), (5'), (6), (7} imply (4).
Now: leb '
ik
A =@0,,
i=1
be a decomposition of 4 into cyelic factors with || ... n,. Then
™ . -li-_“-.ul-..ﬂk{;‘nﬁ
hence ' '

log |4} < klogn,.
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If now p denotes the minimal prime factor of #,, then by Lemma 1. and (4)
we get
1(A4) = max {I{ C"’ U0} = max{0- 0%, p(n,)}.
Using the evaluation
m
> loglogm

we arrive at our assertion.

3. If H is the classgroup of K, then we shall write I(K) instead o.
L(H). We present now two arithmetical interpretations of 1(K).

Let {A4;} (i<I) be a family of subsets of Ry. We shall say it is a Jde-
composition of By provided the following conditions are satisfied:

(i) I @, yed; then ayed; and if wed;, ylz, then ye4,.

(ii) There exists m = 1 such that for every xe<Ry one has

mo_
m-—ll‘”n
el

where 2,4, and only finitely many numbers a; are = 1.

A decompogition {4};; will be called a good decomposition, provided
U 4; =« G(E).

P

THEOREM 2. The minimal number 1 for which there exisis o good de-
composition {d;}.r of Ry with |I| = 1 equals 1(K). '

Proof. We start with a lemma relating the property O with the set -
G(X):

Levma 2, Let U be o subset of H. Write I(U) = P(K)nU, and let
Ry (U) denotes the set of all integers of K whose oll prime ideal divisors
belong to I(T).

Then Be(U) c G(X) holds if end only if UeC.

Proof. Note first that aeRg 15 irreduneible if and only if the equality

[[xox@ =1

XeH

(where 2x(a) denotes the number of prime ideal divisors of ¢ lying in the
¢lags X and counted according to their multiplicities) iz minimal.
Let X,,..., XU, n; =order of X; and lef

I X =1

be a minimal equality Whlch deoes not satisfy C. Ohoose Pryeeey p,eP(K)

such that p;eX;, 4 =1,...,1, and let
' =(a) (4 =1,...,0), P..pit={(a)-

Evd
3

7 — Acta Arithmetica XXXT.4
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Obviously 6y, .- ., &, & ave irreducible elements of Rg(U). I M =01 ...
then

I
(@) = [] tapmsn.

As 1 o Y (myfn;) hence ™ eBg(U)NG(K).
Assume now thab '

U={Xy..., Xp}eC and aeR(U).
Let .
(1) (1 .
-XTI er =1,
(8) e e e s _ '
(2} 5)
LA e
be all minimal equalities between the elements of U.
Let
(9) @ =dy...dy

be a factorization of a into irredueibles. To every d occurring in (9) there
corresponds the minimal equality

k
J] x7=® =1.
1

c A=l

Assume that to the ¢th equality in (8) correspond in that way % irre-
ducibles from (9). Then :

;QX‘_(Q;) = Eujm@ (t=1,..., %)

j=1
and Te(C implies
E
B
Z...;i_: (G=1,...,8),
fml
thus
5 ]
. Lx(a)
SPXEDIS

il i=1

is independent_of. the chosen factorization (9). Hence a<G{K).

The theorem follows now from the lemma and the observation that
if {4,};q 15 2 decomposition of Ky, and for eI we denote by U, the set of
all classes of H containing a prime ideal dividing a number aeA,, then
Be(U,) = A,. ' '

icm
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‘ Le_t 8 be the set of all integers @ of & such that in the factorization
into prime ideals

8
aBg = [[p%  (p; — prime ideal, o3> 0)
=1

the_ ideals p;* (¢ =1, ..., 8) are all principal. (Note that the hth powers
of integers of X lie in §.)

Our second characterization of I(K) is contained in the following
theorem:

CI?JIEOREM 3. The minimal number 1 such that every integer from § can
be written as a product of 1 integers from G(K) equals LK},
Proof. We mneed a lemma.
LemmA 3. For any acRg put
Ha) = {XecH: Qx(a)> 0}.
If aeG (K), U < H(a) and U ¢0, then there emists u class X e T with
Qxla) < mht.

Proof. Let first m = 1. Choose Xi,..., XpcU and my, ..., m; >0
such that '

is a minimal equality which does not satisfy condition €. Assume, tha
for ¢ =1,..., % one hag

Qx,(a) > B2,

If n; denotes the order of X, M is the least common multiple of ny, ..., nk
and r, = Mm,/n;, then one may choose irreducible integers

bn---fbM,“;‘j A<i<h 1<ji<n
such that ' -

1% Qe (b)) =m; (i =1,..,k j=1,..., M),
Qx(by) =0 (X # Xy, Xy, =1, ..., M);

M
2°  [1b; divides a;

femi
. ) X =X
3% Dyley) = "o v
10, X #X;
and .
4 by buBe =(]] j]_{%')RK'»
FE,
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The condition 4° implies b, ... b3 ¢ G(K) and so a¢G(K) in view of 2°.
This seftles the case m = L.

In the general case observe first that if o has factorizations of %
distinet lengths, and b has factorization of ! distinct lengths, then ab
has ab Jeast k-+1—1 factorizations of digtinet lengths. Now we use¢ the
induc¢tion on sm. If for all XU there is

Qx(a) > (m+1)
then we can find a,, ¢,¢Ex such that a, a,]e and
Qxlar) = mh?,  Qx(a;) =4

for all X<U. Using the above remark and the industive assumption
we obtain that a;ag, has at least {(m+1)+2--1 =m+2 factorizations
of distinet lengths. This proves our lemma.

Proof of Theorem 3. Observe first, that if 4,,..
decomposition of Rg, then

S CAlAg--._A.” .A.,; CG(K).
Indeed, it ae§ and aBg == [[p ¥, then for
P

54y 18 a good

H, — {peP(K): Jacdy, plaRg} (i =1,...,1)

and
alm”:pmp? Ay == H :pmp: . veay i, = H _Pmn:
. peHl) mia P‘Hz;1
pifa) P Ha_l) p J(m)
a

al=——————~
: ..ﬁl...all 1

one has & =a,...0, and @e@(K) (i =1,...,1).
On the other hand, if we choose aeS with Q2y(a) > h% for all X <H
and @ =y ... a,, n<WE), a;¢G{K), then by Lemma 3 we have
U, = {X: Qg(a) > h¥} 0. '
If for some X eH we would have
Qxla;)<h* for i=1,..,n
<

then Qy(a) < nh? < (K)h?
Hence

i3, a contradiction.

n

and so nzz LK),

icm
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4. Now we turn to the asymptotical behaviour of G, (#) and show:

TaroREM 4. If K is a finile extension of the rotionals, and m > 1,
then either

G E) =0
or
z({loglog @)

(@) = (Ooh) {logm)“

?

where 0 = C(m, E)>0, A =A(m,H) and B = B(m,H) are non-
negative, and in the case h = 3, A > 0.

Proof. Any pair § = (U, 4> where U c H, Ue( and 4 = {4dx:
XeHNU}, Ax — positive integers, will be called @ system. The length
of 8 is defined as |U[. For any system § and 4 == 0 let ns put

Ng = {a<Bg: -Qx(ﬂﬁ) = Adx (X¢T)},
Ngld) = {aeNg: Qx(a)>d (XTU)}.
Levwts 4. There emists a finite set W of systems such that
Gm('K) < U NS-

) Sel¥
Proof. Let

W = {8 =<U, Ap): for X¢U, Ay < mhi}.

It aeG,(K) and U = {XeH: Qx(a)>mh?}, Ay = Qx(a) for X¢T,
then by Lemma 3 we obtain U<, hence (U, {44}> is a system, which
lies in W. As @#eNgand W is finite, our lemma is proved.

Lemma 5. If 8 is a system, then we can find a number d = (8 such
that either .

Ngld) < G (K)  or

| NG, (E) = 0.
Proof. Let 8 = U, Ay> with

UZ{X]_,-...,X‘}, H\U Z{.X‘,,l_l,.--,xh} a,nd .AUE{.A‘_H,...,.AJ.}.
Let us write all possible minimal squalities in H : '
; .

(I) . HX?"(")zl (k=1,...,8),

gl '

A
(TI) [[x® =1 (b =s+1,...,51),

=1 :
. -
(. xR =1 B=sil e

felt1 -
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Let acNg, and for 1< k<8, denote by wu, the number of irreducible
factors in @ = dy ... 6y (d; irredncible) which correspond to the kth
minimal equality in the same way as in the proof of Lemma 2. Then we get

22
(10) Nugngk) = Qe fa) (0 =1,..050)
Fowxl . . .
and
E2) :
(11) D wpn(k) = Qx(0) = 4y (F =141, h)
k=341
hence :
1 - 2 ()
1 _ i _ ¢l
W=ty .. T U, -—Z: w Qx(a)+ Ziuk(l JZ: n; ) |
g= = =

(n; = order of Xj), as {Xy, ..., X}e0. '
1f Vg is the set of all non-negative solutions gy, -y U, of (11),
82
a8) = max D) am))

7
1t i
IR ,z&)eV‘Sj o+l

and o was chosen to satisfy

2uf@)> AB)  (E=1,.0s1)

then the number of distinet values of the linear form

]

S 3 )

AT N f=1 ]

attained in Vg equals to the number of distinet lengths of factorizations
of a. : .

This ii:uplies that all integers in N, S(d(S)) have the same number
of distinet lengths of factorizations and the lemma follows.

Levwma 6. Let 8 be a system. One can find systems Sy, ..., S,‘i (n = n(8))
such thai

°n
Ng e UNg,(dy)y

j=1

where d; = d(8;) are taken from'tke Tast Temma.

icm
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Proof. We nge induction on the length of 8. If it equals 1, then

8 = (X}, day ooy gD
and if we put for j =0,1,...,d =d(8)

Sj =@, 4, Agy ey Apd,
we obtain d; = @(8;) =0, st(dj) = Ng, and

4 .
Nsg < NS(J)UHst(dj)
?=
as asserted.
I now § == (U, 4) is of length 1, then
' a a

N,eN@dv U U...U

1€f1§;i<fj€£ kflm‘ﬂ I'j=0 S"l‘ + kll‘ ,ktj
where d = d(8) and ]
1,---,7:3‘,!051,---;76-;5 = <{X€U: X # Xilﬂ LR th}; k‘ijl? iy k.':’, {A‘}>'

As the length of (12) is < t—1 we may apply induction.
COROLLARY. There emists a finite set I of systems such that with suil-
able integers dg (SeL) one has

G (K) = | Ns(ds)-
Sl
5. The last corollary clearly shows, that in order to solve the problem
of the asymptotical behaviour of &, (#) we have to do the same for the -
sets Ng(dg). We ghall accomplish this with the use of the tauberian fhe-
orem of H. Delange ([2]), which we state as

LeMmA 7. Assume that the series

(=]
2 a, "

fi==1

has all its coefficients real and non-negative and that it converges in Reg > 1
defiming @ function f(s) regular thers. Assume, moreover, that in the same
half-plane we can write

1 \% : 1\ |
10y =t (o 5] o= gt (g7 o1 a

where §(5), g5(8), -5 §4(8) are regular in closed half-plane Res =1, by, by; «

...y by are non-negative rational integers, @y, ..., G, orve comples numbers
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whose real parts are smaller than oy, which is a positive real number, and
finally g,(1) # 0. Then for 8(w) = Y a, we have for @ tending to infinity,

nax
the asymplotic expression:
= (g5(1) T'(ay) ™ + 0 (1)) (log w)~* (loglog)’e.

However, if f(s) satisfies the same assumptions with the following change:
a, =0, by £ 0, then we get

@) = (bago(1)-+0 (1) #(log)~* (loglogm)'s™.

6. The system § with N¥g{d(8)) = &,
An m-admisgible system

(K) will be called m-admissible.

B=¢U,A>, U={Xy,..,X}, A={4A....;4;}

will be called a mazimal m-admissible system if Ng is non-empty, the
B

length of § is the maximal possible, say equal to M, and 3} A; attains
fuaf4-1
its maximal value amongst all m-admissible systems with length M.

Note, that Ng =@ if and only if
4 A
X:fffl e X0

lies in the group generated by {X,,..., X}

Let now X,,..., X, be given distinet classes of I and let ¢;= 0
(i =1,...,m). In the case m = kb we assume moreover, that not all ¢;
vamish. Let YeH and let Fy(®, ¢, ..., ¢,) denote the number of ideals
of norms <, lying in ¥ and satisfying «Qxi(I) =g (4. =1,...,m).
Then the following modification of Theorem 9.4 in [3] holds:

LEwmwma 8. (i) If X% ... XY does not belong to the subgroup of H
generated by HN{X,, ..., X 1, then for all # > 0

Fy(w,0qy...56,) =0.
(ii) Otherwise

(C -0 (1)) m(logm) —m[h(loglogm)a1+. .
(C' +o (1-)) m(logm)_l.(loglogm)cl'i“-A-+ﬂm—n1 ’

m <<k,
-FY(W)CI; ey Gm) =

where C are positive constanis, depending on ¥, ¢y, .
Proof. We prove only (ii), (i} being obvious. '

B
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In the same way as in [3] we arrive at the foliowing identity valid
for Res> 1:

(13) 2 N(I)

1e¥
fxD)y=e;
. 1 cl+...+um
1|1 (20} log &§—1 =
=(s—1)F |5 4| ——— [ [+
g=1
_ Iog 1 OpFese by
§—1
h 2 2(¥ 12 - AV %
xeExp
2T (X [ ey +
i=1

+ (s ml)i_lPo (log p

1 T 1
— )82
1)+ ;x (s —1y Px(log . 1)
L]

where y rung over all characters of H, y, the trivial character, Py(u),
P,(u) are polynomials over the ring £ of all functions regular in Res = 1
and of degrees << ¢;+ ... +6,, A¥(s) lie in £ and are positive at s = 1.

Finally
b() =7 Z 1T,

Observe that Re{—b(x)]<1—m/k amd the equahty will hold here if

and only if _ .
(14) 2(X) =1 for all X<HAN{X,, ..., X},
In this case we get —b(y) = 1—m/h. If T denote the set of all charae-
ters ¥, ¥ # ¥, for which (14) holds, then for all y«T we have
(X)X g (X)m = 1,
Now (13} implies

NI
- Ie¥ -
!
-1 1 [ n
e e g
eU{zg}
-1- 1
( ) (s _.1)b(7¢)_Px (]_Og 3_1).

x
xE Xy
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-As Re(—b(x)) <1—mjh for y¢T and the degree of Po(w) is less than
&+ ... 406, we may apply Lemma 7 to obtain our assertion.

H M is any subset of Eg then by M (x) we shall denote the number
of non-associated elements of M whose norms do not exceed @ in absol-
ute valze.

Observe that if G, (K) # @ then there exists m-admissible systems
whose lengts are positive, as we always can assume that X == 1 belongs
to U,

Now let § = (U, 4) be & system with U = {Xy, .. X A
ey A3}y 121, Ng @ and let 42> 0 be a positive mteger

Levwa 9. For a lending fo infinity

= {Az«m

' LA ._%‘h A;
Nyld)(z) = Ng(@) = (C+o(L))a(logm) * (loglogam)™* °,
where O 15 some positive consiont.

Proof. For any sequence 1< i; <<... <{; <t define

Bgliyy «.rs ) = {0eRg: Qx(a) = 4; for & =i+1,...,h

and Ox (a) . Bty

< d for @ =41, ..
and observe thab :

3
= Nsl@)+ D) (~1)

(15) Ng(d) (@) Bygliyy ey i) (@)
J=1 Tagiy<ta. . <ipst
{zee [3]). As '
Byliay -oey )
= {J {s<Rg: -Qx{(a) =4, (i =1+1), .Qxi(a) =1 (4 =1y ..., B4)}
osly <d ,
1<k

therefore Lemma 8 implies

= ja+ 3 Ag
Bgliyy .-y 35} () = Ofar( Iogm) * (logloga) ).
As .
148 g Ag
Nylmy = (0+o())a(logs) ~ * (logloga)=+'

{15) implies the lemma.

Proof of Theorem 4. Let S, 8, be two dlstmct m-admissible
systems-

S {(Xi]s ~5Xi,)§Ag‘:j‘5é":1;--':"':r}.!_
Sz—{X ;---;-X’.');.A;,j ?éi;’;---:."-';-'}
v ‘
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and assume that #,+" >1 and the sets N 52 Vg, are both non—empty

01 eourse _NS NNg, = & only if 4; = 4; fOI‘j 4.“@1 vy By B1y -euy i a0Q
in this case we have NgnNg = Ny Wlth
8 = {(X{’l’: =2 Xi",.)’ A}’,j —7’5"':;’7 ERAE) is,-:’}:

(s e A} = (i, ey 03Oy oy 1)

and
s 4;  for  § Edyy i,
3T ]
A;  for  § AL . e

Ag 8y # 8; we must have +'' < max{r, #'} and Lemma 8 gives
(NN Ng,)(2) = Ng(z) = o(max{Ng (), Ny, (a)})
for @ tending to infinity. Lemmna 9 implies now that for d,, d, > 0
(W, @) U 5, (@) () ~ N, (0) + N ().
~Applying Lemmas 8 and 9 and Corollary to Lemma 6 we get

M
Gy () == (U +o(1 T (loglogm)z’“
where ( ig a positive eongtant.

Obviously, if there are no m-admissible systems 8, for which' N~ + &
then @, (K) = @.

. COROLLARY 1. For & tending fo Mfiwity

)m(logw

logl &
@(a) = (0() +o(1)) ZE1ELT,
(logm) 3

where 1(H) is the constant introduced in Section 2, a is a constant, depending
on H and salisfying 0 < a< b (h—t(IH)). _

Proof. Let U be a subset of A satisfying C with #(H) elements.
Then the system § = (U, {0,...,0}> is l-admissible and the maximal
1-admissible systems have to be sought among the systems of the form
U, {4y, oy A}y (@ =1(H), 0K A; < B,

CoROLLARY 2. If h =3, then

’ 2 (logloge)*™?
(logz)'®

= {1, X, Y} then the only

() = (O(m, E)-+o(1))

Prootf. It suffices to observe, that if &
maximal m-admisgible systems . are

1, X},8m—1y and ({1, Y}, 8m—1).
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7. In this section we shall study the asymptotic behaviour of

m(w=21

nsw .
ne G (E)
where
& (K) =@, (EK)n
We prove

TrEOREM 5. If K is o f'mzte extension of the rationals and m> 1,
then either

G (E) =0
or
) ' loglogw)®
¢fa) — (wm)%,

where A, B, C are constanis, depending on K and m, B is a non-negative
integer, A =0, C > 0 and in the case h =3 also A > 0.

Proof. Let p be a rational prime and let pEx = p, ... p, be its decom*
position into prime ideals. If p,eX;elH (1 =1,.,.,n) then (Xyy ey X,)
will be called the orbit of p. If O is such an orbit and X ¢H then we erte

0x(0) for number of 1< j < n, for which X; = X, and P, for the set

of all rationals primes which have O as its orbit. BV ={0,,...,0,} is a set
of orbits, then by Uy we denote the set of all distinct elements in O, v ... LO,.
Let V he such that UpeC and let O, 4, ..., O, denote all remaining OI'bltS
If B, - B are non-negatlve mtegers then the pair
=V, (Busay ooy B
will be called a system in 4 and |V| will be called the length of Z.
To each such system there corresponds aset M, — 4" defined by
My ={nes: *QPf( n) =By, j =s+1,...,m},

where P; = PO and ij( ) denotes the number of primes of P; dividing »,
each counted accordmg to its multiplicity. For d = 0 let

Mz(d) = {neMz: Qp(n)>d for 1<j< s},

U, ={X,,.. Xf} and X;,,, ..., X, denote the remalmng elements
of H, then for neMz, 121+t we have

QXI - ZQXz(O)B =4y, say.

=a+1

With Z we may associate a systems S5 in Rg putting
Bz = Upy {Apyay -y A3}
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Note, that
{186) My e Ng, A
We prove now
Liesaa 10, There emists o finite set W' of systems such that

Gn(K) = | M
ZeW’

Proof. We prove that the set
W ={Z =<(V,B): BeB—B < mhe}

has the requived property.
Let ne@,,(K) and

Vo = {0: 2p,(n) > mh2}.

For X<Uy, we have

Ox(m) = X' 0x(0) Ry, (n) = mh2
(=

and the Lemma 3 implies Uy, <0. Consider the system

Zy, = <Vy: {on(%)} 04V,)>.

Of course Z, e W, ne My .
Lemma 5 implies that there exists d = d{8;) such that

N (@) = Gu(E)  or Ny (d)nG,[(K) = .
From (16) it follows that for some 4 = d'(d) one has
Mz(d') = Ng, (d)n A
‘Hence for any system Z in 4 , there exigts d = d(Z) such tﬁat
Mp(d) € G(E) o  My(d)nG,(K) =6.

- In the same way as in Seetion 4, one gets
COROLLARY. There ewists a finite set L' of systems in A", such that with
sustable imtegers dy (Zel') one has
Gn(K) = U Mz(dg).
) Zell
The system Z with Mz{d(Z)} c Gp(K) will be called m-admissible.
To apply analytical methods to our problem we need more infor-
mation about primes belonging to a given orbit. This will be done in the

* following lemma, the preof of which will be omitted, as if is a simple

modification of the proof of a similar result, obtained by R. Odoni ([6]).
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Lewma 11. T ' O denotes on orbit, then either Py is finite or

2 P = a(0)log—— +40(8)

Py [11 L. Carlitz, A characlerization of dlgebraic nuwmber fields with class number two,

. Proc. Amer. Math, Soc. 11 (1960), pp. 391-392.
where 4(0)> 0 and go(s) is regular for Res>1 [2] H. Delange, Generalisation du théoréme de Tkehara, Ann. Sei. Eo. Norm. Sup.
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Pa) _ (G-|-0(]_)) m.(logm)—(q1+,..+qr)(log10gw)a1+...+c,.'

The m-admissible system T = (¥, B> we will call a mawimal *m-
admissible system if
1° ¢(Z) = }q(0) is maximal among m-admissible systems (g(0}
0el

Roceived on 30. 6. 1975 (736)

defined as in Lemma 11, in case P, finite we put q(0) = 0}
2° ¢(Z) = 3B is maximal among m-admissible systems Z with
ReB ’ .

maximal value of ¢(Z).

Observe that if ¢, (K) = @ then there exist m-admissible systems Z
with ¢(Z) > 0. This is a consequence of the fact that the rational primes
which have in decomposition into prime ideals only principal ideals, haNe
& positive. density ([6]).

For system of this type we get using Lemma 12

My{@) = (Cy+o(1 )a: log )%®- I(Iogloga:)"(z)
with some positive C,.
Proceedmg now as in the proot of Lemma 9 we get for any adz=0

M4(@)(@) = (Cz(d) + 0 (1))z(loga) 4P~ (foglog )
and now corolla,ry to Lemma 10 implies our ‘assertion, with 4 =1 —¢(Z)
B == s(Z), where Z is any maximal m-admissible system in 4.
.Our proof does not give any information about the constants A, B.
But in some particular cases, exact values of these constants are known
I K is a quadratic field and & £ 1,2 then ([4], [5]) A = (A —g—1) )2k
where g denotes number of even invariants of H. It moregver H iz cyelic

then in the case of even & B = (h—2)/2, and in the ease of odd h
= R-1.



