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Elementary methods in the theory of Z-functions, IV
The Heilbronn phenomenon

by

J. Pin7z (Budapest)

1. Gauss [8] raised two problems concerning the class number A( D)
of the imaginary quadratic field belonging to the fundamental dis-
criminant — D << 0.

1. Determine all the negative fundamental discriminants with class

number one.

2. Is it true, that k{—D}—+oo if D—>oo? (Gauss conjectured the
truth of this assertion.) - _ '
About one hundred years later, in 1913, Gronwall [10] proved a
conditional result concerning the 2nd problem (although this resmlt
was only implicite contained in his work [10]):
If the L(s, xp) function belonging to the real primitive character

. —D . .
z{n) = (T) has no zero in the interval

1 4 1
- (1.1) . [ —W, ]
then '
b(a)VD
(1.2)

h(— D) > ——mmmmme
( ) log DV loglog D

5 years later, Hecke (vee Landau [18]} proved even more, namely
that from (1.1) follows

; b’(a)l/E
(L.3) | ‘ () > m—*:

where o is a constant and b(a), resp. b’(a), are constants depending only -

. on a.
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The fact, that zerofree regions (resp. intervals) of some IL-functions
have influence on the clags number of imaginary quadratic fields is easily
understandable if we consider the class-number formula of Dirichlet

D ~D
(1.4) A(—D) =-1/—£—~L(1,x1)) where  yp{n) =( -

)and D> 4.

Theresults of Gronwall and Hecke showed the amenableness of Gauss’s
problems to the tools of the analytical number theory.
Tn 1933 Deuring [6] showed that if the Riemann hypothesis is not
true then
M-—-D)yz2 for D>D,.

Tn 1934 Mordell [23] succeeded to prove under the same assumption
that _
A(—D)=oo if D-+oo.
The 2nd problem was solved in 1934 by Heilbronn [12], who deduced
h(—D)—>oo if Do
from the assumption that the general Riemann hypothesis is not true.
Heilbronn’s theorem together with Hecke’s theorem gives without any
agsumption _
M—D)—oco for D-co.
_ A year later Siegel [31] proved the inequality
(1.5) h(—D) > e for - D> Dy(s)
for an arbitrary &> 0, and with a constant D,(e) depending only on e.
However the constant Dgy(e) in Siegel’s theorem was ineffective

(for the non-trivial case s < 1/2), i.e. the proof gave no possibility to deter- .

mine Dy(z) for a given s. So the curious situation was that the 2nd problem
of Gaunss — which seemed. to be obviously more difficult (and seemed. to
contain the first problem) — was solved affirmatively, without giving
even a theoretical possibility to determine all the imaginary quadratic
fields with clasg number one. '

Another interesting fact is that Hecke’s theorem is an essential part
of Siegel's theorem. (and it remained also essential and unavoidable in
all the later proofs of Siegel’s theorem, given by Heilbronn [13], Ester-
mann [7], Chowla [5], Linnik [20], Tatuzawa [34], Rodosski [29], Kna-
powski [16], Pintz [25], Goldfeld [9], although the assumption of Hecke’s
theorem, i.e. the non-vanishing of I(s, yp) in the interval

4 1
.__logD ]

is not yet proved.
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The first essential vesult, concerning the first problem of Gauss was

achieved in 1934 by Heilbronn and Linfoot [14] showing that excepb
for the known values of

—D = —3, -4, -7, —8, —11, ~19, —43, —67, — 163

there is ab most a tenth negative fundamental discriminant with eclass

number one. (Other proofs for this fact were given later by K. Iseki [15]
and R. Ayoub [1].) An analogne statement concerning the determination
of the imaginary quadratic fields with given class number was proved
by Landau [19] in 1935. Modifying the proof of Heilbronn [12], Landau
showed that if
' h(~D) =h

then the inequality

{1.8) D < D(h) = ORPlogs(3R)

(where ¢ is an absolute effective constant) holds with the possible excep-
tion, of at most one negative fundamental discriminant. Tatuzawa [34]
proved in 1950 the theorem of Landau, i.e. (1.6) with

(1.7) D (k) = Ohzlog?(13%).

Towards the effectivization of Siegel’s theorem Tatuzaws [34] proved
that if A( — D) < DY~ then the inequality

(1.8 D < Dy(s) = max(e*, ¢F)

holds with the possible exception of at most one negative fundamental
digscriminant. Finally, more than 30 years after Siegel’s resulf, in 196667,
Baker [2] and Stark [32] independently proved, that there is no tenth
imaginary gquadratic field with class number one. A few years ago the
methods of Baker and Stark led to the solution of class number two prob-
lem. {See Baker [3], Stark [33], Baker and Stark [4], and Montgomery
and Weinberger [22].)

The most important consequence of Siegel’s theorem, showed by

 Waltisz [35] in 1936, is that an I function belonging to the real character x

mod D has no zero in the interval
{1.9) ' [1—c(e) D%, 1].

This improves the error term in the formula, that gives the number
of primes less than. or egual to a given & in an arithmetic progression,
and so Siegel’s inequality plays a Iundamental role in the a,na,lymca.l
number theory.

The intieresting fact, discoverad by Deurmg [6], and Heilbronn [12]
is that the non-trivial zeros of £(s) and L(s, x) (where x is an arbitrary real
or complex character), have influence on. the real zeros of other real
L-functions. '
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This fact was used also by Linnuk {217 in kis work concerning the

least prime in an arithmetic progression. Analyzing this phenomenon,

called by him Deuring-Heilbronn phenomenon, he suceeeded to prove
the following very general theorem

TEROREM (Linnik). If an L-function belonging to a real non-principal
character mod D} hos o real zevo 1 — & with

{(1.10) §< A, /logD
then all the L-functions belonging to characlers modD, have no zevo in the
domain .

4, 7

1.11 =1— 1
WD o2 T b+ 8 Slog D 1)

Slog D(Jf]+1) < A,

(4, and A, are absolute constants.)

{For simpler proofs of Linnik’s theorem gee Rodosskii [30], Kna-
powski [17], Haneke [111].)

2. Tn [28] we investigated the influence of zeros of £(s) on the excep-
tional zeros, i.e. the Deuring phenomenon. Now we turn our attention
to the non-trivial zeros of arbitrary ZL-functions belonging to non-prin-
cipal characters, and demongfrate their influence on-the execeptional
zexos. Our method will be different from the method applied in [287.
We modify the method, applied in [25] to prove Siegel’s theorem in an
elementary way {which iz based on some ideas of Linnik [20]) {0 obtain
some results eoncerning the Heilbronn phenomenon.

In our theorems we shall assume without any further reference that D
(but not k) is greater than a given effective constant Dy (eomputable
from the proofs).

Pirst we state

TeEOREM 1. Let us assume that an L-fumction belonging to a mon-
primoipal (real or comples) character g, mod k has am sy, = 1—y it zevo
with y < 0.05. Then for an arbitrary real non-principal character vy, mod D
{for which yyxp 8 also non-principal) the inequality

; ) 1
21 L1, xp) > 4007108 T
holds, where U = kls,| D.

) From Theorem 1 follows a weakened form of Heilbronn's theorem;
namely if there is an I-function, which has a zero in the half- plane

o> 0.95(1), then h(— >1/_

() With little more extra. trouble we could also prove that a zero in the half-
plane 6> 3/4 implies h(— }-+ o0,
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" depending only on &, with the following propery
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Theorem I combined with the theorem of Hecke also gives §Siege1’s

‘theorem.

TFrom Theorem 1 one can easily derive a weakened form of Linnik’s
theorem [21] on the exceptional zeros, namely

TEBOREM 2. If an L funciion belonging to a non-principel character
mod k has an 8 = 1—y it zero with y < 0.05, and an other L-funetion
belonging to the real non-principal charaster yp, (for which y,yp is also non-
prineipal) mod D has an 1--48 real excepiional zero, then the inequality

1
(2:2) 7 0 0105 U
holds, where U == k|s,|.D.
This is equivalent to the inequality

1

1408log° T

(2.3) y >

6log U/ log

This gives Linnik’s theorem in the case

1

Theorem 2 gives for real zeros of real I-functions the following result
(proved in another way by Rodosskii [29]).

TaEEOREM 3. For an erbitrary & 0 < & < 0.0, there is of most one D,
and at most one primitive real character yy, mod D, such thet L(s, xp) vanishes
somewhere in the imberval :

-1
— mi 1].
[1 B (s’ 140-3210g5D-D“‘)’ ]
If ‘we combine a trivial congsequence of Theorem 3 with Hecke’s the-

orem, we have Tatuzawa's theorems.

TROREM 4. For an arbitrary ¢ > 0 there is @ l)u( effective constant
¥: if xp 8 a real primitive

(2.5)

“character mod.D, and D > Dy{e) then

(2.6) Li(s, zp) #0 for se[1-D7%1]
and the inequality _
(2.7) L(1, gp) > D™*

holds, with the possible emaeptw'n of at most one D, cmd at most one Primitive
character yp mod D.

Applying the clags-number formula. of Dirichlet (1 4) (m cage. of (2 9)
we must vet use a theorem of Landau [18]), we get from (2 7)
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TE:EDREM 5. For an arbitrary &> 0 there is a Dy(e) effective constant
with the following property: If Dz Dy(s) (and —D < 0 is a fundamental
dzsammmant) then the inequality

(2,3) h{—D)> D¥*

holds, with the possible emcepm'oﬂ of at most one negative fundamenial dis-

oriminant.
If —D is o negative fundamental discriminant, b an arbitrary netural

number, D > Chtlog?(3h) (C 1is an absolute effective constant), then the
inequality

(2.9) B—Dy>h

holds, with the possible emception of at most one wegative fundamental dis-
criminant.

3. For the proof of Theorem 1 we define the following sets of natura.l
numbers:

(3.1) A, = {n; pln, pprime—>yp(p) = v} ’ (¥ = —1,0, 1),
(3.2) O ={e; o = ab, Gedy, bedy}.

Then an arbitrary natural number # can be written in the form
(3.3) cel, wedy, bed,, med

As for an arbitrary 8 multiplicative number theoretmal function, the

funetion
(3.4) = Z 6(d)
din

f = om = ubm;

is multiplicative, so it A{n) denotes Liouville’s A-function, then

, I =0
(3-5) %z dy = l § el
“and :
(3.6) D(ﬂ)=2xn(d) = [J+xp)+... +2°®)>0

din pfin
are multiplicative.
We shall make use of the relation

g,(a) = Zl(az) = 22”(‘%]}{(&;)& (%)

agia mple

(3.7)

(where »{n} denotes the number of distinet prime divisors of =, a,n.d d{n}
denotes the number of divisors of »). Further we know that for

(3.8) achy, bedy med_, '
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we have from (3.6)
gple) = d(a), gp(b) =1,

Hence with (3.7) as g;(n) and g;(n) are multiplicative, for n = abm
=gm, ted,, bedy, med_;, we get

{3.9) gp{m) = g;{m).

(3.10) ga(n) = ga(a)ga(D)g;(m)

agla 2t
¥
= X ()
: G
cles ep=aghy !
aped , bed 0

Oxn the other hand, from (8.6) for ¢<(0, ¢ = ab, ae Ay, bed,, we have
(3.11) 2" < gple) < d(o).

Thus, considering {3.6), (3.10), {(3.11) and the notafions in Theorem. 1,
we have

(312) 0111~ Zruw) 12%:;80

nnl-‘
\ 1 xk(ﬂ) E Zk(’"’) Z Ha) b
n)| = = oM le —
2‘5 o gal )i T (&) P
nLl L e ce,oln
. eraah, nedy,bed;
2@ 4(0) ga(0) Zu(r)
- Z ¢fo Z o 9ol
e<<T8, cel’ - r<UY%
C=nb,aed),bedy
d(n) £i(?) 7 goln) a(r)
=Ly g 2 7 0+ 2 = Z A
n<tr3 r<USm ansyb r<Gbm
— ZI. + Ez

Here as L (s, x5 = 0 estimating the finite partial sums of L(ss; ¥z 2p)
and L(sy, y,) by partial summation for y = U® we get

Z () xp(d) £ (¥)
dso Iso

r
|3 S
réu 4 dir l<w’d
xx(d 1D Z xw(d) 7p(d) xp _
<| 3 B S e
d<vy =yfd : I<Vy Viu<d<yfl
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< S e T 2T —k-l-))'—L

2% [su[]/_ 9kD |5, logy 9" 1
< yt=? + vy 100y togty
Now (3.12) and (3.13) give the inequa.lit.y
d(%)%" 1

" 100 ( Zﬁ)? Jog* U®

1 dn) 1
< 100Tog* T° Z w100
T3

(3.14) Z <

n<3

Combining {3.11) with (3.14) we have
(3.15) >

On the other hand using Lemma 1 of [27] with the values @, = U°,
@, = U® gubtracting the two equalities we get by U = D:

Diee Plog T7° .
gpin) =10gU3L(.l:xDH—O(l/%w-m——-—l/D1@g g U )

(329 Then< b v
= 3log U(L(L, xp)+ O(T*).
This implies together with (3.15) )

Ip(n) 2 a(r)

iimmes " U, r

< U¥8log U(L(1, 2p) -+ O (T~ (§+o(1

< (18.5+0(1))log? UL (1, g5 +o(1)

which proves. Theorem 1.

1
< Ey < UY

@B

Ylog* U#

4. Theorem 2 follows from Theorem 1, if we recall that for the

greatest real zero 1— 8 of L(s, 2p) (Where yp is a real non-principal charac-
ter mod D}, by the arguments of Page [24]

1
EU—\{ logt D < log?U.

(4.1) ;

Theorem 2 implies Theorem 3, so let us assume that & is the minimal
modulus for which an L-function belongmg to a real primitive character
mod % has a real zero 1—y in the interval (2.5). Then for an arbitrary
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modulus D 2 k and. for the real primitive character rpmod D (45 # 1),
for the greatest real zero 1—6 of L{s, xp) holds by Theorem 2:
1 1
140 U™1og" U~ 140 [kD(1— )" log* [D(1 — )]
1 1
~ Jdo- 32l0g°D D% © 110 -32log°D- D™

Applying Theorem 3 with /20 instead of & and considering that
for o D> Dyle) (effective constant)

-1 ) 5
— > —

(4.2) 8>

(4.3)

£
n|j—, —
207 140-3210g"D- D= | 7 D¢

we get (2.6) with a constant 5 instead of 1. But we proved in [26](Hecke’s
theorem), if a real L-function has no zero in the interval

1

[1—6!5 1] fOl‘ gw

then
L1, xp) > 0.23a > afb

and so (2.6) (in this modified form) implies (2.7).

(2.7) is apart from a factor = equivalent with (2.8) (which we can
naturally eliminate using (2.7) with £/2 ingtead of &).

-If in Theorem b we choose (' sufficiently large, and regard the fun-
damental diseriminant —% with the minimal absolute value, for which
the inequalities

(4.4)° > Chtlogi(3h), h(—k)<h
hold, then for z,(n) = (—k/n) we have

_ e(OWE & (0)n
(4:.5) h( ad k) < "Tgh“, Le, L(l, xk) < ]_ng

Thig implies by the theorem of Hecke [18] (in this form see [26]), that
L{s, x;) hag a 1y real zero for which
By (O) 7

(4.6) oy < Togh

(where ¢,(C) is sufticiently small if ¢ was chosen sufficiently large),
But in this case, according to the theorem of Landau [18], for
an arbitrary -primitive character yp(# y)modD L(s,xp) has no

zero in interval [1— 1] and thus it doés not vanish in the.

C,
logkD’
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C
2 , 1
2log D
the mentioned theorem of Hecke

interval -[1— ] (where (0, iz an ahsolute cfmstam}), and so by

20D 20Vk

= h
5zlogD ~ Brlogh

4.1 h{—D) >

(if ¢ was choosen large enough). :
On the other hand in the case I} > k* we can use Theorem 1, which
gives the inequality
i m
140-8-log* D+ D™ gy
' VD

(4.8) L, zp) >

{for D > D, absolute constant), i.e. by the class number formula of Dirich-
let we have

2

4 . . .
(4.9) h(—D)> VD = Vi > VChilog?(3h) > .
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