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Some continuous separation axioms

by
Phillip Zenor (Auburn, Ala.)

Abstract, Let X denote the space of closed subsets of X with the Vietoris topology-
A function @: X X FX-> [0, 1] is a perfect normality operator (abbreviated PN -operator)
if, for each H ¢ FX, H = {z « X: p(z, H)= 0}. X is continuously perfectly normal if X
admits a continuous PN -operator. Notions of continuously normal and continuous
complete regularity are defined in a similar fashion. It is ghown that:

1. X is metrizable = X is continuously perfectly normal =X is continuously
normal = X is continuously completely regular.

2. Every continuously perfectly normal space is a collectionwise normal Fréchet
space.

3. The product of X with the irrationals is continuously completely regular iff X is
continuously perfectly normal.

4. Every locally compact continuously completely regular space ig first countable.

5. X is metrizable if and only if X admits a continuous PN -operator, @, such that
it I is a finite subset of X and if z < K, then o(y, {#}) > @(y, K) for every ¥ e X.

6. Every wd continuously perfectly normal space is metrizable.

G Gruenhage recently showed the author an example of a continuously perfectly
normal, stratifiable, first countable space that is not metrizable. It is not known if every
continuously perfectly normal space is metrizable.

In [14], the author shows that the Ti-space X is metrizable if and only
if there is a continuous function o from FX, the space of closed subsets
of X with the Vietoris topology (*) into CX, the space of continuous,
non-negative, realvalued functions defined on X with the compact-open
topology, such that

(a) it HeFX, then H = {z]| a(H)(z) = 0} and

(b) if K is o finite subset of X and if # ¢ K, then

(a({ah) () = (« () (¥)

The author’s attempts to decide if (b) of this theorem could be removed
led to the notions of continuous perfect normality, continuous normality,

for all ye X .

(*) If X is a space and U is a finite collection of subsets of X, then RU will denote
the set {I e FX| F c|_J U and F intersects each member of U}. Then the collection
{RU| U is a finite collection of open subsets of X} forms a basis for a topology on X.
The topology so induced. is often called the Vietoris topology, the finite topology, o the
exponential topology. Good studies of the Vietoris topology can be found in [7] and in [8].
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and continuous complete regularity. Any continuously perfectly normal
space X admits a continuous function «: FX—CX satisfying condi-
tion (a) mentioned above. Recently, Gruenhage [3] has displayed an
. example of a continuously perfectly normal space that is not metrizable.
In general, we have that X is metrizable =X is continuously perfectly
normal =X ig continuously normal =X is continuously completely re-
gular. In Section 5, we give an example of a continuously completely ve-
gular space that is not continuously normal. The author does not know
of a continuously normal space that is not continuously perfectly normal.
In Section 2, the general properties of continuously perfectly normal spaces
are investigated; in Section 3, continuously perfectly normal spaces
and continuously completely regular spaces are studied and Section 4 iy
devoted to metrization theorems. :

1. Definitions and conventions. All of our spaces arc at least T,. If X is
a space, then §X will denote the space of closed subsets of X with the Vie-
toris topology (see footmote (1)), 46X will denote the space

{H,K)e FXXxFX: H K =0},

and DX will be the space {(z, K) e XX FX: a ¢ K}.

1.1. DerivitioN. A function ¢: XX FX-—[0,1] is called a perfect
normality operator (abbreviated by PN-operator) if for each H e FX it
is true that H = {2: p(z, H) = 0}. A space is said to be continuonsly per-
Jectly mormal (CPN) if X admits & continuouns PN -operator.

Clearly, a space X is perfectly normal provided that it admits
a PN-operator that is continuous in the first variable.

1.2. DEFINITION. A function ¢: X XMX—[0,1] is a normality
operator (N-operator) if it is true that it (H, K) e MoX, then,

HC{weX: gz, (H,K))=0} and KC{zeX: s, (H,I0))=1}.

X is said to be continuously normal (CN) if X admits a conbtinuous
N-operator.

1.3. DerivITIoN. A function g: X x DX [0, 1] is a complete regula-
rity operator (CR-operator) if for ecach (w, H) e DX, (e, (2, H)) =0
and HC{yeX: ply, (x, H))=1). A space that admits a continuous
CR-operator will be said to be continuously completely regular (COR).

Clearly, a space that admits an N-operator (UR-operator) which is
continuous in the first variable is normal (completely regular). Also, it is
clear that a CN-space is a CCR - space.

2. Some fundamental properties of CPN -spaces.

2.1. THEOREM. Ivery metrizable space is o CPN-space and every
CPN -space is CN.
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Proof. Let d be a metric for the space X such that d(z,y) <1 for
all (z,y)e XxX. Let ¢: XX FX—[0,1] be defined by oz, H)
= gib{d(=, y): y e H}. To see that ¢ is continuous, let ¢ >0, x ¢ X, and.
HeFX. Let U= {y: p(y, H) < te} and let o’ be a point of H such that.

lp(e, H)—d(z, ') << te.

Tet V={y: diy,o)<iel and let W= {y: d(y,z)<%e}. Clearly,
peW and HeR{U,V} (see footnote (t)). Suppose that yeW and
K eR{U,V}. Then

oly, K)= glb{d(y, ?): 2z K} < glb{d(y,2): e H}+1¢
< d(@,y)+gb{d(@, o) # e H}+}e
< oz, H)+ 3¢ .

Now, let k& be a point of K ~V. Then

oy, K) = d(k, y)—te = d(k, 2)—}e = a(@', 2)+ d(@', b)—ge
>d@, k)—ie=pla, H—e.

Thus, ¢y, K)—e¢(z, H)| <e and ¢ is continuous. )

Suppose now that X is a CPN -space. Let ¢ be a continuous IfN- ope-
rator for X. Let ¢’ be the function defined on Xx..ALX defm.ed. by
@'z, (H, K)) = g(@, H)lg(@, H) + ¢(z, K)). Clearly, ¢’ is a continuous
N -operator.

Greunhage’s example [3] is not first countable; however, we have
the following Theorem:

2.9. THEOREM. Hvery CPN-space is a Fréchet space (%).

Proof. Suppose , is a limit point of the set H. Let ¢ be a continuous
PN-operator for X. Using induction, we will choose, for ea;chAn >0,
2 point @, and a collection {U (¢, n)| ¢ =0, ..., n} of open sets such that

(1) for each ¢ = 1, w1 ¢ H,

i, n) contains o

gg g(zik’: ...’nkj} c {1: vy m} and if K e B{U(0,n), U(ky,n),..
ey U(log, m)}, then o(z,, K) < 1/2%),

(4) el U (G, n+1)C U6, n) for all ¢ < n,

(6) el U(n+1,n+1)C g((}),nz. Emfi .

iy ] iy ko implies = k.

ggfo?fﬁlizr@oﬁs(gat)inz the pinductive construction let us s]_aow
that if we have & Sequence @, %,.. and a sequence of collections
{U@,n)] 4=0,..,n}, of open sets satisfying (1)-(6), then @i, %, ...

(*) X is o Tréchet space if limit points are determined by convergent sequences.
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converges to x,. To this end, suppose that ;, ., ... does not converge to
#,. Then there are an open set U containing #, and an infinite increasing
sequence t(1), 1(2), ... of integers such that, for each ¢, z,, is not in U.
Let K = cl{wyy, @y, «..}- Since z, is not in K, there is an integer N such
that g(@, K) >1/N. By (1), (4), and (5) we have that el{zy.,,

, Bina)s o
cey T[(N), 8(N)); thus, K e R{T(0, ¢(N)), U(t(1), t()), ..

. U(t(N),t(N)}}:

And so, by (3), ¢(2y, K) < 1/2", which is a contradiction from which the .

Theorem will follow.

Now, to demonstrate the inductive construction, note that we already
have x,. Let U(0,0) be an open set containing x, such that if K ¢« X
and K « B{U(0, 0)}, then p(z,, I{) < 1. Suppose that we have {x,, ..., @}
and {U (¢, )] =0, ...,j} for all § < n. For each subget K of {1, @y oovy 20},
let WK denote a collection of mutually exclusive open. sebs covering
K v {z,} such that if H ¢ 2(UK), then (%, H) <1/2" and such that
each member of WK contains exactly one point of K u {@p}. For cach
0<i<m, let K(j)={KC{x, ..., w}| ;e K} and for each I eX%(j),
let U(K,j) denote that element of ALK that contains ;. For each
0<ji<n, let .

n
Vi, n4+1) = (NTG, )~ N TE,H).
=0 K eXo(d)
For each 0 >j >n, let U(j, n+1) be an open set containing @; such that
elU(j, n+1) CV(j, n-+1). Finally, let Z,+, be a point of (’V(O,n+1)—
—{&,}) ~ H and let U(0,n-+1) and U(n+1, n+1) be mutually exclusive
open sets containing x, and ,,, respectively such that

(U0, n+1) v U(n+1, n+1))C U0, n).

2.3. THEOREM. Bvery CPN-space is hereditarily CPN.

Proof. Let ¢ be a continuous PN-operator on X and let Y denote
@ subspace of X. For each H ¢ FY and each 2 ¢ Y, let

@' (@, H) = q(z, cly H) ,

2.4. TI:IEOR?EM. Every OPN -space s collectionwise normal.

A couple of lemmas will facilitate the proof of 2.d.

2.5. Lewma. The space X is collectionwise normal if and only if it is
true that if {H,: ae A} is o diserete collection of closed sets, thenl there is
o function y taking A XN (%) into the collection of open subsets of X such
that (1) for each a ¢ 4, {y(a,n): n e N} covers H, and (2) for each a e A
and for each n e N, Hy~el(lJ {y(b,n): bed— a}) = O. ,

() N denotes the set of positive integers.
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Proof. For each a e 4, let

Dia,n)=y(a,n)—cl |J {pb,j): bed—a,j<n}
and
U,=UD(a,n).
==l

To see that H,C U,, let ¢ H,. Then there is a first integer n such
that « ey (a,n). But acecording to (2) of the hypothesis, # is not in
el J{y(,5): b+ a; 5 < n}; and 80, w e D(a, n). It is clear that {U,: a « 4}
is a collection of mutually exclusive open sets.

2.6, LmMyA. The perfectly normal space X 4s collectionwise normal if
and only if it is true that if {H,: o ¢ A} is a discrete collection of closed sets,
then there 48 o function B from A XN into the collection of subsets of X such
that (1) for each a e A, {B(a,n): ne N} covers H, and (2) for each n N,
{B(a,n): aed} is a collection of mutually ewclusive open sefs.

Proof. Suppose that § satisfies (1) and (2) for the collection {H,: a ¢ A}
of closed sets. For each n e\’ and for each a e 4, let f'(a,n) = f(a, n)——bU H,.

#a

Sinee X is perfectly normal and since | J{f'(a, n): a <A} is an open set,
there is a sequence D(1,n), D(2,n),.. of open sets such that

U D(j,n)= (_J)\ clD(j,n)=J{f (a,n): aed}.
jeN je?

For each (a,],n) e AXN XN, let y'(a, (j, n) = f'(a, n) ~ D(j, n). Let g
be a one-to-one function from N onto N xJN. For each integer j, leb
v(a,§) = y'(a, g(j). We need only show that y sabisfies condition (2) of
TLemma 2.5. To this end, suppose that there are an ae 4, a j ¢N, and
an © ¢ H, such that @ e cl|J {y (b, j): b ¢ A—a}. Suppose that g{j) = (¢, n).
Sinee the members of {f'(¢c,n): ¢e A} are mutually exclusive, # is not
in {J {B'(e,n): ¢ A}. Bub

U {y'(b, (i, n)): b e A—a}CD(i,n) CelD(i, n) CU {f' (¢, n): ¢ e A}

and so, # cannob be a point of el | {y(b,]): be ‘A — a} which is a contra-
diction, from which the lemma follows.

9.7. Proof of Theorem 2.4. Let ¢ be a continuous PN-operator
for X. Let {H,| aeA} be a discrete collection of closed sebs in X.

We will congtruct a function § taking A XN into the collection of
open subsets of X satisfying the hypothesis of Lemma 2.6. To this end, we
will assume that the indexing set 4 is an initial segment of ordinal numbers.
We will take H, = @ and, for each n, define ¢ YH,, M) =@ for each sub-
set M of the interval [0,1]. For each a in 4, let:

(&) %y = U I,

3 — Fundamenta Mathematicae XC
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(B) Dia, n)= (o < X| 9o, 35) < 1n}—el(U

and

(D) B(a,n) = D(a,n)~ Ul(a).

Clearly, for each n, the collection {f(a,n)| a <4} is a collection of

mutually exclusive open sets. We need only show that {8(a, n)| n <N}

covers H,. Suppose otherwise; then there is a point «, in H, such that,

for each n, %, is a limit point of UJ {z ¢ X| ¢(x, 38,) < 1/n}. For cach n,
b<a

there must be an ordinal a(n) << @ such that ¢(w,, Boemy) < 1fn. We may

agsume that if n >m, then a(n) > a(m). Let &= Josy- Bince # is not.
ie

in J, there is an integer M >0 such that ¢(,, ) > 1/M. Since ¢ is con-
tmuous, there is an M’ such that if n > M’, then |p(w, #,y,) >1/M.
But this is a contradiction since |g(w,, H, a+am)| < Y(M4M') < 1/ M.
Thus, § satisfies the hypothesis of Lemma 2.6.

Note. It is not known if every CPN-space is paracompact. Indeed,
it is apparently not known if every perfectly mormal and collectlonvvlse
normal space is paracompact.

2.8. THEOREM. If {X4| ¢ e N} is a collection of spaces such that, for
each n, the product ]] X is a OPN-space, then [| X; is a OPN-space.

g=1 teN’

Proof. For each n, let P, denote the projection of [ [ X onto f [ X

=1

and let @, be a continuous PN -operator for [ [ X:. Let ¢ be the function
i=1
taking {[] Xy fF(HXi) into [0, 1] defined by

(o, @)= D'[(1/29)(¢(P (=), Hi))], where Hi= clPyH).
teN
It is easily verified that ¢ is a continuous PN-operator for IT X,

1eN
2.9. TamorEM. If X 4s a CPN-space then X X X is a OPN-space,
where X' denotes the space of irrationals.

Proof For each 4, let JV°; denote a copy of N. Then Z'is homeomorphic
to ]7 N Tt is easy to see that, for each n, X x ] [ ¥ is a OPN-space.

de=1 P
Thus, 2.9 follows from 2.8. '

In general, the continuous separation axioms are not preserved under
mappings; indeed, we will see later that the closed continumous image of
2 metric space need not be even a CCOR-space. However, we do have the
following theorem:

{w e X| ¢(2, &)< 1/n}),
(0) U{a) be an open set such that H,C U(a)CelU(a) C X— | J H,,
beta
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2.10. THEOREM. If f: X =7 is onto, continuous, open, and perfect(4),
then Y 4s a CPN-space (ON-space) provided thet X is a CPN-space
(CN -space).

Proof. We will show that if X is continuously perfectly normal, then
50 is ¥. The argument for continuous normality is much the same as we -
use here.

Let ¢ be a continuous PN -operator for X. For each (y, H) e Y X FY,
define ¢’ (y, H) = glb{p(w, f*(H))| @ ¢ f™(y)}. Since ¢ is bounded, ¢'(y, H)
is defined; indeed, since f~X(y) is compact, ¢’ (y, H) = 0 if and only if y ¢ H.
To see that ¢’ is continuous, let (y,, H,) be a point of ¥ x FY and let
e >0. Let x, be a point of f~'(y,) such that ¢’ (y,, Hy) = @(#y, I (Hy))
(@, exists since fy,) is compact). There are a basic open set
U= R{Uy, ..., Un} in FX containing f~*(H,) and an open set ¥V in X con-
taining @, such that if K ¢ U and ¢V, then {p(z, K)— (2, [T{H)| < =.

n
Let W= ¥— (f(X—— U U )) and let Wy= R{f(U) ~nW,..,f(Un) ~» W}
LESY
Then W, = f(V)x W, is an open set in X x FX containing (y,, H,). Leb
(v, ) ¢ W,. Then f2(H) e U and there is a point z of f~*(y) in V. It follows
that ¢(z, f(H)) < (w, f(Ho))+¢; and so, ¢’ (y, H) < ¢(H,, )+ &

Now, for each point @ of T y,), let Uz be an open set in FX contain-
ing f”l(Ho) and let 7 be an open set in X containing @ such that it H < Ug
and o' eV, then |p(@', H)—o(z, f7(H,)| < &. Since f~(y,) is compaet,
there is a finite subset {z(1), ..., z(n)} of f~(y,) such that

{V:c(l)7 Vx(2)7 ey
covers fy,). Let ‘LL R{U,, U,, ..., Uz} be a
that f~(H,) e W C m Uy Lt W' = T—f(X— .U Uy, Wa=

V:c(n)}
basm open set in ¥X such
R{f(T,) ~

AW, ety f(U) AW, V= X— f(X— U Vaw) and W=V X W,.

It is easily verfied that (Yo, Ho) e’w2 Let (4, H) e W,. Then f~H) U
and fy) e U{qu), iy Vam} Lt x be a point of f~(y) such that
o'y, H) = plz, f~ (H)) Then # is in some member of {Vyu), s Vb
S0y V- Then g (v, ) >9(0(), SE) — e > ploa, f7(Hy))- Thus, it
(y, H) e W, ~W,, then |¢' (4, H) —@'(4,, Ho)l < 5 and s0, ¢’ is continuous,
2.11. TuporeM. If X is o OPN-space, then the diagonal of X in X x X
is @ zero-set (and hence & regular (y-set).
Proof. Let f: Xx X—[0,1] be, defined by f(z,y) = ¢z, {¥}).
Clearly, the diagonal of X is the set {(z,¥)| f(z,9)= 0}. ,

(%) The continuous function f: X— ¥ is penfect if it is closed and point inverses
are compact.
3%
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3. Continously normal spaces and continuously completely regular spaces,
3.1. TEEOREM. If X X ¥ is a CCR-space, then either no countable subset
of X has a limit point or Y is a CPN-space.

. Proof. L(.st 0 = {w,, @, ...} be a countable subset of X with a limit
p.om’ﬁ, say @, in X— C. Tor each n, let Cp = {@, ..., ¥u}. Lot ¢ be a con-
tinuous CR-operator for X > I. For each u, let ¢, be the function from
Y% FY into [0, 1] defined by

Py, H) = L—q((@u, ¥), (%0, y), Oux H) .

Let ¢, be the function from ¥ x FX into [0,1] defined by

oy, H) = > (12Yquly, H) .
ieN

To see that ¢, is continuous, we only need show that each ¢; is continuous.

TI‘o this end, let & > 0. Since ¢ is continuous, there are open sets U and V

in Y containing ¥ and a basic open set R{U,, ..., Uy} in F(X x ¥) con-

taining Oy x H such that i y e U~V and K eR{U,, .., U}, then

l(p((wh ¥ (@, Y7, If)"“.ﬁ((mi; ), ((‘1’07 ”), Ci % H))I <&,

For j < n and for each “7:., <4y let Uk, j)= {weX| (wg, w) e U} Then if
the closed subset & of ¥ isin M R{U(k,j)| j<n}and if y' e U AV, then
k<1 ’
lpiy , H)—uly’, X))
= x(P((‘T“ YY), (%, ), O X H)—(ﬂ(({l?i, ¥y (@, ¥, Ui X If)1< £.

Thus, each lpq;‘iS continuous.
It remains to show that if H « FY, then H= {y e ¥

, then H = {y ¢ ¥| gy, H) = 0}.
Gliarly, HC{yec¥| ¢0(y, H) =0}, Suppose that y is mnot il; H. Lét
H® = cl(ieLl)V (0ix H)). Since y is not in H, (#,, y) is not in H*, Since ¢ is
continuous, there are open sets U and V in X and ¥ respectively such that
@o, Y) ;Ux V and a b_asic open set B{Uy, ..., Uy} in F(X X X) contuin-
ing ’H, such. thzf.t if (m", Y)eUXV and H' eR{U,,..., U,}, then
r'p(((ﬁ.,(l/ )5 (@, y),H!< J; Since (Cyx H), (Cyx H), ... converges to H
in §X and sinee @, is a limit point of ¢, we may choose an integer # such
that @n e U and On X H € B{U;, ..., Uyp}. Thus,

Py, H) 2 27"aly , Hy) = 2“"(1—99((%, Y); (@, y), CaX H))
>(@27"1) >0.

From Theorems 8.1 and 2.9, we have the following result:
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3.2. THroREM. Let X denote the space of irrational numbers. The following
conditions for a space X are equivalent:

(1) X is a CPN-space.

(2) Xx Xis a CPN-space.

(3) XxXisa GN—,sgoac@.

(4) X'x X is & CCR-space.

3.3. THEOREM. Suppose that {Xi| i N} is a countable collection of
nondegenerate spaces. The following conditions for {Xi| i e} are equi-
valent: '

n
(1) For each n, [[ X is a CPN-space.
Q=1

@

) JI X is a CPN-space.
TeN
3y J] Xi is o CON-space.
1eN
4y J] Xi is a OCR-space.
e N
Proof. According to Theorem 2.8, we need only show that (4) im-
plies (1). To this end, for each 7, let 1 denote a subset of X; containing

exactly two points. Then for each n, [] X is a copy of the Cantor set.
=1
n o

1 Ty ( I+1Yi)’

1=n

Since (]n Xi)x( J] ¥i) is a closed subspace of [[ Xy, (I
1 =n+1 3

1= i ieN

it is continmously completely regular. Thus, according to Theorem 3.1,
n

J] X: is a CPN-space.

=1

Note. As a corollary to 3.1, it follows that the product of an uncoun-
table collection of non-degenerate spaces cannot be continuously completely
regular.

3.4, ToporEM. A separable continuously completely reqular space 48
perfectly normal.

Proof. Let ¢ be a continuous CR-operator for the separable space X.
Tor each closed subset H of X, let N (H) denote a countable dense subseb
of X—II. For each «e N(H), let D(z, H) = {y| oy, 2, H) > 1. Accord-
ing to Corollary 2 of [13], it is sufficient to show that H = [\ D(z, H)

o z e N(H) .
= (O clD(z, H).
xe N(IT) ]
Cleaxly, HC (O D(z, H). Tet y e M clD(z, H) and suppose ¥ 18

2 e N(H) x e N(H) . .
not in H. Then there is an open set U containing y such that if we T

and # e U, then g(w,z, H)<}. Let @ be a point of N(H) in U. Then
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{wl ¢(w, s, H)< {} is an open set containing y that does not intersect
D(z, H) which contradicts the assumption that Y eclD(x, H).
. 3.5. LEM}VIA. If f is a continuous one-to-one function Sfrom the space X
wmto the metric space M, then the diagonal of X is a zero-set in XXX.
~ Proof. Let fx f denote the function taking X x X into Mx M do-
flngd by ( f.>< i, ;y).x (f(2), f(y)). Since f is ope-to-one and continuous,
80 is S x f. Since the diagonal s of M in M x I is a zero-set, there is a fune-
tion g: M X M~+[0,1] such that Ay = {we M x M | (1) = ()}. Then 4 \
the diagonal of X in X x X, is precisely the set {veXxX| g((fx P (@)= 0}7

3.6. Tuporem. If X is a separable CCR-space, then diagonal of X s
@ zero set in X x X.

Pr‘o of. Let N denote a countable dense subset of X and let @ be
a continuous 'CR-operator for X. For cach (®,9) e (NXN)—dy, lot
Jap: X—[0,1] be defined by Jan®) = elz, 2, {y}). Then

{Fewl (@, 9) ¢ (WX N)— Ay}

is a{ fcou:lqmble collection of continuous functions from X into [0,1]; and

80 (#,9) e Nx N} induce i et - N
@) ’ $ a continuous function I fro

the Hilbert cube. m ¥ into

According to the Embedding Lemma [5, p. 116], if
{f(:r,y)l (x: f’/) e Nx -N}

separates points, then ¥ is one-to-one and our theorem will then follow
from Lemma 3.5. To this end, let (w,2) e XX X with w # 2. There are
mutually exclusive open sets U and V containing w and ¢ respectively
such that if ¢ U and y eV, then P(w, s, {y}) < 3 and ¢(z, .{y}) >1
Then3 choose an #Ze¢ U AN and a yeV N, T]len S 71)(710) ’;/: Jea y)(z“):
7. LeMMA. The one-point ¢ wetificati o ount Jisore

20cc 15 mag 0 GO s p it compactification of an uncountable discrete

Proof. Let M denote an uncountable diserete space a,nd let
Y= ﬂ_f © {¥,} be the one-point compactification of M and suppose i:hn;t q; i8
a continuous CR-operator for Y. Lot my be a point of M. There ‘is an c»péh
set U; containing y, sneh that if z and gy are pointsy of U, R thcn
?(@,y, {m}) < }. Having Mgy My oey M and Ty, ...,' U,y lot U,:,’bo an,

. T==1

‘ open set containing y, such that (1) Un C M Usand (2) if @ and Y are points
RS ) '

f’f U",’then @@, y, {mfl}) < 1/2™ Since, for each n, ¥— U, is fiﬂite, there

18 a-point %, of (N U, distinet from 4 o There is an open set V containing y,

ieN
such that if # and y are in V, then
: 1 s then o(z, 2, {y}) > %. Let % be an inteser
greater than 1 such that m, <V and leh #; be a point of V'~ ( N U;). Tl;:en
ie N
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@(@y, W, {Mn}) >% bub at the same time g(z,, 2, {ms}) < 1/2" which i
a econtradiction from which the lemma follows.

3.8. THEROEM. Bvery compact CCR-space is first countable.

Proof. Let ¢ be a continuous CR-operator for the compact space X,
let # « X, and let < be a well-ordering for X—a. By induction, choose
a subset H of X—a« such that

@ U e X—al oy, b, o) <$}=X—ag

X3
(2) if he H, then h is not in |J {y e X—al o(y, ¥, {2}) < 3}

<h

‘We will first show that if y is a limit point of H, then y = ». To this
end, suppose otherwise; let h, denote the first element of H so that
y e {z| @(2, ho, {w}) < }}. Then y is a limit point of {h e H| b < ho}. There
is an open set U containing y such that if 4’ e U, then ¢(y’, ¥, {#}) < -
Thus, there is an i << hy such that ¢(h, ¥, {#}) < % which is a contradiction
from which it follows that # is the only limit point of H.

If H ig finite, then # is an isolated point of X; and so, suppose H is
infinite. Tt follows from Lemma 3.7 that H is countable. For each h ¢ H,
let B, = X—{y| ¢(y, h, {£}) < $}~. Then {B;| h ¢ H} must be a countable

sub-basis for .
Notbe. The author does not know if a compaet OCR-space is metri-
zable (see 4.4 for a related theorem).

4. Some metrization theorems.

4.1. TeMyA. If @ is a continuous PN -operator for X and if y: FX
—~0(X,[0,1]) s the function defined by [y(H)(®) = ¢z, H), then y s
continuous. (C(X,[0,1]) is endowed with the compast-open topology.)

Proof. Let (C, U) be a subbasic open set in C(X,[0,1]);i.e,(C, U)
= {feC(X,[0,1])] f(C)CU}. Suppose that HeFX is. such that
y(H) € (0, U). Then for each z ¢ ¢, there are open sets Uz in X and Vi
in FX containing # and H respectively such thatb if ye Uz and K eV,
then ¢ (y, I{) « U. Sinco C is compact, there is a finiﬁg subset ¢’ of G SE-Ch
that {Us| @ e ('} covers €. Then V= () {V4 @ ('} is an open set in FX
such that if K eV, then [y(E)(0)C U.

Ag an immediate consequence of 4.1, 2.1, an
we have the following theorem:

4.2, THEOREM. X is metrizable if and only if X admits a continuous
PN -operator ¢ such that if K is finite subset of X and if » e X, then
oy, {a}) > o(y, K) for evary y e X.

4.3. LmMMA. The space X is metrizable if and only if X admils a semi-
metric d satisfying the following property:

d the main result of [13],
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' .(*) if @ is not @ limit point of the set H, then there are an open set U con-
inining @ and o nwmber k>0 such that of y e U and weH—n, then
d(y,w) >Fk. ‘

Proof. We will show that if d satisties property (), then d satisties
the following property:

' (W) if {w,z} and {ya} are sequences of points of X such that
Iim d(wn, €) = lim d (24, yu) = 0, then lim d(yp, ) = 0.

N—>00 . /n;—)-oo ke

. In. [11], Wilson shows us that any space that admits o semi-metrie
satisfying (W) is metrizable.

Suppose, then, that lm d(z, @)= lim d(@m, yu) = 0 but {yn}

n-+c0 n-»00 )
does not econverge to x. Then there are a subscquence {yn;} of {ya} and
& number & >0 such that for each 4, d(s, yn) > k.

Slnce d has property (x) there is an open set U containing @ such
@at ifyel, ‘th.en Ay, yn;) >k for each i. Thiy is impossible however
since all but finitely many of the points of {w,,} are in U and

lim (l(‘mni, ?/’ﬂi) =0,
n—+00

f.L.{L. THEOiREM. The separable space X is metrizable if and only if X,
admits a oﬁontmuo'us CR-operator @ such that if K s a finite subset
of X,yeK cmd.w e X— X, then for all weX it is true thet pw, x, I()
Zow, s, {y}); i particular, then, every separable OMCR -space (%) s
metrizable.

. Proof. Let  be a continuous CR - operator satisfying the hypothesis
ol our theorem. Let y: (X x DX)~[0,1] be defined by y(@,y, ) = 1—
—p(z,y, K). ‘

Let {@,®,..} be a countable dense subset of JX. For cach pair
(w,j@ el XXX, let N(z,y)= {n e N°| @, is neither # nor Yy} Tor each
ai €N, let do: [(X X X)— ({o} x X o X x {#a})1{0, 2] be defined by du(z, )
= (&, 9) (@, @n, Y})+ (2, y) (v, T,y {2}). Lot d: X x X—[0, 2] bo defined by
Az, 9)= 3 (@,9)3 (s, ). \ '

ne
First, we will show that if & ig a limit point of the set I and if & = 0
f,hen there is a point 9 of H— {#} such that d(w,y) < e Lot N denoto {mr
integer such that 2=W=2 < ¢, There is a neighborhood U, of 2 such '('h‘u'f“
U,—{w} does not intersect {x, ..., TN} o | o
Case 1. @e{m, .., oy}, say &= o Since, for cach n <N, with
n% ky y (@, o, {w}) = 0, there is a mneighborhood U, of » such Lj‘hzm JJT
K C Uy and y < Un, then y[y, (an, K)) < s/4n. Tot o

YeH N (N{Tn 0K <N, 0 k).

(%) See 4.6 for deﬁnition.'
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Then.
d(w, y) == /_\j 27y, y) < €.

neN(w, )

Cage 2. @ ¢ {w, ..., 2} The argument for this case is essentially the-
game a8 the argument for Cage 1.

Now, we will show that d satisfies the property () of our lemma.
Tt will then follow that @ is & semi-metrie for X and, by our lemma, that X is
matrizable. Let (2, H) ¢ DX. Then there are an open set U in X contain-
ing @ and an open set V-in FX containing H such that if w and 2 ave in U
and K eV, then y(w,z, I) >%. Let ay ¢ U—{a} and let U’ = U—{zx}.
Lot == 270D and lot K denote a finite subset of H that is in V. Let y e H
and let w e U'. Then

Aw, y) = 27Ny (w, aw, {y}) =27V (w, e, K © {y} >27F.

v

Tn [15], it was shown, that if X is locally compact, connected and lo-
cally connectod, and X has a regular @;-diagonal, then X is metrizable;
thus, from 2.11 and 3.6 wo have the following result:

4.5, TunoreM. The locally connected, locally peripherally compact,
and econnected space X is metrizable if and only 4f X is a CPN-space. Indeed,
if X ds also separable, then X is metrizable if and only if X is a CCR-space.

In [11], the author shows that an M-space (°) X is mefrizable if
and only if X has o regular G- diagonal. Also, it is shown in [2], that
a wd-gpace (") X 18 a Moore-space if X has a regular @,-diagonal.
TRecall that o colleetion-wise normal Moore space is metrizable [1]. Thus
we have: '

4.6, Trmowss. Lhe following conditions for & space X are equivaleni

a. X g metrizable.

b, X 4s a COPN-M-space.

o. X 45 a CPN-wd-space.

d. X is either an M-space or a wA-space and X x X is a COR-space.

o X 48 either an M-space or a wA-space and X X M is o CCR-space
for every metrie space M.

4.7, Trorsy. The following conditions for @ separable metric space X
are equivalent:

a, X ds anctrizable.

D, X 4s eilher an M-space or a wA-space and X is u CCR-space.

(" X is said to be an M -space if there is & normal sequence {Wn} of open covers
of X such that if o ¢ X, and if, for each ¢, ¢ « St(w, Un), then the sequence @, &, ..- hag
a clustior point [H].

(") According to Borges [2], X i8 a wd-space if there is a sequence {UWy} of open
covers of ¥ such that if @ ¢ X and if, for each 4, z; € St (2, Usi), then &y, &, ... has a cluster
point.
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4.8. DepINrioN. An N-operator ¢ for X is said to be wionotone if it
is true that if (H, IC) and (H', K’) are in J6X such that H C H' and KX’ C K,
then ¢(z, H, K) > ¢(, H', K') for every @ e X. X is continuously mono-
tongcally normal (CMN) if X admits a continuous monotone N -operator.
Monotone CR-operators and continuously monotonically completely regular
(CMCR)-spaces are similarly defined.

In [5], it is shown that a space X is monotonically normal if and only
if X admits a monotone N-operator which iy continuous in the second.
variable. In the next theorem we see that OMN -spaces (in fact, UMOR - spa-
ces) are related to metrizable spaces much in the same way that monoto-
nically normal spaces ave related to stratifiable gpaces.

4.9. TrROREM. Jf X X ¥ 4s a CMOR-space then either X s melrizable
or every countable subset of Y is discrete.

Proof. Let ¢ be a continuous MOR-operator for, X x ¥. Using the

techniques of the proof of Theorem 8.1, obtain the continuouy PN -opera-
tor for X, . But by the construction of g, it is the case that it H C K
are in F.X, then oz, H) > (2, K) for every o e X. It then follows from 4.2
that X is metrizable. :

4.10. CororrARY. The following conditions on o space X are equivalent:

a. X is metricable. ‘

b. X s either an M -space ov a wd -space such that X2 is wOMCR - space.

c. X is a Fréchet space such that X° is a CMN - space.

d. X is a Fréchet space such that X* is a CMOR - space.

e. X® is 0 CMN-space.

f. X* is o OMOR-space.

g XXM is a CMOR-space for every metric space M.

4.11. THEOREM, The CCR-space X is metrizable if it is the closed con-
tinuous image of o metrizable space.

Proof. Suppose the contrary; i.e., suppose that X is a nonmetrizable
OCR-space that is the closed continuous image of a metric gpace. Lot
W= N u {0} denote the one-point compactification of the Integers.
Let M= WxN, lot Z = Mf{(w,n)| neN}, and lot w denote the ea-
nonieal projection of M onto Z. Let Z be endowed with the quotiont topo-
logy; i.e., U is open in Z if and only if ~YT) is open. in M. In, [L0], Van.
Doren hag shown that X must contain a copy of Z (since X is a non-metri-
zable closed continuous image of a metric space). Since Z ig homeomorphic¢
to a subspace of X, Z must be a CCR-space; and 80, let @ be a continuous
CR-operator for Z. Since (2, w), m(1, 1), {x(1, w)}) =1, there is an
integer n, such that o(7(2, w), (1, 1), {=(2, ny)}) > 4. Suppose we have
{na, g, ..., ns} such that .,

' 9’(777(.7.7 w), 7(1,7), {=(2, o)y (3, Tg)y v w(], “J)}) >1"'1/jk7
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since

plalis )y (L J4+1)5 {7(25 ma), w(3, 10), vy (i, mg), m(jb1, w))) = 1,
there ig an 2., such that
Plldy w)y 7 (Ly 1), (72, ma), w(3, m),y ooy w41, myg)}) >1— LY(G41) .

Let H = {m(j,uy)] J =2} and let Hy= {mw(j,ns] i>4> 2} for each 4.
Note that H is o closed set not containing m(1, ). Thus,

plr(l, ), n(1, w), H)= 0.

Since Hy, Iy, ... converges to H and since w(1,1), #(L,2), ... converges
to @(L, w), it must be true that there is an N such that if n >N, then
@(m(1, ), w(L, n), Hy) < } which is a contradiction since

limg(w(L, o), w(1,n), Hy) = 1.
ot OQ

5. An example.

6.1, Hxamere. There is a continuously monotonically completely
regular Moore space that is not normal. The space X is Heath’s plane, [4],
which is desevibed in the following faghion:

Lot X e (2, 9) € B v 2 0). .

Tor eonvenience, the coordinates of the points w and w, of X will
be denoted by (w, y) and (w,, 9,) respectively. For each pair of real numbers »
and a, lot Ifa,r)={(®,y)eX] y=a—r and |v—r|<a} and left
bla, 7)== {(w,y) e X| 9 == r~u and [s—7| < a}. The statement that B is
a basic open set means that either

(1) there is o w == (x,y) ¢ X such that y >0 and B = {w} or

(2) theve ave real numbers « and » such that B = f(a, ) v la, ).

Tor enely = (o, 9) e X with y=0, let 7,(w)= Uoll(a, %) and

. >
(w) == ) ly(a, @) for enel w== (z,y) e X with y >0, let w(l) denote
az=0 . . " .
the point of the X-nxis such that w e Lw(1)) and let w(2) denote the
point of the X-uxis such that w elw(2)). To construct a emﬂ;mugus
monotone  complete regularity operator ¢, let (wy, H) e DX. Define
P Uy, 20y, ) s 0,

Cago 1. 4, == 0. Let

LA we | X— (ki (w05) © Tp(wo)]] © H

? (w0, 0o, H) = 0 otherwise.
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Case 2. 4, > 0. For each point w of
X— [l1('wo(1)) 4 Zz(’wo(l)) Uzl(wo(z)( hd lz(wo(2))]

define ¢ (w, w,, O) = 1.

If wy(2) e H, then define ¢(w,w,, H)=1 for each point w of
[1feon(2) © Lfuen(2))] — o0}

If '&00(2) ¢U7 then define (p(fm, Wy, ]I) ] 7')(’[/0, ’I,IJO(.‘Z), ]{) {or cach
point w of [lfwy(2)) w Lwy(2))] — {we}-

If wo(1) e H, define @(w, w,, H) == 1 for all points w of

[Zl(wn(l)) - lz(Wu(l))] == {10y} «

It wo(1) ¢ H, define ¢(w,wy, H) = p(w, w,(1), H) for each point w of
[twg(1)) O Tofuwg(1))] — {ave}
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On an extremely restricted o-rule
by
E.G.X. Lépez-Escobar (College Park, Maryland and Nijmegen)

Abstract. By an oxbremoly restricted w-rule (for Heyting’s Arithmetie) we under-
sgtand an w-rule of the form:

From: 40, A1, ...
To coneclude: Vo da
Provided gy Vodax.

Although such a rule does not increase the class of theorems, it allows one to quickly
obtain (infinite) derivations with the subformula property. From the subformula property
many resulty can then be ocasily obbained.

§ 0. Introduction. From an intuitive point of view the w-rule
From: 40, 41, ..., 4k, ...
To conclude: Vol

is a much gimpler rule to justify than its finitary consin, the rule of induec-
tion:

(IND) : Trom: 40, Vz(deD 4z')
To conclude: Vaodx .

And vet the latter is usually preferred when considering formal systems.
Probably the main objection against the o-rule is that the derivations are
then, infinite trees of formulae and there is a natural distrust to using
infinito sets when one is trying to better understand the infinite. This
distrust iy further enhanced by the fact that if to first order classical
atithmetic, OA, one adds tho o-rule then one obtains a maximal system
(i.o. for overy senbence A, either 4 or — 4 is derivable in 0A~I_~ “w~ru19”);
for then tho fact that OA-k“w-rule” 4 gives us no more information
than, Mk A (4 is troe in the natural numbers). o
O, tho other hand of ingtead of the (full) w-rule one considers a re-
stricted w-rule, that is an infinitary rule of inference of the form

Trom: A0, 41, .., 4k, ..
To- conclude: VaAz
Provided that:  .ieeevrieerrrineeaaas
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