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Case 2. 4, > 0. For each point w of
X— [l1('wo(1)) 4 Zz(’wo(l)) Uzl(wo(z)( hd lz(wo(2))]

define ¢ (w, w,, O) = 1.

If wy(2) e H, then define ¢(w,w,, H)=1 for each point w of
[1feon(2) © Lfuen(2))] — o0}

If '&00(2) ¢U7 then define (p(fm, Wy, ]I) ] 7')(’[/0, ’I,IJO(.‘Z), ]{) {or cach
point w of [lfwy(2)) w Lwy(2))] — {we}-

If wo(1) e H, define @(w, w,, H) == 1 for all points w of

[Zl(wn(l)) - lz(Wu(l))] == {10y} «

It wo(1) ¢ H, define ¢(w,wy, H) = p(w, w,(1), H) for each point w of
[twg(1)) O Tofuwg(1))] — {ave}
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On an extremely restricted o-rule
by
E.G.X. Lépez-Escobar (College Park, Maryland and Nijmegen)

Abstract. By an oxbremoly restricted w-rule (for Heyting’s Arithmetie) we under-
sgtand an w-rule of the form:

From: 40, A1, ...
To coneclude: Vo da
Provided gy Vodax.

Although such a rule does not increase the class of theorems, it allows one to quickly
obtain (infinite) derivations with the subformula property. From the subformula property
many resulty can then be ocasily obbained.

§ 0. Introduction. From an intuitive point of view the w-rule
From: 40, 41, ..., 4k, ...
To conclude: Vol

is a much gimpler rule to justify than its finitary consin, the rule of induec-
tion:

(IND) : Trom: 40, Vz(deD 4z')
To conclude: Vaodx .

And vet the latter is usually preferred when considering formal systems.
Probably the main objection against the o-rule is that the derivations are
then, infinite trees of formulae and there is a natural distrust to using
infinito sets when one is trying to better understand the infinite. This
distrust iy further enhanced by the fact that if to first order classical
atithmetic, OA, one adds tho o-rule then one obtains a maximal system
(i.o. for overy senbence A, either 4 or — 4 is derivable in 0A~I_~ “w~ru19”);
for then tho fact that OA-k“w-rule” 4 gives us no more information
than, Mk A (4 is troe in the natural numbers). o
O, tho other hand of ingtead of the (full) w-rule one considers a re-
stricted w-rule, that is an infinitary rule of inference of the form

Trom: A0, 41, .., 4k, ..
To- conclude: VaAz
Provided that:  .ieeevrieerrrineeaaas
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then it might be possible to extract some useful information from the fact
that CA - “restricted w-rule” F.4. How much more usceful that informa-
tion may be than 9 F 4 naturally depends on what restriction is imposed
on the w-rule.

One of the first restrictions considered was to require that there be
a (general) recursive function f such that for each natural number 4, f(n)
be the code of a (possibly infinite) devivation of An. Tn Shoenticld 1959
it is shown that CA--“recursively restricted o-rule” is equivalent fo
CA+-(full) w-rule.

Other restrictions so far considercd have usually been under one, or
more of the following categories:

(Oaty) requiring that there be a such and such function f such that for
each n,f(n) is the code of a derivation of Anm,

(Cat;) requiring that the sentences A0, AI, .. be atomie, or 2 or ..,

(Oats) requiring that there be no more than a nestings of the w-rile,

(Caty) requiring that the derivation be (provably) of such and such form,
see, for example Feferman [2], Fenstad [4], Kent {57, Shoentield
[13].

On the whole the addition of such restricted w-rules to CA, or cven
tuitionistic arithmetie, TA, result in stronger systems. The fact thatb
the system with the (restricted) w-rule is stronger is sometimes of no
importance; for example if one wishes to show that 0 = 1 is not provable
in CA, one merely hag to observe that 0 = 1 is not provable in CA-- “(xe-
stricted) w-Tule” beeause if it were then it would have a cul-free proof
[using the cut-elimination theorem for CA-- “(restricted) w-rule”] and the
latter is ridiculous. However it is of importance if one wishes to use the
cut-elimination (or better the subformula property of the cut-free deriva-
tions) of systems with w-rules to obtain results about the Tinitary system.
For example, suppose that the sentence Ay v 4,y is derivable in TA.
Then it is simple to show that .4, v 4, is derivable in TA - “ro-
stricted w-rule”. Using the cut-elimination theorem one immediately
obtaing that either 4, or A, is derivable in TA - “pogtricted w-rule”.
However, unless we know that TA--restricted w-rule i equivalent to TA
(and it is not for most restrictions of type (Caty) - (Cuity)) wo canmot conelude
that either 4, or 4, is derivable in IA.

Thus what is needed is an extremely restricted w-rule such that

(A) its addition to IA results in a system. equivalent to TA,

(B) the cut-elimination theorem holds in TA - the extremely re-
stricted «-rule.

Why do we need it? Because on the one hand one should bo able to
prove such well-known results as “If TA | 4, v Ay then, either IA F 4, or
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TA F A, by simple observations about derivations and, on the other hand,
there are regults which seem to need such g cut-elimination; for example
Kreisel’s result that TA--“the reflection principle” is equivalent to
TA+ ¢-induction (sce Kreisel-Levy [10], § 10).

Kreisel has given lots of hints on how to obtain such an w-rule, see
for example pages 163~164 of Kreisel [9], On the whole the hints have
been such a8 to suggest that the required restrictions on the infinitary
derivations (and henee on the w-rule) would either be technically
complicatied or else very sophisticated; for cxample in page 140 of
Kreisel-Lievy [10] it is stated “The most delieate point is to set up the
infinitary system o be equivalent to HA (= IA)...".

In, thig paper it will be shown that neither sophistication nor technical
dexterity is needed to obtain, and make use, of an extremely restricted
o-rule having propertics (A), (B).

§ 1. The extremely restricted o-rule for TA. It ig simply the following:

From: 40,41, 42, ..
To conclude: Vo dx
Provided that: Va.de is provable in IA.

§ 2. Syntactical details about the formal systems IA and w-TA. We shall
for the most part nse the notations and conventions of IM (that is:
Kleene [67]). The formulac of TA and «-TA will simply be the formulae
of the system of formal number theory given in Chapter IV of IM. The
axiomatization for YA and w-IA will be given in terms of sequents, that.
is expressions of the form

I'—0

wheve I" and @ are finite (possible empty) sequences of formulae with the
(intuitionigtic) restriction that @ should contain ab m.ost one formulae
(8eo Temma 324 of TM). In addition, for w-TA. we require that I, © con-
sist oxelusively of sentences (i.e. closed formulae).

2.1. Rules of inferences and aximos of TA.

2.1.1. Logical rules of inference for the propositional calculus. Exactly
those given, in IM for the intuitionistic system G2 (and G1), page 442.

2.1.2. Structural rules of inference. Bxactly those given in IM for the
intuitionigtie system (2. What is those given on page 443 except that the
following version. of the cut-rule will be used:

M, 2—-Q

T, Zu—8

(cUm
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where Zjr is the result of suppressing all occurvences of M in X and where
it is assumed that X containg at least one occurvence of M. The formula M is
-called the cut formula of the inference.

2.1.3. Logical rules of inference for the predicate calenlus. Hxaclly those
given in IM for the system G2 (and Gl), page 442.

2.1.4. Logical axiom schema. 0—C.

2.1.5. Arithemitical axioms.

o b~ == b 9

a=1Dby0 == ¢ —b=gq,

=0 —a"=1",

—a+0=a,
a0 = (4-4- D),
—-0=0,

~ b == arbh-a .,
2.1.6. Rule of induction.

I'—A40, I'>Va(daeD 42')
I'—Vedw ’
2.1.7. Derivations in TA. We assume the derivations in TA to be given
in tree form (with a given analysis) and with axioms at the uppermost

sequents. “TA F I'— 07 is nsed to express that the sequent I'— @ is provable
in the system TA. We shall also write “IA F A” for “TA b —s A7,

2.2. Rules of inference and axioms of »-TA. Reeall that the sequents of
o-TA consist of only sentences.

2.2.1. Logical rules of inference for the propositional caleulus. Tho same
-a8 for TA, i.e. 2.1.1.

2.2.2. Structural rules of inference. The same as for IA, ie. 2.1.2.

2.2.3. Rales of inference for the quantifiers. Vo, - and the following

formulations of the extremely restricted o-rule for TA.

I'— A0 I'» A1 ... I'—>4dk ...
I'—Vade

subject to the restriction that: TA F ' VoA

-V

w

0 40,I'»0 A1, I'-06 ... Ak, I'—0
Hode, '> 06

subject to the restriction that: TA - Huds, I'— 6.
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2.2.4. No logical axiom schema.

2.2.5. Arithmetical axiom schemata. If 4,, 7, are two closed terms and
if under the canonical interpretation t; = 4,, then —1, = ¢, is an arithme-
tieal axiom. On the other hand if under the canonical interpretation ¢, # ¢,
then, ¢, == fy— I8 an axiom.

2.2.6, Derivations is w-IA. We assume the derivations in w-TA to
be given in treo form and with (arithmetical) axioms at the uppermost
gequents. An “unalysis” of a derivation in o-TA consists in assigning to
each nodo n of the tree:

1. One of the expressions —2, D—, ..., —V,, &, —, ez in such a way
that if — 2, ..., aw respectively is assigned to the node n, then the sequent
at the nodo # hag been. obtained from those immediately above it by the
rule — 2, ..., aw, respectively (in the case of aw it is understood that the
sequent ab g iy axd uppermost sequent and an arithmetical axiom).

2. An ordinal « such that the ordinal assigned to the node » is strictly
greater that the ordinals assigned to the nodes immediately above . The
ordinal assigned to the end-node (root) of the tree is the ordinal of the
devivation w.r.t. the given analysis.

3. A natural number & such that in all applications of the cut rule at
nodes above, or at, the node n the natural number & is strictly greater
than the degree of the cut sentence (the degree of a formula is defined
to be the number of oceurrences of V, @, A, v, and O in the formula).
The natural number agsigned to the end-node is called the cut degree of
the derivation.

“w-TA b I'—O[a, k]” is used to express that there is a w-IA deriva-
tion. of the sequent I'— @ of ordinal << o and cut degree <%. We shall
also msoe the following conventions

w=-TA b '@ for  (Ho)(Bk)w-IAFI'—0O[a, k],

w-TA .4 for  w-TAF—A4,
w-TIA" F1I'—@® fov (Ha)w-IAFI'—0O[a,0],
w-TA™ A for  w-IA"F—4.

Note that w-YXA™ | -+ @ itf there is o cub free derivation of I'— @,

§ 3. Lquivalence of TA with w-TA. The proof of the following theorems
require noither too mueh work nor ingenuiby.

3.1 Tmorem. If o-IAF A then TAF A,

Proof. Ono simply shows by induction on the ordinal o that

it (BE) o-TAFA[a,k] then TAFA.

4~ Fundamenta Mathematicae XC
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The only steps that might require some thought are (a) the axioms of
w-TA; but they have been shown to be provable in IA by IM and (b) the
infinitary rules —V, and H,—; however because of the way they are
formulated we do not even need the induction hypothesis for these ruleg!
3.2. THEOREM. If A is a sentence and JA & A, then w-IAF A.
Proof. This time one uses induction on the height of the derivation
in TA. The only non-trivial steps are the axioms, the rules —V, H— and
the induction rule. Let us consider the induction rule. That is assume
that we have a derivation in TA which onds as follows

0 F5A40  I'=Va(dod Ao

I'—Vaodn
Then using the induction hypothesis we then obtain that
(ii) w-IAFI'—A40,
(i) w-IAFI'->Va(dxD Az') .

Then we observe (i.e. proof by induction on the degree of .4) that for all
natural numbers n, :

(iv) w-TA+ Vo(dsD Az')—4AnD 4n' .
Applying the cut rule to (iii) and (iv) we obtain

(v)
Now we can obtain (again a proof by induction on the degree of A) that
(vi)
Applying the cut rule to (vi) and (v) we obtain

w-JAFI'—AnD An’ .
o-TAF An, AnD An'— An’ .

(vii) 0-IAFT, dn—dn’.

?ﬁa‘zﬁng with (i) and using a lot of cuts with (vii) wo finally conclude
a .
(viii) (n)[ew-TA F I—An] .
But (i) tolds us that IA + I's>Vzdz, so we may apply —V,, to (viii) to
obtain

o-TAFI'-Veder .

It should now be clear that similar methods can be applied to the other
non-trivial steps.

Combining 3.1 and 3.2 we obtain the following.
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3.8, TnnoreM (Bquivalence Theorem). For any sentence A, TAF A
iff w-TAF A.

3.4. Remarks. (i) There is nothing magical about intuitionism, the
game result, mutatis mutandis, would apply to classical arithmetic (and
other gystems). .

(ii) By keeping a cheek on the growths of the ordinals of the deri-
vations wo see that 3.2 could be also stated:

it TAFRA  then (Ba)yepw(BE)w-TAF Ala, k]
and also b bound for the & can be (primitively recursive) determined
from the derivation of A in TA.

§ 4. Cut climination in «-IA. The literature is full of hints and examples
of how to cairy out cut-elimination for infinitary systems. The basic
idea gooes back to Gentzen in the case of the predicate calculus; the effect
of the w-rule is to replace the induction rule by a rule which is similar
in form. to the rule for conjunction. Thus all one has to do is take Gentzen’s
proof of cut-elimination for the predicate calculus and add two more
cages to correspond to the rules — 'V, and H,— which are formally similar
to —A and V- Ono algo has to keep track of the ordinal growth. The
basic lemma is the following:

4.1, Toomma. Jf «-LA ¢ I @ [a, k-+1] then o-TAFI'—6O[2% k]

Proof. Simply make the suggested changes to the proof given in ITM
to the basic lemma (or else rewrite the proof in Schiitte [12] into the
sequent formalism). Note that because of Theorem 3.1, every sequent
oceurring in the w-TA derivation of I'— @ is also TA derivable and so the
restriction on the applications of the w-rule can cerfainly be met when
constructing the derivation of smaller cut degree.

4.2, TupornM. (i) If o-IAFI'—@ then for some a<<g, w-IAFT
—0[a, 0], (i) o-TAFA iff o-TA™F A

Proof. Cleaaly (i) is a consequence of (i). To prove (i) assume
that o-IA F '@, Wrom Theorem 3.2 and Remark 3.4 we get that
(B)pcus(Bk) @-TA F I'— O[f, k]. Then applying 4.1 & times we obtain
and o <2 g sueh that o-IAFI'— @ [a, 0].

§ 5. Immediate applications of the cut-elimination and equivalence theorem.

5., Trornm. Suppose that 4y, A, and HzAw are sentences then

(i) If TA + ®ade, then for some n, IAF An.

(i) If TA F AyVA,, then either TA L Ay or A+ A,.

Proof of (i). Suppose IAF TzAdsz. Then o-IAFUwde (by 3.1),
and by 4.2 we then obtain o-IA™ F Bz Adwr. Consider a cut-free proof of
Mw Az The lagh rule of inference applied must have been —i,, from
4%
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which it follows that for some n, w-IA F An. Using then the equivalence
theorem we obtain that TA F 4n. The proof of (ii) is similax.

5.2. THEOREM. Suppose that A, HrxBx are seniences.

TAF - ADHeBs  iff TAF Ha(—AD Bz).

Proof. Consider a cut-free proof of — A D HeBw, ie. of —_.4
D HzBx. By arguments similar to those used in the proof of 5.1 we obtain,
that w-TA b We(— A4 D Bg). Using the equivalence theorem we oblain
that TA F Hz(— 4D Bz).

5.3. THEOREM. Suppose that Aw is a primitive recursive formula, and
hence decidable in TA. Then
TA F(—=VodeD Hoe —Ax)  iff either TA F Vaeda or TA ¢ oAz .

Proof. Suppose IA b (—VadzrD He—Az). Then by 5.2 we obtain
that IA F Ho(— Vede D — Az). 5.1 then leads to

(Em)[IA F —VodeD — An]
which in turn give us (because A ig primitive recursive) that
(En)[TA F AnD Vo.dx]

and form the latter we obtain, using again the decidability of An that
IA + Vo dovTo— Az, Result follows then using 5.1.

§ 6. Formal equivalence of TA with w-TA. In order to be able to
caxry out more refined applications of the equivalence and cut-climination,
theorems we must consider what assumptions were used in their proofs.
To express that the sequent I'— @ is provable in IA is no problem; let
Prov(x, y) be the formula of first-order number theory that (canonically)
expresses the condition that « is the Gadel number of a dervivation in TA
of the sequent with Godel number y. We now wish to find an arithmetionl
formula Der(z,y) which (canonically) expresses the condition that a is
the code of a derivation in w-TA of the sequent whose Gidel number
is y so that we can then consider the status of the first-order sentence

Vy(HsProv(z, y) = BaDer (2, 7).

6.1. THE ARITHMETIZATION OoF w-IA. A derivation (with o given,
analysis) eonsists of a free at whose nodes are agsigned sequents, ordinals
and natural numbers. Now sequents can be arithmoetized 8o that to all
intents and purposes they may considered natural numbers. The ordinaly
involved, in view of Theorem 4.2 can be restricted to being <« #, and
fortunately for us Schiitte has developed in Schiitte [12] & system of
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unique notations for ordinals well beyond &, and has shown that many
of the laws of ordinal arvithmetic can be formally proven in TA for the
notations (actually in Schiitte [12] it is done for CA, but the methods
used are intuitionistically valid). More specifically he defines

a p.r. linear ordering <,

a p.r. binary function @,

a p.r binary funetion O,

a p.r. unary function *,

a pr. unary function X,

a p.r. binary funetion f,

terms, 0, 1, ®, &,
for which it is proven (in TA) that @, 0, *, B, 4 satisfy the usual defil%ing
conditions for addition, ordinal multiplication, ordinal SUCCRSSOT, ordinal
exponentiation to base 2 and Hessenberg’s natural sum of o'rdm_als Te-
spectively. Furthermore the usual monotonicity conditions with respect
to the ordering (e.g. @ <y D B(x) < B(y)) are also shown to be provable.
The terms 0, 1, ®, g represent respectively the ordinals, 0,' 1, o and €o-
Tn addition it is shown that transfinite induction w.r.t. < is provable in

IA in the following form: -
Given, a formula Aw let Tz4 () be defined by

g Az = Va(Vy(y < oD Ay)D Aa).
Then, given any term 1, leb $a(dg, t) be the formula
FolAm, 1) = S, Ax D Vo(z <D Az).

6.2. TrmoreM (Schitte [12]). If % is the nolation for an ordinal
smaller than & then for any formula Aw of first order arithmetic:

TA b §oldm, k) .

Tn view of Sehittbe’s results instead of requiring tllmt o‘rdina.ls' be
agsigned. to tho nodes of the derivation tree we shal} require that ordlpal
notations bo agnigned in their place. Furthermorp using & sta:ndax-'d coding
of tho sot of natural numbers onto the set of flmtfa sequences of na,tu.ml
numbers wo see that we can congider a derivation in m-IA.to be noth%ng
more (nor less) than a (speeial) number theoretic function. Or being
a little more gpecific: . ‘

6.3. DupmvirroN. A number theoretic function ¢ is a (code for a)
derivation in o-TA if

(m) jpm = 0—(m){p (™) = 0},
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(m)(tpm # 0—(pm), is the Godel number of a sequent of a)-IA),

(m)(pm = 0—(pm), e T —D7, =27, .., Tag™ ),

(m)(pm # 0—(pm), is related to {p(m~(d): i=0,1,..} by the
rule (pm),), ’

(m) (pm # 0—() [p(m ™G3, < (pm)y)),
(‘P(O))z < &, i

(m)((@m) & T~V TE,— T}~ Prov((pm)s, (pm))).

Observe that the last condition of 6.3 hag the effect of assigning to
those nodgs of a derivation in which the extremely restricted w-rule has
been applied a proof that the restriction on the w-rule has been met.
_ 6.4. DEFINITION. DEV(p, TI'— @7, u) iff ¢ is a codo for o derivation
in w-TIA, (p0);=TT'- 607 and (¢0), = .

It is .clea.r from 6.3 that the formula DEV (¢, ¥, u) is arithmetical in
the functlop @ and thus if the function @ is itself arithmetical then we
Would obtam. an arithmetical formulae. The obvious collections of func-
tions .tol consider are the class GR of general recursive functions and PR
of primitive recursive functions.

6.5. DEFINITIONS.

(i) DERGr(e, y, u) iff ¢ is the Godel number of a general recursiv

( , 4 Tl recursiv
tunction and DEV ({e}, v, u). ; ’

(ii) DERer(b, ¥, w) itf b is the index of a primitive recursive functi
and DIV o P 1ve recursive funetion

The fn@v:ant&ge. of using indeces of primitive recursive functions
(for 2 definition of ‘mdex see either Kleene [7] or Feferman [3]) instead
Z:tGEdlenumbersd Is that the set of indiees form a primitive recursive

- Liet Dergr and Derpr be the formal counterpar TR by
rompeotivele: ¢ rparts to DERar, DERer

DERer is th(? analogue of Shoenfield’s recursively restrictod e -rulo.
However the equivalence of w-IA FI'— & with

ey

(B2)(Bu)DERar(e, "I'— 07, u)

;}‘s, unlike Shoenﬁeld"s result, nothing more than a simple observation,
]3?1]:5 sz;]iofss:thA l—fl’—> 0. Then by the equivalence theorem, TA [~ @,
B o .e_ proo 9f 3.2 shows that (1) (Bu) DERer(b, ©I'— 07, u)
omT;IV ich it lmmedla,tely follows that (He) (Bu)DBRanle, "1 @7, u).
fore e lllast remarks would suggest that it does not malo much dif-
nce whether one uses DERgg of DIRer, and that is the ease provided
one remembers to include the following as a rule of inforence: o

From: I—@

To conclude: r-e,
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which for a lack of a better name we shall call the rule of repetition (Rep).
Tor it one has such a rule then any GR derivation in w-IA can be “strechted
out” to a PR-derivation using the same rules of inference [plus (Rep)l.
In particular if the GR derivation was cut-free so will be the stretched
out PR derivation. Now simple applications of the fixed point theorem
show that the cut-elimination holds for the GR-derivations. Thus it
holds for the PR derivations if we include (Rep). On the other had con-
sidering VaMyZ'(e,,y), where e is the Godel number of a provably
recursive function which is not primitive recursive, one can see the that,
in our particular formalization, the cut elimination theorem does not
hold for the PR derivations of o-IA if (Rep) is not included. Thus we
ghall henceforth assume that (Rep) is one of the (structural) rules of
inference of w-TA and TA.

In the system o-IA we had placed no restriction on the o-rule
other than the requirement that the conclusion be provable in IA. In
particular, a derivation in w-IA need not be a primitive recursive tree.
Thus Derpr is not the formalization of the proof predicate of w-IA but
rather of a system in which there is the added restriction that the proof
trces be primitive recursive. However we have already shown that the
same theoroms are provable in either system so we shall take the liberty
of letting w-IA be, from now on, the system with the added restriction
that the proof trecs be primitive recursive. Thus we may now claim that
Derpg, is o formalization of the proof predicate for w-IA.

Wo are now ready to consider the formal equivalence of IA with -IA.

6.6. TumoruM. There is a term t(x) for a primitive recursive function
such that

IA b Vy[Prov(e, y) D Bu(Derenfi(e), ¥, W)Au < 0O 0)] .

Proof. A straightforward (albeit long and boring) formalization of

the proof of Theorem 3.2, using of course the formal rule (IND) of in-

duetion.
6.7. Tumownm. Let & be a notation for an ordinal << . Then

IAF V@/Vu[I)arm(m,'y, wyAw < k2D HeProv(z, ¥)] .

Proof. A formalization of the proof of Theorem 3.1, this time using
transtinite induction up to k, which by Schutte’s theorem is derivable in TA.
Lot “IA--1TT,” denoto the system obtained from IA Dy adding as
axioms all sequents of the form:
PeAdo—Ve(r < gD Ax).

Then the proof of Theorem 6.7 can be adapted to give:


Artur


170 E. G. K. Lépez-Esgcobar

6.8. TeroREM. IA4TI, + Vy[WeHuDerrs(s, y, u) D HeProv(z, y)].

Thus combining Theorem 6.8 and 6.6 we obtain that the equivalence
of TA with »-IA can be proven in IA+TL, . In order to simplify the
notation let us agree to the following abbreviations

Pr(y) = HaProv(z,y),
Pr,(y) = HxHuDereg(2, Y, u),
Pr;(y) = HoBuDerpp(®, ¥, w) .

In terms of the above notation the equivalence of IA and w-IA can be
stated as follows:

6.9. TA-++TI, F (Pr(y) = Pr,(y)).
The cut-elimination can be stated:

6.10. TA--TT,  (Pr,(y) D Pr; (y)).

§ 7. An application. We shall now use the formal equivalence of TA
with TA 4 “the extremely restricted w-rule” to give a proof of Kreisel’s
result that TA4-TI, is equivalent to TA 4~ “the uniform refloction prin-
ciple for TA”.

In order to state the uniform reflexion principle we need some further
notation. Let num be the term (of a definitional extension of) TA which
represents the primitive recursive function which maps a natural number
to the Godel number of the numeral n. Then given a formula A4 whoge
free variables are included. in {#} let 4 be the term (of a definitional ox-
tension of) TA representing the primitive recursive function which maps
2 natural number » to the Godel number of the sentence obtained by
substituting the nth numeral for the variable 2 in the formula A. Finally,
instead of writing 4 (mum(z)) we shall use the more suggestive notation:
A(%). We naturally extend the notation to sequents: T(z)— B ().

The uniform reflection principle for TA is then the schema:

(BL) Piov(y, I'(#)—0(&)), -0

provided I'— 6 is a sequent such that the free variables of I'— & aro
contained in {x}.

The schema of transfinite induction T, is derivable in CA from
the uniform reflection principle is given in enough detail in Kreisel-
Levy [10] to see that the argument is equally applicable to TA. It is
for the converse that, as observed by Kreigel, that some kind of w-rule
appears to be needed. However, contrary to the remarks made by Kreigel
a delicate w-rule is not needed for owr w-rule will do.

The only extra piece of information needed (in addition to 6.9 and
6.10) to carry out the derivation of R, from TT,, is that sequents oceurring
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in o eut free derivation of o-TA are “true”. That is let T, be the partial
truth definitions such that for all formulae A of degree < n:
7.1, TA & T4 (%) D A (n).
Tor a definition of Ty (which is by induetion on ) and for the proof

of 7.1 seo page 35 of Troelstra [14].
Finally let, for cach natural number %

k-Dorpp(e) == (Hy) (Bu) (Dexpp(®, ¥, u) A “every sentence of the
sequent y is of degree k).

7.2, Liwmwma, Ior evm‘yllc,
TA-|-TT,, b lo-Deren(@) Ale)(2) # 0D T5(([2](2))) -

where T is the natural emtension of Ty to sequents.
Proof. By transfinite induction on the formula A4 (w), where

A(w) = VeVa (Ic-Der;R(m)/\[m] (2) # OA([z](2), < wD T;;(([m](z))o)) .
7.3. CoronrAry. For a sentence A, if the degree of A <k then
TA-TT, FPry(TAND TR(TAT) .

7.4. Trrorem (Kreisel). TA+TT, F Rfy.
Proof. Suppose A (z) is a formula of degree < k. Then applying 6.?,
6.10, 7.3 and 7.1 we obtain that the following sentences are provable in

TA4-TL,:
Va(Pr(4 (%)) D Pr,(4 (7)) , :
Vo(Pr(Z (%) D Pr;(A(3)) ,
Vo (Pr(A(2)) D ToA(5)) ,
Vao(Pr(4(2)D 4 () .

Added im proof. Tho author would like to call the roa,der’e? attention to th-e
articlo: Uhe wuse of abstraot language i elementary metamathematics: some pedag.f)gmo
examples, Ly G, Kroisel, G. E. Mints and 8. G. Slmps_on, in Spr_111g§r Lecbur(;
Notos, vol. 458, whore an analysis is made of the role I-)la.yod by xv]mt in the present.
fortuitous torminology could beo eallod “oxtremely restrictod rules’.
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A mnote on the Hurewicz isomorphism theorem
in Borsuk’s theory of shape
by
Krystyna Kuperberg (Houston, Tex.)

Abstract. In ghape theory, the role of the homotopy groups =, is played by
the so eallod fundamental groups m,, introduced by K. Borsuk, and the homology
groups which ave useful there, are of the Vietoris-Cech type. The classical Hurewicz
isomorphigm theorom gives a connection between the homotopy. groups m, and the
singular homology groups M, with integral coofficients. An example of a compactum X is
congtructed, showing that there is no exact analogue of the Hurewicz theorem in shape
thoory. The examploe is simple: X is the double suspension of the 3-adic solenoid. The
compactuin X is arewise connected and it has the following properties: (i) my(X)= 0,
for ¢ == 1, 2,8, and (ii) m(X) and EQ(X) are not isomorphie.

In the theory of shape of compacta K. Borsuk introduced the funda-
mental groups z, (see [1], § 14) which are related to the usual homotopy
groups sz, in a fashion similar to the way in which the Vietoris-Clech
homology groups H, are related to the singular homology groups Hi.
The natural question that arose then was: is there any isomorphism theo-
rem of the urewicz type in shape theory? The following theorem, proved
in [3] (Thoorem 3.2), is one of that type.

TrworuM. If the pointed compactum (X, x,) is approximatively q-con-
nected for q == 0,1, .., n—1 (n>= 2), then the limit Hurewicz homomorphism
@ (X, wo)— I X, @) is am isomorphism.

T he coofficiont group for all homology groups considered in this
note is the group of integers.

One may ask if the assumption of the approximative ¢- connectedness
of (X, ) for ¢ == 0, L, ..., n—1 in the above theorem can be replaced by
the weaker assumption m (X, @) = 0 for ¢=10,1, ..., n—1, which would
mako the theorem completely analogous to the classical Hurewicz theorem.
Obviously, the independence of m, from the choice of the base point
must bo assured by an appropriste assumption. For some special classes
of compacta, o.g. for movable pointed compacta, the answer is affirmative
(see 3], Corollary 3.7), bubt as we shall prove, in gemeral it is not the
cage. The aim. of this note is to describe an arcwise connected pointed
compaetum (X, x,) with the following properties:
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