

Tightly packed families of sets

bv

N. H. Williams (Brisbane)

Abstract. Let m, n, p, q be infinite cardinals with $m \ge n \ge p$ and $m \ge q$. Necessary and sufficient conditions are given for the existence of a family $\mathcal A$ of m sets each of cardinality n with $|A_1 \cap A_2| < p$ for each pair A_1, A_2 from $\mathcal A$, such that each subses of $\bigcup \mathcal A$ of power q has an intersection of cardinality at least p with m different membert of the family $\mathcal A$.

This paper is devoted to a proof of the following theorem. (The notation is explained below.) The Generalized Continuum Hypothesis is assumed throughout.

THEOREM 0.1. Let m, n, p, q be infinite cardinals with $m \ge n \ge p$ and $m \ge q$. The conditions

$$(1) n < q$$

and

(2) either m = q or else $m = q^+$ and p' = q'

are necessary and sufficient for the existence of a family A of m sets each of cardinality n with $|A_1 \cap A_2| < p$ for each pair A_1 , A_2 from A, such that

(3)
$$S \in [\bigcup A]^q \Rightarrow \operatorname{card} \{A \in A; |A \cap S| \geqslant p\} = m.$$

Notation. Cardinal numbers are identified with the initial ordinals. Small Greek letters always denote ordinal numbers, and small Roman letters cardinal numbers. The cardinality of a set X is denoted either by $\operatorname{card} X$ or |X|, and $[X]^r$ is the set of subsets of X of cardinality r. The symbols $[X]^{\leq r}$, $[X]^{>r}$ have the obvious meanings. For any cardinal r, by r^* is denoted the least cardinal larger than r and by r' the cofinality cardinal of r, that is, the least cardinal s for which r can be written as the sum of s cardinals all less than r. When r' = r then r is said to be regular, and otherwise singular.

DEFINITION 0.2. A family of sets \mathcal{A} is called an (m, n, p)-family if $|\mathcal{A}| = m$, $|\mathcal{A}| = n$ for each \mathcal{A} in \mathcal{A} , and $|\mathcal{A}_1 \cap \mathcal{A}_2| < p$ for each pair $\mathcal{A}_1, \mathcal{A}_2$ from \mathcal{A} . We define $(\leqslant m, n, p)$ -family and $(m, \geqslant n, p)$ -family analogously.

We shall make use of the following results of Tarski [1, Théorème 5].

PROPOSITION 0.3. Let \mathcal{A} be an $(m, \geq n, p)$ -family, where $m > n \geq p$. Then $m = |\bigcup \mathcal{A}|$ unless perhaps n = p and $p' = |\bigcup \mathcal{A}|'$, in which case $m = |\bigcup \mathcal{A}|^+$ is also a possibility.

PROPOSITION 0.4. Let q > q' = p' and $q \geqslant p$. Given X with |X| = q there is a (q^+, p, p) -family $\mathcal B$ with $\bigcup \mathcal B \subset X$.

§ 1. Theorem 0.1, necessity. The condition (1) is easily seen to be necessary if (3) is to hold, for if $n \ge q$ then by choosing for S a subset of some A_1 in A, only possibly for $A = A_1$ is $|A \cap S| \ge p$ true (by the condition $|A_1 \cap A_2| < p$).

On the other hand, suppose there is S with |S| = q for which $\operatorname{card} \{A \in \mathcal{A}; |A \cap S| \ge p\} = m$. Then the family $\mathfrak{B} = \{A \cap S; A \in \mathcal{A} \text{ and } |A \cap S| \ge p\}$ is an $(m, \ge p, p)$ -family with $|\bigcup \mathfrak{B}| \le |S| = q$, and so if m > q we must have $m = q^+$ and by Proposition 0.3 also p' = q'. Thus the condition (2) is necessary for (3).

§ 2. Theorem 0.1, sufficiency. We now suppose conditions (1) and (2) to hold and deduce (3). Note that from (1) it follows that m > n. Consider first the case m = q.

THEOREM 2.1. Let $m>n\geqslant p$. Then there is an (m,n,p)-family A such that

(4)
$$S \in [\bigcup A]^m \Rightarrow \operatorname{card} \{A \in A; |A \cap S| \geqslant p\} = m.$$

Proof. Suppose that m is regular. Using Zorn's Lemma, let \mathcal{A} be a maximal $(\leq m^+, n, p)$ -family of subsets of m. Then by Proposition 0.3, in fact $|\mathcal{A}| \leq m$. And we have

(5)
$$S \in [\bigcup A]^{>n} \Rightarrow \operatorname{card} \{A \in A; |A \cap S| \ge p\} \ge |S|.$$

For suppose on the contrary that there is S with $S \in [m]^{>n}$ for which $\operatorname{card}\{A \in \mathcal{A}; |A \cap S| \geq p\} < |S|$. Then $|\bigcup \{A \in \mathcal{A}; |A \cap S| \geq p\}| < |S|$. But if X is chosen so $X \subseteq S - \bigcup \{A \in \mathcal{A}; |A \cap S| \geq p\}$ with |X| = n, then $\mathcal{A} \cup \{X\}$ is a $(\leq m^+, n, p)$ -family contradicting the maximality of \mathcal{A} . From (5) it follows that (4) holds for \mathcal{A} .

Now suppose that m is singular. Choose regular cardinals m_{σ} for $\sigma < m'$ so that $n < m_0 < m_1 < ... < m$ and $m = \sum \{m_{\sigma}; \ \sigma < m'\}$. For each σ with $\sigma < m'$ take an (m_{σ}, n, p) -family \mathcal{A}_{σ} with the property (5), and further ensure that the sets $\bigcup \mathcal{A}_{\sigma}$ are pairwise disjoint. Put $\mathcal{A} = \bigcup \{\mathcal{A}_{\sigma}; \ \sigma < m'\}$, so \mathcal{A} is an (m, n, p)-family.

Take S in $[\bigcup \mathcal{A}]^m$. For $\sigma < m'$ put $S_{\sigma} = S \cap \bigcup \mathcal{A}_{\sigma}$. Then $|\bigcup \{S_{\sigma}; |S_{\sigma}| > n\}| = m$. By the property 5) for \mathcal{A}_{σ} , if $|S_{\sigma}| > n$ then $\operatorname{card} \{A \in \mathcal{A}_{\sigma}; |A \cap S_{\sigma}| \ge p\} \ge |S_{\sigma}|$. Hence $\operatorname{card} \{A \in \mathcal{A}; |A \cap S| \ge p\} \ge \sum \{|S_{\sigma}|; |S_{\sigma}| > n\} = m$. Thus (4) holds for \mathcal{A} . This completes the proof.

Consider next the case m > q. Here $m = q^+$ and p' = q'. Since $q > n \ge p' = q'$, in fact q is singular.

LEMMA 2.2. Let q > q' = p' and $q > n \geqslant p$. Given X with |X| = q and $a \ (\leqslant q, n, p)$ -family $\mathfrak D$ there is a (q^+, p, p) -family $\mathfrak B$ with $\bigcup \mathfrak B \subseteq X$ such that $|B \cap D| < p$ for $B \in \mathfrak B$, $D \in \mathfrak D$.

Proof. Take a family \mathcal{B} as given by Proposition 0.4. Note that $|\bigcup \{[D]^p; D \in \mathcal{D}\}| \leq q \cdot n^p = q$, and so we may omit from \mathcal{B} any set B for which there is D in \mathcal{D} with $|B \cap D| \geq p$ and still retain a (q^+, p, p) -family.

Lemma 2.3. Given Z with $|Z|=q^+$ and a family $\mathbb{S}=\{S_{\mathbf{r}};\ v< q^+\}$ where always $S_{\mathbf{r}}\in [Z]^{\leqslant q}$, then there is a $(q^+,q^+,1)$ -family $\mathbb{C}=\{C_{\mathbf{r}};\ v< q^+\}$ such that

(6)
$$\mu \leqslant \nu \Rightarrow C_{\nu} \cap S_{\mu} = \emptyset.$$

Proof. Write $Z = \bigcup \{Z_{\bullet}; \ \nu < q^{+}\}$ where the Z_{\bullet} are pairwise disjoint with $|Z_{\bullet}| = q^{+}$. Put $C_{\bullet} = Z_{\bullet} - \bigcup \{S_{u}; \ \mu \leqslant \nu\}$.

THEOREM 2.4. Let q > q' = p' and $q > n \geqslant p$. Then there is a (q^+, n, p) -family A such that

(7)
$$S \in [\bigcup A]^q \Rightarrow \operatorname{card}\{A \in A; [A \cap S] \geqslant p\} = q^+.$$

Proof. Let $S = [q^+]^q = \{S_r; \ v < q^+\}$ and take a $(q^+, q^+, 1)$ -family $C = \{C_r; \ v < q^+\}$ as given by Lemma 2.3 for S. Choose (q^+, n, p) -families $C_r = \{C_m; \ a < q^+\}$ such that $\{C_r \subset C_r\}$.

Construct by transfinite induction $(q^+,\, n,\, p)$ -families \mathcal{A}_μ for $\mu < q^+$ such that

(8) $\mathcal{A}_{\mu} = \mathcal{A}_{\nu} \quad \text{for some } \nu < \mu, \quad \text{or else} \quad \bigcup \mathcal{A}_{\mu} \subseteq S_{\mu} \cup C_{\mu} \,,$ and

$$(9) A_1, A_2 \in \bigcup \{A_{\nu}; \ \nu \leqslant \mu\} \Rightarrow |A_1 \cap A_2|$$

as follows. Take ξ with $\xi < q^+$ and suppose the \mathcal{A}_{ν} for $\nu < \xi$ have already been satisfactorily defined. If there is $\nu < \xi$ for which

$$\operatorname{card} \{A \in \mathcal{A}_{\bullet}; |A \cap S_{\varepsilon}| \geqslant p\} = q^{+},$$

put $\mathcal{A}_{\xi} = \mathcal{A}_{\nu}$ for such a ν . (Then (8) and (9) hold when $\mu = \xi$.) Otherwise, put $\mathcal{D}_{\xi} = \{A; A \in \mathcal{A}_{\nu} \text{ for some } \nu < \xi, \text{ and } |A \cap S_{\xi}| \geqslant p\}$, so $|\mathcal{D}_{\xi}| \leqslant q$. Let $\mathcal{B}_{\xi} = \{B_{\xi a}; \alpha < q^+\}$ be a (q^+, p, p) -family with $\bigcup \mathcal{B}_{\xi} \subseteq S_{\xi}$, for which $|B \cap D| < p$ when $B \in \mathcal{B}_{\xi}, D \in \mathcal{D}_{\xi}$ (as provided for by Lemma 2.2). Put $A_{\xi a} = B_{\xi a} \cup C_{\xi a}$ and finally $\mathcal{A}_{\xi} = \{A_{\xi a}; \alpha < q^+\}$. Then $\bigcup \mathcal{A}_{\xi} \subseteq S_{\xi} \cup C_{\xi}$ and (8) holds with $\mu = \xi$. Since $\bigcup \mathcal{B}_{\xi} \subseteq S_{\xi}$ and $S_{\xi} \cap C_{\xi} = \emptyset$, when $\alpha \neq \beta$ we have $A_{\xi a} \cap A_{\xi \beta} = (B_{\xi a} \cap B_{\xi \beta}) \cup (C_{\xi a} \cap C_{\xi \beta})$ so that $|A_{\xi a} \cap A_{\xi \beta}| < p$. Thus A_{ξ} is a (q^+, n, p) -family. Also, by (6), if $\nu < \xi$ then $C_{\xi} \cap (S_{\nu} \cup C_{\nu}) = \emptyset$. So if $A \in \mathcal{A}_{\nu}$ for some $\nu < \xi$ then $A \cap C_{\xi} = \emptyset$ by (8). Thus $A \cap A_{\xi a}$

180

N. H. Williams

 $\subseteq A \cap (S_{\xi} \cup C_{\xi}) \subseteq A \cap S_{\xi}$. But now either $|A \cap S_{\xi}| < p$, or else $A \in \mathfrak{D}_{\xi}$. In either case, $|A \cap B_{\xi a}| < p$. Since $A \cap A_{\xi a} \subseteq A \cap (B_{\xi a} \cup C_{\xi}) \subseteq A \cap B_{\xi a}$, we have $|A \cap A_{\xi a}| < p$. Thus (9) holds when $\mu = \xi$. This completes the construction.

Now put $\mathcal{A} = \bigcup \{\mathcal{A}_{\mu}; \ \mu < q^+\}$, so \mathcal{A} is a (q^+, n, p) -family, by (9). We show (7) holds for \mathcal{A} . Take S in $[\bigcup \mathcal{A}]^q$. Then $S = S_{\mu}$ for some $\mu < q^+$; yet card $\{A \in \mathcal{A}_{\mu}; \ |A \cap S_{\mu}| \geqslant p\} = q^+$, and $\mathcal{A}_{\mu} \subseteq \mathcal{A}$. Thus (7) holds, and the proof is complete.

Together, Theorems 2.1 and 2.4 establish the sufficiency of (1) and (2).

References

[1] A. Tarski, Sur la décomposition des ensembles en sous-ensembles presque disjoints,
Fund. Math. 14 (1929), pp. 205-215.

UNIVERSITY OF QUEENSLAND Brisbane, Australia

Accepté par la Rédaction le 18. 2. 1974

A note on Lusin's condition (N)

by

James Foran (Milwaukee, Wis.)

Abstract. A function is said to satisfy condition (N') provided the image of closed sets of measure 0 is of measure 0. In this paper it is shown that for several classes of functions (N') implies Lusin's condition (N). The Baire functions (in a general setting) are one such class. Using the continuum hypothesis, a real valued function is constructed which satisfies (N') but does not satisfy Lusin's condition (N).

A function $f: X \to Y$, where X and Y are measure spaces, is said to satisfy condition (N) if the image under f of each set of measure 0 in X is of measure 0 in Y. Condition (N) arises quite naturally in the study of integrals. (See, e.g., [4], p. 224ff.) A function $f: X \to Y$ will be said to satisfy condition (N') if X is a topological space and the image under f of compact sets of measure 0 is of measure 0. The purpose of this note is to show that for several classes of functions condition (N') implies condition (N); that is, the compact sets of measure 0 are a determining class for condition (N).

Although greater generality is attainable, the spaces X and Y will always be σ -compact metric spaces. The following notation and definitions will be used:

- 1) B(f; A) will denote the graph of f on the set A, i.e., if $f: X \to Y$, $B(f; A) = \{(x, y) \in X \times Y | x \in A, y = f(x)\}.$
- 2) m(E) will denote the measure of E when it is clear which measure this is.
- 3) n-m(E) will denote Hausdorff n-measure. Briefly, a set B has n-measure less than or equal to b if for any given $\varepsilon>0$ there is a cover U_s of B with each set $I\in U_s$ having diameter less than ε and $\sum\limits_{I\in U_s} ({\rm diam}\,I)^n < b+\varepsilon.$
- 4) proj_Y will denote the *projection map* from $X \times Y$ to Y; similarly, proj_X denotes the projection map from $X \times Y$ to X.
- 5) A measure space X is of σ -finite measure if X is the countable union of sets of finite measure.