residual and F_1 is 1st category. If, for every $\beta < \alpha$, x_{β} has been chosen such that $x_{\beta} \in A - \bigcup_{\gamma < \beta} F_{\gamma}$ and such that $x_{\beta} \neq x_{\gamma}$ for every $\gamma < \beta$, choose $x_{\alpha} \in A - \bigcup_{\beta < \alpha} F_{\beta} \cup \{x_{\beta}\}_{\beta < \alpha}$. Since $\bigcup_{\beta < \alpha} F_{\beta}$ is a countable union of first category sets, $\{x_{\beta}\}_{\beta < \alpha}$ a countable set, such a point x_{α} can be chosen and the induction is complete. Let $X = \{x_{\alpha}\}_{\alpha < \alpha}$ and let g be a map with domain X and image the real numbers. Let f(x) = 0 if $x \notin X$, f(x) = g(x) if $x \in X$. Then f satisfies condition (N') since if F is a closed set of measure 0, $F = F_{\alpha_0}$ for some $\alpha_0 < \Omega$, and f(F) is an at most countable set. However f does not satisfy condition (N) since f(A) is the real line.

This same example can be constructed if the continuum hypothesis is replaced by both of the following:

- i) the union of fewer than τ sets of measure 0 is of measure 0.
- ii) the union of fewer than τ sets of 1st category is of 1st category, where τ is the power of the continuum.

References

- [1] F. Hausdorff, Set Theory, New York 1957.
- [2] K. Kuratowski, Topology, vol. 1, New York-London-Warszawa 1966.
- [3] C. A. Rogers, Hausdorff Measures, Cambridge 1970.
- [4] S. Saks, Theory of the Integral, New York 1937.

UNIVERSITY OF WISCONSIN-MILWAUKEE Milwaukee. Wisconsin

Accepté par la Rédaction le 14. 3. 1974

A comment on Balbes' representation theorem for distributive quasi-lattices

by

R. Arthur Knoebel (Las Cruces, N. M.)

This short note points out that Balbes' [1] representation theorem for distributive quasi-lattices may be proven from rather general considerations. (A distributive quasi-lattice is an algebra with two semilattice operations connected by the distributive laws.) Recall his Theorem 4 (rewritten slightly): an algebra $\mathfrak{D}=\langle D;+,\cdot\rangle$ with two binary operations is a distributive quasi-lattice iff there are two families Y,X of sets closed to intersection and union, respectively, and two one-to-one correspondences $\psi\colon D\leftrightarrow Y$ and $\varphi\colon D\leftrightarrow X$ such that

$$a+b = \psi^{-1}(\psi a \cup \psi b) ,$$

$$a \cdot b = \varphi^{-1}(\varphi a \cap \varphi b) ,$$

$$a \cdot (b+c) = a \cdot b + a \cdot c ,$$

$$a+b \cdot c = (a+b) \cdot (a+c) ,$$

for all $a, b, c \in D$. This is true because any semi-lattice is isomorphic to a family of subsets closed to intersection (or union) [2].

Since this representation theorem for semi-lattices is equivalent to saying that each semi-lattice is a subdirect power of the two-element semi-lattice, the technique of Theorem 4 is generalizable to any algebra

$$\mathfrak{A} = \langle A; f_1, ..., f_k, g_1, ..., g_m, h_1, ..., h_n, ... \rangle$$

of which each reduct

$$\mathfrak{A}_f = \langle A; f_1, ..., f_k \rangle,$$

 $\mathfrak{A}_g = \langle A; g_1, ..., g_m \rangle,$

is representable as a subdirect power.

R. A. Knoebel

188

References

[1] R. Balbes, A representation theorem for distributive quasi-lattices, Fund. Math. 68 (1970), pp. 207-214.

[21] G. Grätzer, Universal Algebra, Princeton, 1968, p. 155, prob. 27.

NEW MEXICO STATE UNIVERSITY

Accepté par la Rédaction le 11. 3. 1974

Function spaces with intervals as domain spaces

by

R. A. McCoy (Blacksburg, Va.)

Abstract. An example is given of a pseudo-complete, separable metric space Y such that the space of continuous functions from the closed unit interval into Y is of first category, where the topology on the function space may be taken to be any of the following: supremum metric, compact-open, pointwise convergence. Then conditions are given which guarantee that a function space with an interval as domain space and with compact-open topology be pseudo-complete, and hence of second category.

A well-known theorem in topology and analysis says that the supremum metric on a function space is complete whenever the metric on the range space is complete (the converse is also true). In this paper we take a particular space — the closed unit interval I — and consider the general question as to what "complete-type" properties can one obtain on a function space with domain space I when the property of completeness on the range space is relaxed. An example is given showing that even if the range space is a pseudo-complete, separable metric space, with no further conditions the function space with domain space I may be of first category — far from complete. However, we then give certain conditions on the range space (which do not imply completeness) insuring that the function space with I as domain space be pseudo-complete, and hence of second category.

1. Basic definitions. A subset of the topological space X is of first category in X provided that it can be written as the countable union of newhere dense subsets of X (i.e., subsets of X whose closures have no interior points). If a subset of X is not of first category in X, then it is of second category in X. A space is of first category (second category, respectively) if it is of first category (second category, respectively) in itself. A space having the property that every open subspace is of second category is called a Baire space.

The Baire Category Theorem says that every complete metric space is a Baire space. In some cases one needs to have a complete space only to use such a theorem as the Baire Category Theorem, so that a natural question is whether one may weaken the completeness property on the range space and still retain some generalization of completeness, such as