@
icm
210 8. Ferry

References

[1] M. Brown, Sets of constant distance from « planar sel, Michigan Math, J. 19 (1972),
pp. 321-323.

[2]1 H. Bell, Topological extensions of plane geometry (preprint).

[8] R.Gariepyand W.D. Pepe, On the level sels of a distance function in o Mmlcowslm
space, Proe. Amer. Math. Soc. 31 (1972), pp. 255-259.

[41 M. Gindifer, On generalized spheres, Fund. Math. 38 (1951), pp. 167-178. Superpositions of transformations
[5] 8. Saks, The Theory of the Integral, New York 1937. of b ded e
(6] H. Whitney, 4 function not constant on a connected sel of critical points, Duke ounded variation
Math. J. 1 (1935), pp. 514-517. by
UNIVERSITY OF MICHIGAN Wiadystaw Wilczynski (£6dz)

and
UNIVERSITY OF KENTUCKY

Abstract. The work deals with some classification of continuous functions transform-

ing plane into planc. For every finite or countable ordinal number was defined a class

Accepté par la Rédaction le 21. 11. 1973 ‘ of superposition of functions of bounded variation (in the sense of Rado, see [3]). The

main results of the work are following theorems: every class of superpositions is non-

empty and there exists a continuous function which does not belong to the sum of all

classes. Similar results for real functions of real variable are included in the classieal
work [1] by Nina Bary.

Nina Bary in [1] has studied the possibility of representing arbitrary
real continuous funections of a real variable only by superpositions of
continuous functions of bounded variation. She has introduced the notion
of superposition of class a for every finite or countable ordinal a and she
has proved that all classes of superpositions are non-empty and that their
sum is not equal to the class of all continuous funections. This work containg
similar results for plane transformations defined on the unit square (open
or closed). The notion of transformation of bounded variation is taken
from [3] and [4]. The definition of superposition of class a is similar to
that in [1] if « is 2 countable ordinal of the first kind (i.e. having a pre-
decessor) and differs from the definition in [1] by using uniform convergence
instead of ordinary convergence if a is a countable ordinal of the second
kind.

The work congists of two parts. The first part contains the proof
of an auxiliary theorem which explains the structure of plane transforma-
tions F,, F, such that their superposition F = F,oF, is of the form
P (o, a®) = (f(2), 2?) for (4", a*) [0, 11X [0, 1]. The second part contains
soveral theorems concerning superpositions of transformations of bounded
varigtion. The main results of the work are: Theorem 13, which states
that every clagss of superpositions is non-empty, and Theorem 14, which
gives the construction of continuous plane transformation which does
not belong to the sum of all classes (both these theorems deal with transtor-
mations defined on the open unit square) and the corollary (after
Theorem 14), which includes the same results for transformations defined
on the closed unit square.
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I

Let R? denote the Huclidean plane. Let I = [0, 1]x[0, 1], pYz?)
= {ar} x[0,1] for a'e[0, 1], pA(a?) = [0, 1]x{#?} for «* [0, 1]. ﬁupjposo,
that I Ko_nféK is a continuous transformation such that #(a, a?)
= (f(z"), mz). for (2%, #°) e K, where f: [0, 1];;@:[0, 1] fulfills the following
conditions: f(0) =0, f(1) =1, 0 < f(a') < 1 for every & ¢ (0, 1) and f has
not an interval of constancy. Lot B == F, o'y, where JFp: K -R2
I,: F(K)—R* are continuous functions. To prove the main theorem of
this part we shall need the following lemmas:

Lemma 1. If a2, a2 e[0,1], a2 o a3, then F\(p*a)) ~ Fy(p*a})) = 0.

LeMma 2. For every x*e[0,1] the reduced funcltions Fy|p'(a') and
B, Fl(pl(ml)) are homeomorphisms.

LeMMA 3. For every o, a* € [0, 1] the set Ty(p'(ah)) ~ Fy(p*(w?)) contains
exactly one point I'y(x', x°).

Lemuma 4. Fy(IntK) ~ Fy(FrK) = @.

The proofs of all the above lemmas, based upon the properties of 7,
are nearly obvious.

LmmMA 5. Let L(0) C Fy(p>0)) be the simple are joining Fy(0,0) and
F(1,0), L(1) CFl(pz(l)) — the simple arc joining I'{0, 1) and F(L,1)
(the sets Fl(pz(O)) and Fl(pZ(l)) are arcwise connected as continuous images
of [0,11; see, for example, [2], p. 245). The set B = L(0) v L (L) w Fy(p'(0)) v
w Fy(p\ (L)) is homeomorphic with the set Fr([—1, 11x[—1,1]) and there
exists a homeomorphism G: E&gFr([—l, 11x[—1, 1)) such that

GL(0) = [—1,1x{—1}, GL)=[—1,1]x{1},
Go(F(pX(0)) = {—13x[—1,1],  GFp'(1) = {1} x[—1,1].

Proof. In virtue of the definition or of Liemma 2 all the four terms
of E are simple arcs, and so it suffices to show that

LO) A L) =0, FpH0) ~Fp(1) =0,
L(0) ~ Byfp(0)) = {F,(0, 0)},  L(0) ~ Fyfp(1)) = {I(L, 0)},
L(1) A Fyp0)) = {F1(0, 1)},  L(1) A Fyfp'(L)) = {Fy(L, 1)} .
The first equality follows at once from Lemma 1. The second is & conso-
quence of the following inelusion: If’z(lf’l(pi(O)) A lf'l(pl(l))) CpY0) A
N pY1l) = @. The remaining equalities follow from Lemma 3.
Lmmwma 6. Let O, and O, be open regions into which T divides the plane

according to the well-known theorem of Jordan. Then, F(IntK)C O, or
Fy(IntX) C 0,.

o’
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Proof. SBuppose that neither the first nor the second inclusion is ful-
filled. Then in virtue of Lemma 4 there exists a point (x1, 27) e Int K such
that Fy(ay, #7) € O, and there exists a point (x5, #3) e Int K such that
Fy(a3, #3) € O,. Let d be the segment joining those points. We have d C Int K
and Fy(d) ~ F = @. This contradicts Lemma 4.

LemMA 7. If O, denotes the bounded region (with the notation of
Lemma 6), then F(IntK) C 0,.

Proof. Suppose that F,(IntK) C 0,. Let G: REEKRZ be a homeomor-
phism such that G/F = @, (such a homeomorphism exists in virtue of
the theorem of Schonflies; see [2], p. 280). Obviously we can choose & such
that for every a* [0, 1] the ordinate of G(Fl(ml, 0)) is less than or equal
to —1 and the ordinate of G(F,(#', 1)) is greater than or equal to 1. We
have G(0,) = Int([—1, 1] x[—1,1]) and G(0,) = R*—[—1,1]x[—1, 1].
From the assumption and from the continuity of & oF, it follows that
G(IFy(K))C R*—TInt([—1,1]x [—1,1]). Hence for every o' [0, 1] we have the
inclusion G(Fl(pl(wl))‘) CR*—TInt([—1, 1]x[—1,1]), and so on the simple
arcG’(Fl(pl(wl))) there exists a single-valued continuous argument (see [4],
p. 385, Lemma 10). Let us put 4(a?) = arg G(F,(#", 1))—arg G(Fy(a*, 0))
for #* ¢ [0, 1], where the values of the argument are taken from the same
single-valued argument. It is not difficult to calculate A(0) = —27'x
and A(1) = 27*x. The function A: [0,1]-R is continuous on [0,1]
([4], p. 390, Lemma 15), and so there exists an }e¢[0,1], for which
4 () = 0. This is impossible, because two points G(Fy(z}, 0) and G(Fy(x}, 1))
cannot lie on the same half-line issuing from (0, 0). Hence IF;(IntK)
C 0,.

LEMMA 8. For every g e (0,1) the set Fy(p*(a3)) is a simple arc and
F1(Z92(0)) -~ Fl(pz(l)) CO,.

Proof. For every 7 « (0, 1) the set F(p*(a3)) is an arcwise connected
seb as o continuous image of a segment. Let L(x3) C Fy(p*(«3)) be a simple
are joining I7,(0, ) and Fy(1, 47). We shall prove that L (z5) = Fi(p*(x})).
Let

By(af) = L(0) © L(af) v F4{{(0, 2%): 0 < a? < af}) v
{1, 2®): 0< < o)),
By(a3) = L(a3) v L(1) © 5({(0, 2?): a2 <2< 1)) v
U I{(A, 27): sy <o < 1Y),
As in the proof of Lemma 5 one can prove that H(«3) and Ey(x2) are simple

closed curves. Let O,(«3) denote the region bounded by B («5) for 4 =1, 2.
It is not difficult to see that-
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(0u(ad) w 0y(a}) © L () — {F4(0, ap), F(: L, @)} = Oy
and 0,(a2) ~ Oy(e2) = . Suppose that I(p*(af))—L(ag) # @. Leb (4, %)

2))— L(x3). For every a*e(0,1) we have

€ 1(192(500
Fy(p*a?)) ~ B = {F4(0, 2%), I(1, o)}

(B has the same meaning as in Lemma 5). Henee (4% y%) € O, (a7) w Oy(ad).
From Lemmas 1, 3 and 7 and the last equality it follows that for 0 < 2 < o
we have

Fy(p2(a®)) C Oy(ad) v {F4(0, 22), Fy(1, 42)}

and for 2§ < #*<<1 we have
Ty(p*(a?)) C Oyfa) v

I (4, 4°) € Oy(al), then from the continuity of F, it follows that for
a? e (22, 1] sufficiently close to 43 we have I (p( 2)) ~ Oy(aF) # ¢, which
is impossible. The assumption that (i, %) e Ox(a}) similarly leads to a con-
tradiction, so L(x%) = Fy(p*(«3).

The proof of the second part of the lemma i3 quite analogous.

Rematk. It is not difficult to construct an example showing thatb
the sets Fy(p¥(0)) and F(p%(1)) need not be simple ares.

Now we shall define two sets, B(0) and B(1). A point (¥, ¥*) belongs
to B(0) if and only it (4%, 9) « Fy(p2(0)) or if there exists an open set A C B?
such th}at (4% %) e 4 and FrA C Fy(p*(0 ). A point (37, 4%) belongs to B(1) i
and only if (37 y2) e Fy(p?(1)) or if there exists an open set 4 CR?* such
that (4%, 4%) € A and FrA CFy(pX(1)). It is not difficult to verily that B(0)
and B(1) are continua,

{70, 2%), Fy(1, a%)} .

FrB(0) CFy(p%(0)), TFrB(1 )CF(pﬂ( ))
and
 B(0) ~ Fy(pY0)) = {F,(0, 0)},  B(0) ~ Fyp(1)) = {Fy(1, 0)},
B(1) ~ Fy(pX(0)) = {F1 y 1)}y B(L) A FypH(L)) = {Fy(1, 1)}

(the last equalities follow from the proof of Lemma 75).
LevMMA 9, Fy(TotK) = 0,— (B(O) w B(1) v Fy{p'(0)) um(pl(l))).
Proof. From Lemmas 4 and 7 it follows that
Fy(Int K) C O,— (Fyp'(0) w FyfpX(1)) w Fy((p%(0)) w Fufp3(1)) .

We §haﬂ prove that F(IntK) ~ Int B(0) = @. Suppose that there exists
& point («', #%) such that #* > 0, 42 > 0 and Fy(#", #*) e F,(Int K) ~ Tnt B (0).

icm°®
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From the above mentioned properties of B(0) it follows that F, (0, 2%)
¢ B(0). Hence Fy(p(a?)) ~ FrB(0) 5 @, so Fy(p(a?)) ~ Fy(p*(0)) # &, which
contradicts Lemma 2. One can similarly prove that F,(Int K) ~ Int B(1)=@
Hence

Fy(Int ) C 0;— (B(0) w B(1) w Fy(p*(0)) v Fyfp*(1))) -

Suppose now that there exists a point (y%, 42) belonging to the set
on the right-hand side of the last inclusion and not belonging to F,(IntK).
Consider the homeomorphism G I\’P—»—>R2 fulfilling the following conditions:

G| E = @, (for the denotation see Lemmm 7) and G(B ) C[—1,1]x
x[—1,—27", G(BA)C[—1,1)x[27% 1] and G(y*, 92) = (0,0). It is
not difficult to see that such a homeomorphism does exist. We have
(0,0)e[—1,1Ix[—1,1]—GF(F(K)), and so on every simple arc
G( ’1(191(061))) there exists a single-valued continuous argument. As in the
proof of Lemma 7, let us put 4(«!) = argG{F, (2", 1))—arg G(Fy(a?, 0))
for ' ¢[0,1]. The function 4: [0,1]—R is continuous on [0,1] and
A4(0) = —27'w, A(1) = 277=, and so there exists an a5 [0, 1] for which
A(wl) = 0. This is impossible, because points G{Fy(x;, 0)) and G{F(xj, 1))
cannot lic on the same half-line issuing from (0, 0). So the lemma is proved.

Lsvma  10. If ar, wye [0, 1], w} £ al, then Fy(p'(a)) ~ Fyp*(ad))
C {F\(a1, 0), (@}, 1)} or Fy(p'(a; )='Fl(p1(‘,‘c;))'

Proof. Let us observe that if Fy(a}, o®) e Fy(p'(2})) for some a2 [0, 1]
and «} # «f, then from Lemma 1 it follows that F(x}, %) = F\(2}, 2°).
Suppose that ! # @} and that there exists a number e (0, 1) such that
Py}, ) = Py(al, 23). We shall now prove that Fy(aj, «) = Fy(w3, 4°) for
every a%e (0, 22). Let (22, #3) (or [a3, #3), if 25= 0) denote the component
of the st {#?: F(at, 2%) £ Fy(2}, o), a®< a5} (if this set is non-empty;
otherwise there is nothing to prove). Let ¢ denote the region whose
boundary is a simple closed curve consisting of the parts of two simple
aves I'y(p'(#1)) and Fy(p,(#}) included between Fy(zj,a3) and Fi(ay, %)
if 2> 0. Tf @ = 0, then ¢ denote the region with the boundary consist-
ing of the parts of the simple ares Fy(p'(sl)) and Fyp'(#})) included
between B (xt, 0), Fyal, #8) and Fy(xl, 0), Fy(ai, 27), respectively, and
of o guitable subset of 14‘1(]72(0)) chosen in such a way that ¢ ~ B(0)=0
(in thiy ease the boundary of ¢ need not be a simple closed curve). From
Lemma 9 it follows that ¢ C Fy(IntK) in both cases. Let (2}, 25) e Int K
be & point such that I (a}, 23) e . From the continumity of I it follows
that there oxisty an &> 0 such that for every a'e (23— &, 254 ¢). we have
Fy(w, #%) € C. The end-points of the simple are Fy(pX(x*)) belong to Fy(p(0))
and Fy(px(1)); hence for every a'e(xj—e,#;+e) we have Fy(pY (@) »

(I’l(p( 1) © Fypl(e }))) +# 0. From this we conclude that F(pY(«')

2 — Fundamenta Mathematicae, T. XC
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= F(p*(#})) = F(p'(a})) for a’e (w;—e, #34-¢), and so0 f hgbs an interval of
constancy — a contradiction. Hence Fy(#}, #*) = Fy(#j, m“n) for #2e¢ (0, ab).
Similarly one can prove that this equality holds for a*e (a7, 1). The lemma
is proved.

THEOREM 1. If the continuous function I': K ;,‘ng 8 of the form I (", a?)
= (f(z), «®) for (a%, @) e K, where f: [0,1] — [0, 1) fulfils the following
conditions: f(0)= 0, f(1)=1, 0< f(a")< 1 for every a'e (0, 1) and [ has
no interval of constancy and if B = Ty o 'y, where I,: K — 2, Fy: 1, (IC )ntf;;;:(r,,‘lf
are continuous functions, then there ewists a homeomorphism H: .'If’l(In'(y.IC)
;;zlntl( such that (1, 1) = (H o I)) («*, %) = (fl(w‘~), @) for (@, o?) e InGIK.

Proof. Let (¥, y?) e Fy(IntK). Consider the sob .71’;'1({(;1/1, ™). In
virtue of Lemma 1 if (2, a3), (ai, ad) e F7({(y%92)}), then af==a}. Lot
#(yY, 4%) be equal to the common value of the ordinates of all points
belonging to F7'({{(%, y»)}). To define the function #* we shall usc the
fact that for every z%e (0, 1) the set lf’l(pE(wz)) is & simple arc (Lemma 8).
Let us fix a number z%e (0, 1) and let ¢: [0, 1] ;—t—;]f’l(pz(mg)) be a homeo-
morphism such that g(0)eF,(p(0)). There exists at least one number
#ye (0, 1) such that (4%, 9°) e Fy(p'(«y)). From Lemma 3 it follows that
the set Fy(p'(z3)) » Fy(p*(@3)) has exactly one point (yi, ). Lot us pub
Py, ¥2) = g~ Hv3, ¥5). The function # is defined unambiguously in virtue
of Lemma 10. Let H(y% y%) == (B, ), 204 97) for (i, 4) e Fy(IntK).
It is not difficult to see that (H o F) (s, 2?) = (fYa?), a?) for (o', 22) ¢ Int K,
where f1 is some function.

Using Lemmas 1, 3 and 10 one can easily verify that H is a one-to-one
transformation. Also H transforms Fy(IntK) onto Int K. To finish the
proof we shall prove that' H and H™' are continuous functions. Let
{6, )}, m=1,2,.., be a sequence of points of IntK converging to
the point (i, ) e Int K. Suppose additionally that the sequence {fL} iy
non-decreasing. Let

gy=1inf{g: g(f)eFy(p(@")} and  af=sup{o': ol ], g () € 1y ()}

for n=1,2,... We obviously have x} < a} for n=1,2, ... and tho so-
quence {z} is non-decreasing. Hence lim o}, < wd. If lim 2} << al, then
ien0O N0
from the continuity of g and F, we have g(lg) e Iy p* (Lim. )}, which
=00
contradicts the definition of xf. Hence lim a} = &), From tho definition

‘N
N~>00
of H it follows that H'(1}, ) = Fy(a}, £2) for n = 1,2, ... and H"Y(t}, 12)

n? ‘n n!n
= Fi(a5, §7). Since lim (2%, 2) = (%, ) and F, is a continuous funetion,
n—>00

we have mH (1, 12) = HY(i, 42).

T-»00
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In the case where the sequence {il} is noun-increasing the proof is
analogous, and so H™ iy a continuous function on IntK. Hence H is
a continuous funetion on F(IntX) (see [3], p. 31, 1.2.49)

In

DerinrrioN. The erude multiplicity Sfunction of continuous plane
transformation F: B —R?, B C R* with respect to the set D C F is a fune-
tion defined as follows: for (3%, 4*)e R? a number N (o, y2); F D) is equal .
to the number of elements of the set F({(32, y%)}) ~ D, if this set is finite,
and to --co if this set iy infinite ([3], p. 267, [4], p. 5).

DerFINITION 2. The continuous function F': E->R, ECE? is said
to be of bounded variation in DC E in the Banach sense (BVB in D) if
and only if [[N((4',y%); F; D)dy'dy® < +co ([3], pp. 311-312, [4],

ne
pp. 278-280).

Let us nete the following simple theorem on the variation of fune-
tions of a speecial type: :

TupoREM 2. If F(a?, a?) = (FY(z'), F2(a?)) for (2, a?) e K, F is a continu-
ous function and neither F* nor F* is a constant, then F is BVB in K if and
only if " and I are of bounded variation in [0, 1]. i

Proof. We have N((yl, y2); I K): Ni(y*) No(y?), where N,, N, are
Banach indicatrices of F* and F2, respectively (we assume 0-co = 0).

Hence [[N = [N,-{N, and the number on the right-hand side of the
R2 i IR ‘

equality is different from zero. The rest of the proof is obvious.
DrrINITioN 3. We shall say that a function F: E-R: B CR? is
a superposition of the class 0 on the set B (F e Sy(B)) if and only if F (a1, 2?)
= (&!, «*) for (2%, o) ¢ B. We shall say that a continuous function F': F — R?,
B C B is a superposition of the class 1 on the set B (F e S;(H)) if and only
it is BVB in & and F ¢ 8,(%). If § is a natural number or a countable
ordinal of the first kind (i.e., its predecessor f—1 exists), then we shall
say that a continuwous function F: B —R?, B C R? is a superposition of the
class B on the set B (]1’6 ;S'f,(]ﬂ)) if and only if there exist two functions f
and g such that g: B—R2 f: g(B) >R, ge 8 y(B), fe Syfg(B), F=foyg
and. 7' ¢ | ) 8,(H). I B is a countable ordinal of the second kind, then

we sh,an sfiw that & continuous function ¥: F—R?, B CR? is a super-
Dposition of the class f on the set B if and only if there exists a sequence
of functions {g,} such that g,: F—R2 g, . gn(gn_l(-u(gl(E))---))—>R2 for
n=1,2,.. and F(«', a?) = lim Fy(x", 2?) uniformly on H, where F, == ¢,

N—+00 i
By = Gppq oy for n=1,2,... and g e ;S’a"(gn_lt...(gl(E))...)), Fye 8, (H),

ok
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where ap << f for n=1,2,.. and fu< f for m = 2,3, .. and
F ¢\ 8,(B)

a<f

Classes of superpositions of real functions of a real variable are
defined analogously (cf. [1], pp- 327-328) and will be denoted by sy(A)
for ACR.

Prrmnrrion. Let f be a natural pomber of a countable ordinal.
We shall say that a continuous function B Int K - R2 ds o simplified

superposition of the class f on Int K (e U,,(Int](".)) it and only if F(a', a?)

= (IaY), #?) for (¢, a?) ¢ Int K, F e 8,(Int K) and F* may be continu-
ously extended onto [0, 1] and this extension belongs to s,([0, 11). One
can define in an analogous manner a simplified superposition on. an. ar-
bitrary open interval in [2 '

Almost all the funetions constructed in this paper will bhe simplified
superpositions.

TueorsM 3. If g: BEoR, BECR*is o superposition of the class f on B
and f: g(B) >R is a superposition of the class o on g(B), then the function
F={fogis a superposition of the class y < B+a on .

The proof of this theorem proceeds by transfinite induction. on «a

. similarly to the proof of Theorem 1 in [1].

TueoREM 4. If g: E—R* is a continuous and one-to-one Sumetion in
the open region B C R? and f: g(B) —E? is a superposition of the class o >0
on g(B), then the function F = f o g is & superposilion of the cluss a on B
or F e Sy(E).

Proof. If g ¢ Sy(F), then the theorem is obviously fulfilled. Suppose
that ¢ € 8,(F). In virtue of Theorem 3 we have I e 8,(F), where y < Lo
If « is a countable ordinal, then L+ = a. If « = n is a natural number,
then f= fu o (fuoy o (- o (foo fi).)), where fi is of bounded variation on
fi_l(...(fl(E)...)) for i==2,3,...,n and f; is of bounded variation on g(#).

Hence F'= fu o (fn,1 o (wr o (frog).w.)). From the obvious equality
(v foo g5 B) = V(9% fis g (1)

it follows that f, o ¢ is of bounded variation on H. Tlence ' e Sp( &), where
k<< n = a Soin both cases I' ¢ 8 (), where y < «. The invemse ineqgnality
follows from the fact that f= F g™ and ¢~ is continuous and one-to-
one ([3], p. 31). In the proofs of these inequalitics the fact that « and y
are greater than zero plays an essential role. If f ix a superposition of
the class 1 and is one-to-one, then for g= f~' the function I"==foy
belongs to the class 0.

icm°®
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THEOREM 5. Let f be a countable ordinal of the second kind. If g: E—R?
is @ superposition of the class § on E, the set g(E) is an open region and
f: g(B)—>R? is an uniformly continuous and one-to-one function, then the
function B = fog is a superposition of the class f on E.

Proof. We have g=limg,, where ¢, = hy, ¢,1q= Rpqq°gn fOr

n—=c0

n=1,2,.., hn and g, are superpositions belonging to the classes ax
and pa, respectively and an<f, fo<<p for n=1,2,.. If Fo= fogn,
then gn=f"cFy for n=1,2,.., and 80 Fp=7Ffogn=7Ffec (hnog,y)
=Ffolbno(f o, ) for n=2,3,.. Put fu=fo(hnof). We have
Fon=fuol,_, for n=2,3,.. and F;=fog. Hence I, e 8, (E), where
< PiHL< f. Also, we have hnof e S, (F(E)) or hyof™" e S{F(H)),
and 50 fu e S, (E(H)), where 6, < an+1< p for n=2,3,... Simultane-
ously lim Fy(a', 22) == lim f(ga(", 2%)) = f(g (2, 2*)) = F'(«, 2%) and the se-

N—>00

N=»00
quence is uniformly convergent, and, in virtue of Theorem 3, Fy  S,,(H),
where yn < fn+1 < f; hence F ¢ 8 (E), where y < §.

The inequality § < y follows from the fact that g = f~* o F and f~'is
a continuous and one-to-one funetion. Thus finally y = g.

TurorREM 6. If F: Int K — R? is a simplified superposition of the class p
on Int K, F(x*, 0*) = (Fl(wl), wz) and FL is not a linear function, then for
every real numbers O # a,b the function Fy(a* 2?) = (aF(a*)+b, a?) s
a simplified superposition of the class p on IntK and the function Fy(at, x?)
= (FYaz*+b), wﬂ) is a simplified superposition of the class f on (—b-a™,
(1—b)-a™Yx (0, 1).

Proof. If f is a natural number or a countable ordinal of the first
kind, then F = fog, where g is a superposition of the class (f—1) on
IntK and f: g(IntK)—R? is BVB on g(IntK). We have I, = GoF,
where G (% 4?) = (ay*-+b,y?); hence ¥, = (Gof)og. It is not difficult
to verify that N((!, 2%); @ o f; g(Int K)) = N(((zl— b)-a~Y, 22); f; g(IntK)),
and 80 G of is BVB on g(IntX). Hence F, e §({IntK), where y < p. To
prove the equality it suffices only to observe that F = GloF, and G
also transforms linearly the abseissa.

Tt B is a countable ordinal of the second kind, then from Theorem 5
we have X e Sy(IntK). '

Simultancously the function eF'(2*)-+b (after extension) is a super-
position of the class f in virtue of a theorem from [1], § 4, pp. 333-334.
Henee Iy e Uy(Int k). )

The second part of the theorem concerning F, is a consequence of
Theorem 4.

LvMA 11, Let F (2%, 2?) = (FYa), a?) for (2% 2*) e Int K. Let d,
= (ay, by), dy== (ay,by) e disjoint intervals included n (0,1). Suppose
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that T fulfils the following conditions: lim F'(a') == 0, lim ) == 1,

210t ploin]

O< oty <1l for a'e(0,1), IYd) = Tdy)= (mi‘u (Y (ay), (b)),
max (FY(a,), F4b,))) = (min(FX(ay), 7B}, max (F¥(ay), F(bo))) (if the end-
point of dy o dy coincides with the end-point of (0, 1), then by the value of I
we shall mean the limit). If F = f o g, then the sets g(dy x (0, 1), g{dy (0, 1))
are open regions and g(dy;x (0,1)) = g(dx (0, 1) or gldix (0, 1)~
A gldyx (0,1) = 0. ‘

Proof. Let H: g(IntK )——>IntK be o homeomorphism such that

H(g(xl %)) = (g4(a"), a?) for wl ar—) eInt K. Such o ]mm(wmm phism. does
exrst in virtue of Theorem 1. We have ff== (fo H™") o (H «g), and so
= f1 o g, where f* is the first coordinate of fe H™ amd fis a funetion,
of one variable. From Lemma 2 of [1], pp. 337-338 it follows that ¢'(d,)
= gdy) OF gdy) ~ gH{dy) = @. Hence H(g((llx(o,l))) = H (g(dy ¢ (0, 1)))
or H (g(dlx (0, 1))) ~nH (g(dzx (o, l))) = . TFuwthermore the gets
H (g(d1 % (0, 1))) and H (g(dzx (0, 1))) are non-degencrate open rectangles.
The rest of the proof follows from the fact that H is a homeomorphism.
In the sequel we shall frequently use real functions fulfilling the
following conditions: lim f(#') = 0, llim fleby == 1, 0« f(x")y<1 for
10+ WP
€(0,1). To a,bbreviatfa 1;0]19, notation vggfe lsllzull say that such a funetion,
fulfils condition (m).
TaroreM 7. If F e U (IntK), F(a, 2*) = (l”(m*) %), where K fulfils
condition (m), P C[0,1] is a closed set and {(an, bn)} 48 a sequence of wm-

ponents of [0,1]— P, then the function F(a!, 2?) = (Fl(a:l) ¢ ) SJor (x, a2)
eInt K, where

ot for  #teP ~(0,1),

L~ gy
- (ba— “n)ﬁu(b for Oy << &< by,

= On,

’ I’Tl(ml) —

“is also a simplified superposition of the class a on Tnb kK.

Proof. From the fact that F ¢ U (IntK) it follows that F" ¢ 5,0, 1]).
In virtue of Theorem 5 from [1] (pp. 338-340) F' ¢ s ([0, L]). Honce F
<N, (Int K), where y < . Simultancously from Theovers 6 it follows that
Fs o{(an, bu) X (0, 1)) for every natural number n. Henco p - «, hocauso
(@n, bu) x (0,1) CInt K. Thus F e U (IntK).

THEOREM 8. Let P C [0, 1] be a closed set such that its r‘())rzplearwe‘((wa/
set [0, 1] P has only a finite number of components (ax, bi), k = = 1, 2,
If Fre Uy(IntK), Fi(a', 2?) = (Fi(@"), «?) and I fulfils w’mlt,lwn (m)
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Jor k=1,2,...,m, then the function F(a%, %)= (F'a%), %) for (1, a?)
e Int K, where
x for

— ay
ar+- (br— ala)F}c<b L
k

#teP (0,1),

Fiyo) = [

) for  ate(ar,br), k=1,2,..,m,
—ax

s a simplified superposition of the class a = max(a;, as, ..., ay) on Int K.

Proof. We have I} es,([0,1]) for k=1,2,..,m (after the ex-
tension). In virtue of Theorem 6 from [1], pp. 341-344, F' e s,([0, 1]).
Henece I'e S (IntK), where y <« Simultancously from Theorem 6 it
follows that F e S, ((ax, br) % (0, 1)), and so y > ax for k=1,2,..,m
Hence a =y and I ¢ U (IntK).

DErINITION 5. If § iy a natural number or a countable ordinal of the
first kind, we shall say that the function F U(IntK) is an drreducible
superposition of the class f if and only if the following condition is fulfillec:
it '=fog and g eS8y ,(IntK) and f: g(IntK)—R? is a continuous func-
tion, then f is not one-to-one on ¢(IntK). .

DerFinrrioxn 6. We shall say that the set B C R? is an extraordinary
set of order f for the continuous function ¥: IntK —R? if and only if
the following condition is fulfilled: if F'= fo g, where g ¢ Sp(Int K) and
fr g(IntK)—R* is a continuous function, then for every (g/ , ¥%) e B the
seb f({(%, #%)})) is infinite.

One can similarly define irreducible superpositions and extraordinary
sets for real functions of a real variable (see [1], pp. 344-345).

THEOREM 9. Let 8 be a natural number or a countable ordinal of the
Jirst kind. If there ewists a function F e UyIntK), F (2%, a?) = (F'{a?), avz),
where I fulfils condition (m), such that F is an trreducible superposition
of the class f, then there exists a function F « Up(IntK), ¥ F (%, a?) = (Fl(wl) mﬁ),
where F fulfils condition (m), such that F has an emtraordinary set B of
ordai B—L1 and B = B x (0, 1), where B*C (0, 1) is of type G; and is dense

n (0,1).

Proof. Let p: (0,1)—(0, 1) be a function having the following pro-
perties: fulfils condition (m) and the Lipschitz condition and p is not
mongetone in any interval included in (0, 1). The existence of such a fune-
tion was shown in [1], pp. 345-346. From the fact that p is not monotone
in any interval it follows that for every open interval D C (0,1) and
A4 C(0,1) such that p(4)=.D there exist an open interval d CD and
three disjoint open intervals a, b, ¢ such that e wbowecCA and p(a)
= p(b) = p(¢) = d ([1], p. 346). For the closures we obviously have p(a)
= p(b) = p(¢) = d (if the end-point of a, b or ¢ coincides with the end-
point of (0, 1), then we put p(0) =0, p(1l)=1).
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Using the above property, one can construet a sequence of disjoing '

open intervals {4’} and three sequenccs of disjoint open intervaly {a},

{8, {e®) such that the set §; = U d® iy dense in (0, 1), d’= p(al®)

=1

o0 o0
= p (b)) = p(c) for every natural number n and the sebs | Jlaf,”, () b,
2 Nl

0
U ¢ are disjoint.
n=1

Repeating this construction for every d and P as I and A, one
can construct a sequence of disjoint open intervals {d®} and three se-
quences of disjoint open intervals {a®}, {H&}, {¢®} such le,t A 7)((1‘2))

= p(b = p () for every natural number n, the sets | } ald, L J
N, Nl

U ¢ are disjoint and the set S, = U d™C 8, is dense in (0, 1),

n=L
If for k=1,2,..,m—1 we hfwe comtructed sequences of disjoint
open intervals {a"c)‘ {b(’“)}, {™ and {d®} such that d"‘) = ]7((1(’ Y = p(b”‘ )

=p(cfy for k=1, 2, .., m—1 and every n, the sets U ald, U b, LJ P
M= L)

are disjoint and Sp= Ud(’" is dense in (0,1) for % = ey M1,

n=1
and 8,2 8,D...0 8,,_;, then using repeatedly the above prop(xrtw of p tor
every di™ Y and ¢™ " as D and A we construct four sequences of open
disjoint intervals {af™}, {5}, {™}, {d™} such that d(’”) ((v,(""))

= p(b™) = p (™) for every natural number n, the sets | J alm, L ) b,
M=l

oo

U ™ are disjoint and the seb Sn = U @™ C 8,y is dense in (0, 1).
n=1 ==l

Thus, by induction, we have constructed such sequences and sets Sy for
every natural number m.

Put E* = (| 8. Obviously B*C (0,1) is of type @, and is dense in
n=1
(0, 1).

From the above construction it immediately follows that al® ~ aff == ¢,

a(’"’nb(”— 9, b A0 =0, where n #£m or k44 Lot P e [0, 1]~—-
_ U L (@ w b). Let us put
n=1 k=1

(%) for st ¢ P ~ (0,1),

»
al— 7(10)

(1) - (p () — p (109 7 or ol e (100 {
{ p( ( )F (Ic) l(lc) for "1'1 € (da(v. )! "‘a(bc)) = ”‘5»5) ’
| L for &, n==1,2, ..
[linear and continuous on 5® for k,n=1,2,..
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If 0 or 1 is the left or right end-point of some 5%, then the requirement of
continuity in 0 or 1 means the existence of limits: lim Fi(z') = 0,
lim Fi(t) = 1. o
1o~
i From the assumption it follows that I™ e sy([0, 1]) (after the exten-
sion) and F* is an irreducible superposition (of one variable) of the class f.
Erom Theorem 7 of [1] (p. 345) we conclude that F* e s, ([0, 1]). Hence
F el (IntI), where p < p. Simultaneously in virtue of Theorem 6
F e 8y{al?x (0, 1)) for every natural numbers #, k, and so y > . Hence
F e 8y(Int K) and finally F e Uy(IntK).

Now we ghall prove that the set B = E'x (0, 1) is an extraordinary
set of order f—1 for F. Let F=fog, where geS;_,(IntK) and
fr g(IntI) » R is & continuous function. Let (2%, 2%) ¢ H. We shall prove
that f2{(2Y, #%) J) is an infinite set. We have 2' ¢ £, and s0 there exists
a descending sequence of intervals {4’} such that #*e ﬂ ). For every
natural number % there exist two open intervals aﬂ;c) a]nd b,‘f; such that
FYaP) = F'(bD) = dff?. The function F fulfills for af? and b all the
assumptions of Lemma 11, and so0 g(af{‘}f (0, 1)) =g(bPx (0,1)) or
(@ x (0, 1)) ~ g(b{? x (0, 1)) = @. Suppose that the equality holds.
Then the reduced function f|g(b% x (0, 1)) is one-to-one, because F is
one-to-one on b{fx (0, 1). Hence F on the set af? x (0, 1) is a superposi-
tion of the funetion g|af?x (0,1)e (a5 % (0, 1)), where y < f—1 with
the one-to-ome function flg(b{?x (0,1)). This is impossible, because I
is an irreducible superposition of the class 8 on Int K and F on af? x (0, 1)
is a superposition of F with two linear functions, and so Fis an irreducible
superposition of the class f on af?x(0,1). Hence g(al? % (0, 1)) ~
A g% (0,1)}= 0. From the construction it follows that a{?, b
and ¢ are included in ¢f7", because aP Caf=r. so glafx (0,1) v
v (/([)(“x (0, 1)) C geli=" % (0, 1)) Simultaneously  F*(afi~ 1)) fl(b(’”"l))
= F'(efE0) (see [1], pp 350-351) and F fulfills on these 1nterva1% all the

du\\l‘lllll)tl()',nh of Lemma 11; thus g(ef="x (0, 1)) either is disjoint with
glage=1x (0, 1)) and g(bf ul"; (0, 1)) or coincides with exactly one of them.
Thenco sobs glal = (0, 1)), (Ui < (0 , 1)) are both disjoint with at least
one of the sets g(afE="x (0, 1)), (bfﬁ"”x (0, 1)). For every natural num-
ber & choose from the pair of sets g (a2 % (0, 1), (b (0, 1)) that one
which is disjoint with both of the sets g(a{’"? x (0, 1)) and g(bD % (0, 1))
and denote it by 6. We obtain a sequence of disjoint non-empty sets {Gx}.
We have f(Ge) = d® x (0, 1) and (2%, %) € 4 X (0, 1), and so I )

Ny
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Gy # @ for every natural number k. Ience f~Y({( 2y &%) #)}) is infinite,
and so F is an extraordinary set of order f—1 for F. ‘

" TaEoREM 10. Let B be a natural number or a countable ordinal of the first
Find. If there exists a function F e Uy(Int I), F (2, a?) = {#m(a), 1112), where I
fulfils condition (m), such that F is an irreducible superposition of the class §,
then there ewists a function F e Uy, (Int ), Far, af) = (]f’l(f’ ?), where It
Sfulfils condition (m) and F is an ivreducible superposition of the class p-}-1.

Proof. From Theorem 9 it follows that there exists a function
FeUyIntEK), F(#,0?) = (Fy(s"),2?), where F' fullils econdition (m),
having as an extraordinary set of order f—1 the set M == Ky (0,1),

where B C (0, 1) is of type &, and is dense in (0, 1). Tiet g,z (0, 1 ) t“(0, 1)

and gs: (0, 1)——t>(0,1) be increasing functions sueh that g,(J" )wgﬂ(.)‘«)
onto
= (0, 1). Such functions do exist (see [1], p. 352). Let us put Iy(x', z?)

= ((g: o FY)(2"), 2% for i=1,2. From Theorem 3 it follows that
By, 7y e 8(IntK), where y<<p-1. Now we shall prove that the seb
$(BY % (0,1) is an extraordinary set of order f—1 for F,. If G: Int K
——>IntK is defined as G, a*) = (g:(2), 27}, then @ is & homeomorphism
and F, = @, +F. Hence F= G o F,. Let the functions hy: IntK —R2
and fi: hy( IntK)~—>IntK fulfil the following condmonb hy € 8y (IntIC),

fiisa contmuou\ funehon and ', = f, o hy. We h'W(, F oo (G740 fy) o hy.
The set B'x (0, 1) is an extraordinary set of order f—1 Im.' F and so for
every (¢, 2%) e E*x (0, 1) the set (G o fi)™" ({(¢%, 20)}) is in‘finite; thus for
every (v y®) e Gy{E X (0, 1)) = g:(E) % (0, 1) the set f;{{y", 4®)}) is infinite
and g (B') x (0,1) is really an extraordinary set of order f—1 for I,.
Similarly one can prove that the set g,(E') x (0, 1) is an extraordinary set
of order f—1 for F,.

Now let us pub (s, 0?) = (FY(a?), #?) for (2%, %) e IntK, where
F(a?) = 3724 371N (5a— 1) for a € (0, 1) and the funetion f': (—1,4) >R
is defined in the following way:

for —1l<at <0,
o ) ( for 0<ot< ‘1
for 1€t

%"\M"‘%

- =|
] f J(@'—2)  for 2<w1\3,
|#—2 Tor 3KLat< 4.

‘We have Fn €854, ([0,1]) and 7 is an irreducible quporposmmn of
the class f+1 after the extension (see [1], pp. 353-355). Hence I « § (It i),
where y < f-++1. To prove that ¥ « 8p41(Int K) we shall show thwt the seb
Int K is an extraordinary set of order B—1 for the function F(at, «?)
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C;l

= (E"(a), 2%), 50 (37", 2-371) % (0, 1) is an extraordinary set of order f—1
for F. .Jet F=hog, where g €85_1((—1,4)x(0,1)) and h: g(—1,4)x

X (0,1))>R? is a continuous function. We have By at) = (g, o F1)(a)
for #* e (0, 1) and Fya?) = (ga o F*) (1— 2) for a? e (2,3). It (¢, ¥*) e IntK,
then (4% 4°) e (") % (0,1) or (4%, 9?) € go(EY) X (0, 1). In the first caso
the set h~({(y", ’l/z)}) is infinite, because (4%, ¥?) belongs to the extraordinary
set of order f—1 for ¥, in th® second case it is infinite because (7%, v*)
belongs to the extraordinary set of order f—1 for F,.

Suppose now that F = f, o f,, where f, ¢ § s(Int K) and f;: fo(Int K) - K2
is a continuous and one-to-one function. \\e have fy=fsf,, where
fse S, (IntK) and fy: f(IntK)-R* is BVB in fi(IntK). Hence

= (fyofs) ofs. We have fae 8 ,(IntK), and so from the previous
part of the proof it follows that N (7 v)5 (fy o fa); J(Inb K)) =
for (4%, 9?) € (37, 2:377) (0, 1). Hence N((&, #2); fi; fu(Int K)) = + oo for
(2% 2% € fTY (37, 2 371 % (0, 1)). The set f—l(e’r1 2-371)x (0, 1)) is open
and has positive measure, thus f3 18 not BVB in f,(Int K) — a contradic-
tion. Hence F cannot Dbe represented as a superposition of a function
belongmo to the class f# on Int K with a one-to-one continnous function;
soFes (Int K), where y > f--1. Pinally ¥ « 8.1 (Int K) and Fis an irre-
ducible mpelposmon of the eclass f+1 on IntK. Simultaneously
n € 8544([0, 1]); thus Fe Upyy(Int K).

TerorEM 11. Let § be @ countable ordinal of the second kind and let
1< o< ... < Pn< ... be a sequence of natural numbers or countable ordinals
sueh that lim B, = B (i.e., there is no ordinal number y < B for which fn < y

N =>O0
Jor every n. If for every natural number n there ewists a function Fn e U, (IntK),
B2, 2?) = (Fl(ml) mz) where T fulfils condition (m), then thme exists
a function F e Ug(IntK), F(a* 4?)= (Fl(wl) #?), where F* fulfils condi-
tion (m).
Proof. Let {as} be a sequence of numbers such that a,= 0, lim a, = 1

N—>00

and a < @,,, fof' every n. Put
at for ' =an, n=1,2, ...,

T gt ===

@) l Gy (a7,—-—an_1)1”<—-o~?—"—’"—l) for at e (@, ), n=1,2, ...
O Cly, g

and F(z%, a?) = (If“(wl), wz) for (u', %) e Int K. We ghall prove that

B e Ug(IntK). Let '

at for #'e (0, a, ;1w [as,1),
wl

. . ‘
Gy (Wn— @y, ) ol — n"_‘1> for 2 e (¢,_1; @a)
An— Gy g

gn(@) = l
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and ga(, 1?) = (gh(a"), ?) for (at, 2?) e Int K and for every n. It Fy =g,
and F, ., = g,., o F, for n=1,2, ..., then it is not difficult to see that
Fo(at, 22) = (Fi(#"), %), where

at for #' e [an, 1),
Pt (at) =

Ayt (Qr— g )P1<ak a ) i'éor @ e (Ugmyy @rly b==1,2, 00 m.
Uy

In virtue of Theovem 8, F, e Uy, (Int K). Simultancously Hm Iy, == F

]

and the convergence is uniform; so ¥ e §,(IntK), where y < f. In virtue
of Theorem 6, we have I"|(a,_y, @) X (0, 1) “S/m(( w1y ) X (0, 1)) Hence
y == fo for every natural number n, and so y 2= f. Pinally lﬂ ¢ Sp(Int iC).
Since I" e s,([0, 1]) (after extension, see [1], pp. 356-358), then I ¢ Uy(Int K).

TEROREM 12. Let f be a countable ordinal of the second kind. If there
‘ewists a function Fe Uy(IntK), F(sz', 2?) = (]'“(Jf‘) Jl"") where ]f‘f_ fulfils
condition (m), then there ewisls a function F e Upy(Int IC), 4 (2% 2?)
= (FY(a?), 2%), where F* fulfils a condition (m).

Proof. Let us put F(a?, #*) = (FY(a%), 2% for (o', a?) e Int K, where
Fi(zl) = 371 3~ (50" — 1) for #* ¢ (0, 1) and the function F*: (—1,4) »R
is defined in the following way:

[t for ate(~—1,0],
7@y for wieo,1),
i2—m1 for 2*e[l,2),
[#*—2 for #'¢[2,4).

P at) =

From Theorem 11 from [1], p. 359, it follows that f" ¢ Sgqr ([—1,4])
(after extension); hence, in wvirtue of Theorem, 6 F e § L (Int IC), Wh(\r(,
y < f4-1. Simultaneously, also in virtue of Theorem 6, jf’\(’j'l 257N x
X (0,1) e Sﬁ((B“l, 2571 % (0, 1)) and so y2=f. We shall prove that ¢ 4 8.

Suppose that y= f. Then there exists a sequence {g,} of func-
tions such that g: IntK - R, g, . gn(g,,‘_.l(...(!/_‘(I]‘li‘,]s'))...)) - R for
n=1,2,.. and F (o @?) = lim Iy(at, 2% uniformly on Inti#, where

. Nr00

Fy= g, By = gy o Fuforn = 1,2, .. and Iy e S, (Int K), where i < f.

If we pub 7 = Um (g4 4 © Gpipg © - © Guyy) (such a soquence iy uniformly
koo

convergent on gn(gn_l(‘..(gl(IntK))...)), then F = 1, o Fy, for n
The function F fulfils all the assumptions of Temma 11 for dy== (R, 2+ I‘) 1)
and d,= (9 571, 8-57", and so from Lemma ‘11 it follow.s that
Fo((57, 25 )><( )) (2577, 3-57%)x (0, 1)) or Fuf(5™Y, 2-57Y)x
X(O,l))ﬁFn((Z T, 357 % (0, )) @ for every matural number .

. ‘)
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If for some » the equality holds, then #, is one-to-one on Fn((‘) 571357 x
% (0, 1)), because F is one-to-one on (2-57%, 8-57%) x (0, 1). From this
it follows that I e Sﬁ +1(IntK) in virtue of Theorem 6. This is a contra-
dietion, for fa~+1 < §. Hence, for every natural number 7, Fyf(37%, 2-57Y) %
X (0,1)) n Faf(2-57%,3-571) x (0, 1)) = 0. This also leads to a contradic-
tion, because from Theorem 1 it follows that the set F,((57%, 2-57%) < (0, 1))
is a region and NmFy(a!, o) = F(a, 22) for (2%, 4% e¢IntK and
N0
F((57%,2-57) % (0, 1)) = P(2-57, 3571 x (0,1))}. Hence y=#p 50
y=fB-+1 and Fe Uy (Int K).

TurorEM 13. For evary ordinal f < 2 the class Ss(Int K) is non-empty.

Proof. We shall prove that for every ordinal f < 2 the smaller class
Us(Int I{) is non-empty and if f is a natural number or a countable ordinal
of the first kind, then there exists an irreducible superposition of the
class . For f = 1 this is obvious. If for every ordinal a< f the class
U, (IntK) is non-empty, then the class Up(IntK) is non-empty:

a) In virtue of Theorem 10, if f is a natural number or a countable
ordinal of the first kind such that f—1 is a countable ordinal of the first
kind.

b) In virtue of Theorem 11, if # iy a countable ordinal of the second
kind.

¢) In virtue of Theorem 12, if f is a countable ordinal of the first
kind and f—1 is a countable ordinal of the second kind. The fact that
the function F constructed in the proof of Theorem 12 is an irreducible
superposition follows immediately from Theorem 5. )

Henee, in virtue of transfinite induetion, Uy(IntK) # @ for every
ordinal f < 2

DeriNirioN 7. The function F: IntK —R? is called monotove if and
only if for every (7/l ?) €« F(Int K) the set F'({(y*, 4?)}) is a connected set
(sce [3], TI. 1.1, p. 45).

Turorem 14, Let 0 < f< Q2 be an arbitrary ordinal. If F e Sy(IntK)
aind  there cwists  a  homeomorphism  H: F(IntX) p—ie Int K such that
(H o By (a, w2) == (F{a), a?), where B fulfils condition (m), F is not monotone
and F" has no dnterval of constancy, then there exist functions g: Int K — R?,
fr gDt ) - B2 such that I' = f o g, g is BVB in Int K and g is not a mono-
tone function and fis o continuous function on g(IntK).

Proof. It f == 1, then it suffices to put g = F and f(+*, 2*?) = (2, 2?).

Suppose now that the theorem holds for every ordinal number « << f.
‘We shall prove that it holds for f. Consider two cases:

Tf > 1 is & natural number or a countable ordinal of the first kind,
then there exist functions Fy, fy, such that Ty e 8;_(Int K), fi ¢ 8y(F (Int]x))
and I = f, o I",. If H: F(Int]f)—(;z[nt K is a homeomorplmm such that
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(H o F) (2%, a?) = (FY"), 2?), then H o F = (H o f,) o Iy and from Theorem 1
it follows theut there exists a homeomorphism Hy: Fy(Int K );E:Intlf such
that (Hy o Fy)(a, 22) = (Fi(a"), a%). If F} is a monotone function, then I, is
one-to-one and, in virtue of Theorem 4, ' is a superposition of the clags 0
or 1 — a contradiction. Hence F; is not a monotone function. It is not
difficult to see that I has no interval of constancy and F! fulfils conci-
tion (m), and so F, fulfils all the assumptions of the theorem. By hypo-
thesis Fy = f, o ¢, where g: Int K —E? is BVB in Int. K and ¢ is not a mono-
tone funetion and f: g(IntK)-R* is a continuous function. Tlence
F=(fiof) g, and so F has a representation of the required form.

If B is a countable ordinal of the second kind, then B == lim i,

a0

where Fy, e 8 (IntK), f, < B for every natural number 7, and the con-
vergence is uniform. Simultaneously F' = r, o F, (cf. the proof of Theo-
rem 11) and, as in the previous part of the proof, one can prove that for
every natural number n there exists a homeomorphism Hy: I (Int K)
oIt K such that (HyoFa)(ah, a?) = (Fi(a"), 2%) and F% fulfils condi-
tion (m) and has no interval of constancy. Tf for every # the function F% ig
one-to-one, then it is not difficult to see that F* is non-decreasing. Henece
there exists a number n, such that Iy, fulfils all the assumptions of the
theorem. We have Fy, ¢ 8;, (IntK) and f, < §, and so the existencoe of
arepresentation of the required form follows as in the first part of the proof.

THEOREM 15. There emists a continuous Junction, F: Int I - R,
F(z', o?) = (Fl(:vl), acz) Jor (#%, 22) e Int K such that F ¢ \J Sy(Int K).

f<

Proof. In the first place we shall prove that there exists a continuous
function F*: (0, 1) R having the following properties:

a) ' fulfils condition (m),

b) if F* has in &, a} (0, 1), @ % ¥%, a maximum
then F'(x]) = F(zl),

¢) for every interval (¢, d)C (0,1) there exists an interval [a, b]
C (¢, d) such that min (F(a), FYb)) < FYat) < ma/x(]f“(a),'lﬂl(b)) for every
#le(a, b) and for every y' e F(a, b)) the set (F*)~Y{y1}) ~ (a, b) is infinite.

Let h: (a,b)—(h(a), h(b)) be a linear function and let {an},
n=0,41,42, .. bea sequence of numbers fulfilling the following con-
ditions: 0 < Upy1—n < 27%(b—a) for every integer Ny, Hm = @

M= 0

(& minimum),

limay = b. Let us put
R—+00
30 (8)~ 2D (an) for te[an, 2 37y +37"a,,,),
“‘Sh(t)‘i‘2(h(a'n)'|‘h(an+1))
for 1 e[2-37%,+ 3, ., 37 +2-37%,,,) ,

for te [3”1an+2-3‘1an+1, Q1)

() =

8h(1)—2h(a,,,,)
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~ and for every integer n. We shall say that the function % on the inter-

val (@, b) has been replaced by a polygonal line of type P. It is not difficult
to verify that 2" is a continuous function on (@, b) and »*: (a, b) =
onto

(R (a), R (). It we write bon =237+ 87y 41, by gy =370, 1-2-37 00, .,
then 1™ is a linear function on every inferval (bs, b, ,) and it is increasing on
(Bzp—1y bsy) and decreasing on (b,,, Do) At every b,, B* has a local maxi-
mum and at every b, ,, — a local minimum. Tt is easy to see that h* fulfily
condition b).

In the case where 7 is a decreasing linear function the function * is
defined similarly.

Let us observe that from the condition Upy1— A << 271 (b— a) it follows
that, for every te(a,b), W t)—h(t)| < 27Hh(b)— h(a)|.

Now we shall construet the function FL. Let Jol#') = a* for 2l € (0, 1).
To construet f; we replace f, on (0,1) by a polygonal line of type P con-
structed for the sequenece {a,} fulfilling all the conditions mentioned.
Suppose that we have already constructed functions Josfuy ey fy such
that |f,_1(#")—fl_o(aM)] < 27%F1 for every ot « (0, 1), the sum of intervals
on which f;_, is a linear function is dense in (0 ,1) and the oscillation of f,,_,
on every such interval is not greater than 2~*+1, and Sr—, fulfils condition b).
To construct fr we replace f,,_;, on every interval of linearity (a maximal
interval, of course) by a polygonal line of type P constructed for the se-
quence {a,} fulfilling all the conditions mentioned and the following addi-
tional one: for every matural number Sr—a(an) is different from all the
values taken by f,_, at those points where fr—1 has an extremum. If (&, b")
and (a”, b") are two different intervals of linearity of f,_,, then we choose
sequences {a,}, {a,} in these intervals in such a way that Tra(@)
# fr-1(ay, ) for every integers m, p. The function Juconstructed in this manner
is & continuous funetion, it has a dense set of intervals of linearity, its
oscillation on every such interval is not greater than 2%, f fulfils condition b)
and [fu(@')—fj_,(@')] < 27F for every a'e(0,1)) From the construction
it follows also that the length of every interval of linearity of fr is less
than 2%,

Ilence, by induction, we have defined a sequence of continuous fune-
tions {fr}, k== 0,1, .. This sequence is uniformly convergent. Let us
put £(a?) == lm fr(a?) for < (0,1). In [1], pp. 367-368 it was proved

o]
that I fultily conditions a) and b). We shall prove that F* fulfils also con-
dition e). Let (¢, d) C (0, 1) be an arbitrary interval. From the construec-
tion it follows that there exist a natural number %, and the interval
[a, b] C (¢, d) such that [, 18 linear on (a, b) and is not linear on any greater
interval. We have FY(a, b)) = fr((a, b)). Denote by B the set of values
of F* taken by I it those points where ¥* has an extremum. For
Y e (0,1)— B the set (F")"*({y}) is a perfect set (see [L], pp. 368-369).
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Hence for y* « F*((a, b)) —B we have (I {y*H) (@, D) # (/), and so the
set (FY)7({y*}) ~ (e, b) is infinite. Suppose now that o' e FY{(a, b)) ~ B.
There exists a point #*e(0,1), at which F* has an extremoum and
FYat) = yL. Tf neither of the points having these properties (in the first I
has a maximum and in the second — a minimum) is in (@, b), then, in the
same way as in [1], pp. 368-369, one can prove that the set (F)7*({y*})
~ (a, b) is non-empty and perfeet in (4, b), and hence infinite. If at loast
one of those points belongs to (a, ), then from the construction of f, ., it
follows that there exists an interval [bn, by.,1C (a, b) such that 1™ hay no
extremum at any point of the set (F*)7*({#'}) ~ (bu, bypy). Onthe same way
as in [1], one can prove that the set (F*)7({y"}) ~ (bu, byya) is noo-empty
and perfect in (ba, b,,), and so the set (F*)7'({y"}) ~ (4, b) is infinite.
Hence F' fulfils condition ¢).

Let I'(at, a?) = (Fl(wl), #?) for (a, 2%) ¢ Int K. Suppose that there
exists an ordinal number p<< 2 such that If’eSﬂ(IntK). It is easy to
see that 7 fulfills all assumptions of Theorem 14. Hence there exish
g: TntK —Re, f: g(IntK)—R? such that F'=fog, ¢ is BVB in IntK
and is not monotone and f is continuous on g(IntI0). In virtue of
Theorem 1 there exists a homeomorphism H: ¢(IntK );1—%1‘1113 I such that
(H o g)(a%, 2?) = (fu(a), 2%). We have also (feH ), 1% = (f(y"), )
for (y%, 42 ¢ IntK, because F = (foH ") o (H og). Hence fs=j;af.
From Lemma 3 of [1], p. 363 it follows that f; is one-to-one on (0, 1) or
there exists an open interval dy Cf;((0, 1)) on, which f, is one-to-one. The
supposition that f; is one-to-one leads to a contradiction, because g is not
monotone on Int . Hence the second possibility ought to be fulfilled. Let
(¢, d) C (0, 1) be a component of the open set f;7*(d) and (a, b)C (¢, d) —
the interval chosen for F! in virtue of condition ¢). Let d, = fl((a, b)).
Obviously d; C d, the function f, is one-to-one on d, and it is not difficult
to see that d, is an open interval. We have F%(a, b)) = fo(d,) and for every
y* e FY{(a, b)) the set (F")"({y*}) ~ (a, b) is infinite, thus for every &' ed,
the set fi*({e*}) (@, d) is infinite. Hence N((e4, 2%); H o g, (a, b) X (0, 1))
= oo for (s, 2%) ed; X (0,1) and _N((tl, ®); g5 (a, b)x (0, l)) = oo for
(1, ) e H™*(dy % (0, 1)). Since H™{d, X (0, 1)} is an open region, ¢ is nob
BVB in (a, b)x (0,1) — a contradiction.

The supposition that F'e | ) 8,(Int X)) leads to a contradiction, and

p<
the theorem is proved. ' k

CorROLLARY. For every ordinal number f<< £ the class Sy(I0) is non-

empty. There ewists o function F: K —R* such that F ¢ | ) Sy(I0).

p<0

Proof. Let f< Q and let F: IntK —R? be a superposition. of the
class f constructed in the proof of Theorems 10, 11 or 12. The function /'
may be extended on K. Let F: K — R? denote this extension. We have
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F(wl.’ a?) = (F(aY), 2%) for (2%, 2?) ¢ K. From Theorems 8, 10 or 11 of [1]
(or from. the proof of Theorems 10, 11 or 12 in this paper) it follows that
I e 55([0, 1]). Hence F e S(K), where y<C B. The opposite inequality
follows from the fact that I ¢ S,(IntK) and Tnt K C K. Finally F « Sy(K).
v Let I': IntK —R? be the funetion constructed in the proof of Theo-
rem 15 and let #' denote a continuous extension of F on K. If F ¢ S4(K)
for some f < 2, then I ¢ 8,(IntK), where y < f — a contradiction. Henece
F ¢ ) Se(If).

B
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