On the Whitehead theorem in shape theory II
by

Sibe Marde§i¢ (Zagreb)

Abstract. Recently S. Ungar and the author have proved a relative “Hurewicz theorem” in
shape theory [10]. In the present paper this theorem is applied to obtain a homological and a coho-
mological version of the “Whitehead theorem” in shape theory ([7], [13]). One also studies the
category of pro-groups and characterizes monomorphisms and epimorphisms in this category. In
particular it is proved that bimorphisms and isomorphisms coincide in the category of pro-groups.

1. Introduction. Recently M. Moszynfiska [13] has proved a “Whitehead theo-
rem” in shape theory. It applies to shape maps f: (X, xo)— (Y, y,) of finite-dimen-
sional metric continua and gives sufficient conditions for f to be a shape equiva-
lence. Precisely, if no = max{l+dimX, dim ¥} and (fly: mX, x)=m(Y, p) is
a bimorphism of pro-groups for 1 <k<mny+1 and is an epimorphism for k& = ng+1,
then f is a shape equivalence.

In [7] the author has reproved and extended Moszynska’s result. It was
shown that the conclusion is valid also in the following cases:

(i) X is a compact Hausdorff continuum and ¥ a metric continuum.

(ii) X and Y are connected topological spaces but f is generated by a continu-
ous map f: (X, x0)—= (7Y, ¥o).

Recently 8. Ungar and the author [10] proved a relative “Hurewicz theorem”
in shape theory. This result is applied in the present paper to obtain additional
results concerning the Whitehead theorem. One first shows that in the case of
1-shape connected spaces one can improve by 1 the dimensional assumptions in
the Whitehead theorem obtaining thus the same dimensional conditions as in the
classical case (see Theorem 2).

The same theorem enables one to establish a Whitehead theorem in terms
of homology and cohomology respectively (see Theorems 3 and 4). The cohomology
version is especially simple because it is stated in terms of the usual Cech cohomology
groups. ’

In the last section 8, we analyze epimorphisms and monomorphisms in the
category pro(%) of pro-groups and we prove that in this case bimorphisms are
actually isomorphism.
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This paper can be regarded as a continuation of [7] and we use [7] as general
reference for notions and notations.

The author wishes to express- his thanks to Maria Moszyfska for a helpful
exchange of information and ideas.

2. Homology pro-groups

2.1. Let % denote the homotopy category of pairs of spaces having the
homotopy type of a simplicial pair. Let (X, 4) = ((X, 4);, pss» 4) be an inverse
system in #2 over a quasi-ordered set (A, <), i.e. an object of pro(#™). In
analogy with the case of homotopy pro-groups (see 5 in [7]) one defines k-th homal-
ogy pro-group with coefficients in G of (X, 4) as the inverse system H,(X, 4; G)
= (H,((X, 4)3; G), (P2s)s» ). It is a pro-group, i.e. an object of pro(%), where ¥
denotes the category of groups. For G = Z we write merely H(X, 4) for
H(X, 4;G).

Every morphism f: (X, A)=(Y, B) = (Y, B),, ¢,,r» M) in pro(#*) induces
a morphism of pro-groups (f).: Hi(X, 4; G)—H (Y, B; G). If f is given by /: M—A
and f,: (X, Ay~ (Y, B),, then (f),, is given by f and

(fdes® Hk((Xs A)f(u); G)_)Hk((ys B),: G) .
Clearly, (gf)k* = (g)k#(f)kw (l)k
homology pro-groups.

Similarly, one defines H,(X; G) for inverse systems X in%¥", where ¥~ denotes
the homotopy category of spaces having the homotopy type of a simplicial complex.

2.2. Bvery object (X, A) of pro(#"?) determines objects A and X of pro(#")
and morphisms i: A—X, j: X—(X, 4) given by the inclusions i,: 4;— X, j;: X

= (X,,N~(X,, 4,;), Le A We then obtain induced morphisms of pro-groups

@O Hi4; O—H(X;6), (et H(X; O~ H(X,4;0).

, = 1, so that isomorphic systems have isomorphic

We also define morphisms
Oy H(X,A; G)»H,_(4;6)

given by the boundary homomorphism 0;: H(X;, 4;; G)~H,_,(4;; G
have the fomology sequence of pro-groups of (X, A):

). We thus

o Hi(d; G) = H(X; G~ H(X, 45 )~ H_(4; G)— ...
v Hy(X, 4; G) = Hy(A: G)~Ho(X; G)~Hy(X, 4; G)-0 .

Since the corresponding sequence for each A is exact in the category of groups &,
we conclude that this sequence is exact in pro(9) (see 5.2 of [7]).

2.3. By 5.3 of [7] the following holds:

Let (X, A) be an object of pro(#*). If for a given k=1, i,: Hy(d; G)—H(X; G)
is an epimorphism in pro(%) and i,_,: H,_,(4;G)—~H,.,(X;G) is a mono-
morphism in pro(¥%), then H(X, 4; G) = 0.
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2.4. For a pair of topological spaces (X, A) one can define homology pro-
groups up to isomorphic objects in pro(%9) as H(X, 4; G), where (X, 4) is any
inverse system in %? associated with (X, 4) in the sense of Morita ([12]; see also 3
in. [7]). Notice that H (X, 4; G) = 0 if k>dimX, because (X, 4) admits a system
(X, A) associated with (X, 4) and such that dim X, <dim X for each 1l e 4 (see 3.4
of [7]).

The inverse limit lim H(X, 4; G) is the Cech homology group H(X, 4; G)
based on all open normal coverings of (X, 4) [12].

3. The Hurewicz isomorphism theorem

3.1. Let (X, 4, x) be an object of pro(#7) and let 7 (X, 4, x) = (nk(X A,x);,

(Pradictss A), k=1, be the k-th homotopy pro-group (see 5 in [7]). The Hurewicz
homomor phism

D m(X, 4, x),~H(X, A),, led,

induces a morphism of pro-groups

D (X, A, x)>H(X, A)

called the Hurewicz morphism.
For a pointed pair of topological spaces (X, 4, x,) one has also a Hurewicz
morphism of the homotopy pro-groups into corresponding homology pro-groups.

DEFINITION. A pair (X, A4, x;) is said to be n-shape connected (or approxi-
matively 7z-connected) provided both X and A4 are connected and 7 (X, 4, x) = 0
for 1<k <n. Similarly one defines n-shape connectedness of (X, x).

Now we can state the “Hurewicz theorem” proved in [10] (Theorem 3).

THEOREM A. Let (X, A, x,) be an (n—1)-shape connected pair of topological
spaces, n =2 and let (A, xo) be 1-shape connected. Then

(iy H(X,A) =0 for 1<k<n—1,

(i) @, n,(X, 4, x)>H,(X, 4
is an isomorphism of pro-groups.

4. Shape deformation retracts

4.1 . The main step in the proof of the Whitehead theorem in [7] was the follow
ing result (see Theorem 4 of [7]).

THEO REM B. Let (X, A, xo) be a pair of pointed topological spaces and let
dimX = n<oco. If (X, 4, x;) is (n+1)-shape connected, then the inclusion i: (A, x;)
—(X, xo) Induces a shape equivalence.

Using the Hurewicz theorem we shall now strengthen Theorem B in the
1-shape connected case to the following

THEOREM 1. Let (X, A, xo) be a pair of pointed topological spaces and let dim X
=n<ow. If (X, 4, xo) is n-shape connected and (A, x,) is 1-shape connected, the
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the inclusion iz (A, x0)~(X, xo) induces a shape equivalence, i.e. (4, x4) is a shape
deformation retract of (X, x).

Proof. If n =0, then =,.,(X,4,x) =0 because one can assume that
dim X; = 0.for all A€ A and therefore n(X, 4, x), = 0, for k>0. If n»1, Theo-
rem A implies that 7, (X, 4, x)=H,.((X, 4, x). One can assume that dimX,<n
and therefore H,. (X, 4, x), = 0 which implies H,, (X, d,x) = 0. We have
proved thus that (X, 4, x,) is actually (n+1)-shape connected so that Theorem B
applies. .

CoroLLARY 1. Let (X, xo) be a topological space, dimX = n<oco. If (X, x)
is n-shape connected, then Sh(X, x,) = 0.

5. The Whitehead theorem

5.1. We recall from Sections 7.1 and 7.3 of [7] some facts concerning the ‘

“mapping cylinder”:

TaeoREM C. Let f: (X, x0)—=(Y, o) be a shape map of connected 1lopological
spaces. We assume in addition that either

(1) X is compact Hausdorff and Y compact metric; or

(i) f is induced by a continuous map f.

Then there is a pair of connected spaces (Z, X, x,) and an embedding j: (¥, Yo)
—(Z, xo) which admits a shape inverse g: (Z, xo)—(Y, y,). Furthermore, f = gi,
where i: (X, x0)—~>(Z, x,) is the inclusion map and

dimZ<n, = max(1+dim X, dim Y).

Now we can derive from Theorems C and 1 an improved Whitehead theorem
for 1-shape connected spaces following the proof of Theorems 6 and 7 given in [71.
We obtain

THEOREM 2. Let f: (X, xo)—>(Y, yo) be a shape map of connected 1-shape con-
nected finite-dimensional topological spaces. We assume in addition that either

() X is compact Hausdorff and Y is compact metric; or

(i) f is induced by a continuous map f.

I (ot mdX, x)=>n(Y, ¥) is an isomorphism of pro-groups for I<k<n,
= max{l+dim X, dim ¥} and an epimorphism for k = ng. Then f is a shape equi-
valence.

Proof. The assumptions on ( g carry over to gy mlX, x)=m(Z, x)
because of Theorem C. From the exactness of the sequence of homotopy pro-
groups (5.4 in [7]), it follows by 5.3 in [7] that m(Z, X, x) = O for I<k<gn,, ie.
that (Z, X, x,) is ng-shape connected. Since dimZ<ny, it follows by Theorem 1
that it (X, xp)—(Z, x,) is a shape equivalence. The same is true of [ because f = gi.

6. The Whitehead theorem in terms of homology

6.1. For 1-shape connected spaces one has also a homological version of the
Whitehead theorem.
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THEOREM 3. Let f: (X, x)—=(Y, yo) be a shape map of 1-shape connected
Jinite-dimensional topological spaces. We assume in addition that either

() X is compact Hausdorff and Y compact metric; or

(D) f is induced by a continuous map f.

If (e HX)->H(Y) is an isomorphism of pro-groups for 2<k<n,
= max{l1+dimX, dim ¥} and an epimorphism Jor k = ny, then f is a shape equiv-
alence.

Proof. By Theoreqm A, H((X) = H\(¥)=0 so that (f),, also is an
isomorphism. The assumption on (f),, carry over to (i),,: Hy(X)—H(Z) because
of Theorem C. From the exactness of the sequence of homology pro-groups.
(see 2.2), it follows that H(Z,X) = 0 for 1<k<n, (see 2.3).

Note that Sh(Z, x,) = Sh(Y, y,) implies 7,(Z, x) = 7, (Y,y) = 0. Since also-
(X, x) = 0, it follows that D1z (X, x)>my(Z, x) and Doy mo(X, X)=7m0(Z, x)
are isomorphisms. By exactness of the sequence of homotopy pro-groups one ob-
tains 7,(Z, X, x) = 0 (see 5.2 and 5.3 of [7]). Therefore, one can apply Theorem A
and conclude that (Z, X, xq) is no-shape connected. Since dimZ<n,, it follows.
from Theorem 1 that i: (X, x,)—(Z, x,) is a shape equivalence. The same holds.
for f because f = gi and ¢ is a shape equivalence.

6.2. COROLLARY 2. Let (X, x,) be a 1-shape connected finite-dimensional space.
If H(X) = 0 for 2<k<dimX, then Sh(X, x;) = 0.

Remark 1. D. S. Kahn [4] has exhibited an co-dimensional metric continuum.
(X, xo) such that m(X, x) = H(X, x) = 0 for all k& but Sh(X, Xo) # 0 as shown
by D. Handel and J. Segal [3]. The author and Segal [8] have considered a 1-di--

* mensional metric continuum (X, x,) (the Case-Chamberlin curve) for which

Hi(X) = 0 and Sh(X, x,) # 0. However (X, x,) is not 1-shape connected.

7. The Whitehead theorem in terms of cohomology

7.1. For every pair of topological spaces (X, 4), every Abelian group G and.
integer k>0 one defines the k-th cohomology group H*(X, A; G) as the direct limit
of the direct system H(X,4;G) = (H*((X, 4),; G), (paz)", 4), where (X, A4)-
= ((X, A);, pazr» A) is any inverse system in %2 associated with (X, 4). If G = Z'
we simplify the notation to H*(X, 4). Note that any two systems associated with
(X, A) are isomorphic and therefore determine H*(X, 4; G) up to an isomorphism.
This definition yields the usual Cech cohomology groups based on open normal
coverings (see 3 in [11]). Shape maps f induce natural homomorphisms of cohomol-
ogy groups.

It is well-known that the direct limit of an exact sequence is exact (see e.g. [2],.
Theorem 5.4, p. 225). Therefore, the 'fo]lowing sequence is exact

s HENXG G H (4 G)»HY X, 4; O)—~HYX; G)~...

The cohomology group H (X, 4; G) = 0 if k>dimX.
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7.2. In order to prove a cohomological version of the Whitehead theorem,
we need the following

Lemma 1 ("), Let (X, A) be a pair of compact Hausdorff spaces.

(@) If the groups HY(X, A) = H** (X, A) = 0, then the pro-group H(X, A) =0.

(i) If the pro-groups H,,_(X, A) = H(X, A) = 0, then the group HXX, 4) = 0.

Proof. Let (X, 4) = ((X, A);, pax, A) be an inverse system in %2 associated
‘with (X, 4) and consisting of pairs of finite simplicial complexes. Let us assume
that HX, A) = H*''(X, A) = 0. Then for every ¢ e H"(X, A), there is a A'>1
such that (p;,)*(&) = 0. Since the groups H*'!(X, 4), are finitely generated,
«each A admits a A’ such that (p,;)*"** = 0. Similarly, each A’ admits a A"z 1’
such that (p,,)% = 0.

Consider now the diagram

0—Ext(H** (X, A);, Z)>H(X, 4);»—~Hom(H"X, 4),., Z)-0
0 i !

0->Ext (H**'(X, A)y, Z)>H(X, A);—~Hom(H X, A);,, Z)—0
! \ 4

0—Ext (H** (X, A);, Z)—H(X, A), » Hom (H*(X, A),, Z)—0.

The rows are functorial exact sequences and therefore the diagram commutes
(see [14], Theorem 12, p. 248).

The composition of the middle vertical arrows (p;;.)* must be 0 because
()™ = (pu)¥T1" = 0. This means however, that the pro-group H,(X, A) = 0,
and (i) is established.

The functorial exact sequence ([14], Theorem 3, p. 243)

0—EBxt(H,_,(X, A),, Z)>H X, A);~Hom(H(X, 4),, Z)-0

is used to obtain a similar proof for the assertion (ii). Note that (ii) holds even
without the compactness restriction.

7.3. THEOREM 4. Let f: (X, xo)—(Y, yo) be a shape map of 1-shape connected
Sinite-dimensional compact Hausdorff spaces. We assume in addition that either

(i) Y is metric; or

(i) f is induced by a continuous map f.

IF (N)¥: HX(Y)~H"(X) is an isomorphism for 2<k<ny = max {1 +dimX, dim Y}
and da monomorphism for k = ngy, then f is a shape equivalence.

Proof. By Theorem A, 7,(X, x) = n,(Y, y) = 0 implies, H,(X) = H,(Y) = 0.
By (i) of Lemma 1, it follows H'(X) = H'(Y) = 0. Consequently, (f)** is an
isomorphism also for k = 1.

By Theorem C the assumptions on (f)* carry over to (i)*: HYZ)—H*X).
From the exactness of cohomology it follows H*(Z, X) = 0 for 2<k<n,. Notice

(*) The author is indebted to Professor Y. Kodama for correcting an error in the
first draft of the proof of Lemma 1.

Added in proof. Essentially the same result was proved by R. C. Lacher, Cellular-
ity criteria for maps, Michigan Math. J. 17 (1970), pp. 385-396.
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that also H™'(Z, X) = 0 because dimZ<n,. We conclude now by part (i) of
Lemma 1 that H(Z,X) = 0 for 2<k<n, and the proof proceeds as in the case
of Theorem 3.
7.4. COROLLARY 3. Let (X, xo) be a 1-shape connected finite-dimensional com-
pact Hausdorff space. If HY(X) = 0 for 2<k<dim X, then Sh(X, x,) = 0.
COROLLARY 4. If X is a finite-dimensional Hausdorff continuum and H*(X) = 0

Jor 1<k<dimX, then the suspension X of X is of trivial shape.

Proof. ZX is also a finite-dimensional Hausdorff continuum. Furthermore,

HYZX) = 0 for 2<k<dimZX because H¥ZX) = H* 1(X). If

X,x) = ((Xs X3 Paxes A)
is an inverse system of finite polyhedra X with lim(X, x) = (X, x), then Z(X, x)
= ((ZX;,x;), Zpszr, 4) is an inverse system of finite polyhedra with IimZ (X, x)
= (XX, x,) and is therefore associated with (XX, x,). Since each (£X;, x,) is simply
connected (see [16], Corollary 3, p. 454), we conclude that (ZX, x,) is 1-shape
connected. Consequently, Corollary 3 implies Sh(ZX, x,) = 0.
Remark 2. The Case-Chamberlin curve has trivial cohomology groups and

a non-trivial shape [8]. However, it was shown in [5] that its suspension is of trivial
shape. This also follows from Corollary 4.

8. Bimorphisms in the category of pro-groups

8.1. In the original formulation of the theorem of Moszyfiska [13] appears
the assumption that (f),y is 2 bimorphism of pro-groups for 1<k<n,+ 1. In every
category isomorphisms are bimorphisms, i.e. are at the same time epimorphisms
and monomorphism. In general the converse is false. The purpose of this section
is to show that in the category pro(%) of pro-groups the converse does hold, i.e.
bimorphisms. of progroups are isomorphisms.

8.2. We shall first characterize epimorphisms in pro(#%). -

LemMA 2. Let H be a group and M < H a subgroup. Then there exist a group P
and two homomorphisms ¥, W': H-P such that

(0] YIM =¥ M,
2) (Yhe HNM)YP ) # V') .

Proof. If M is a normal subgroup, we put P= H/M. We take for ¥: H-P
the quotient map and for ¥': H—P the constant map 1 e P. Clearly, ¥|M = ¥'|M ~
=1, and if he H\M, then ¥ (h) £ 1 =¥'(h).

Now assume that M is not a normal subgroup. Then the index of M must
be >3. We take for P the group of all bijections H—H. For every he H let ¥(h)
be the bijection ¥,: H—H given by

(3) Yi(x)=hx, xeH.
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Clearly, ¥, ,, = ¥, ¥}, so that ¥ is a homomorphism H-P. We define ¥’': H—P by
) V') =P, =0 'V, heH,
where o: H—H is a bijection still to be specified.

Since ¥}, = 0", ¥)0 =¥, ¥, W' H-P is a homomorphism. Note that
5) Yx) =" Hho(x)), xeH.

We shall now define the bijection ¢. In every right coset class M#h of H, different
from M, choose a representative %,. Since the set S = {A,, x € A} of these repre-
sentatives has at least 2 elements, there is a bijection o: S—S with no fixed points.
We extend ¢ to a bijection H—H by putting

©) o(m) =m,
@) o(mhy) = mo(h,) ,

meM,
meM.
Note that o(x) = x, xe H, implies xe M because o(mh,) = mo(h,) € Mo(h,)

and (Mh,) n (Mo (h,)) = @ because o(h,) # 1,.
We prove now that

®) V.=V, heM.
Denote & by h = m'e M. If x = mh, € Mh,, then
Y (x) =¥, (mh,) = o (m'mh,) = m'mh,,
where h, = o(h,). On the other hand, ¥,.(x) = m'mh, =¥, .(x). If x = me M,
then ¥, .(x) = ¢~ 1(m'm) = m'm = ¥,,(x). We prove now that
© Y, #Y¥,, heMhcH\M.
Assume contrary to (9) that there is an & = mh,, me M such that ¥,, =¥,
Since ¥y (67 1hy 1)) = o™ (mh,h; ") = ¢”*(m) = m and
¥ (o™ B Y) = mh,e™ 7Y, ‘
we would have mh,o” (k') =m and therefore ¢~ '(h;Y) = 17!, ie. o(hTY)
=it It follows h7'e M and thus j, € M, which is a contradiction.

8.3. TueoreM 5. Let G = (G), pyy, 4) and H = (H,, q,.., M) be pro-groups
and let f: G~ H be a morphism of pro-groups given by > M~ A and by homomorphisms
Jut Gryy—H,. The morphism f is an epimorphism in pro(%) if and only if it has the
Jollowing property

(e) for each pe M and each Azf(n) thére is a 1 = p such that

q}l;L'(‘]{[L') Cf;tl)f(u)l(G/l) .

Proof. We first assume that f is an epimorphism. Let ue M, Azf(1). By
Lemma 2 there is a group P and there are homomorphisms ¥, ¥’ H,—P such that
(10) ‘ g/]f;:pf(u)l(Gi.) = T’Jf;.Pf(ﬂ);.(G;.) P
(11) (Vh,e H NS (GD)Y (h,) # () .

mhe

icm
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We can consider ¥, ¥’ as morphisms ¥, ¥ of the pro-group H into the pro-
group P consisting only of the group P. Since by (11) YfuPros = ¥fubsys, we
have ¥f= ¥'f and f being an epimorphism, ¥ = ¥’ follows. This means however
that there is a p'>pu such that

(12) Yy =¥'q,, .

It follows now from (12) and (11) that for each h, € H,, the element Guu()
must belong to f,p;y2(G), i.e. that () holds.

Conversely, let us assume that (¢) holds and that g, ¢': H-K = (K,, Tygrs N)
are morphisms, given by homomorphisms g, and g, respectively, such that gf = g'f.
There is a p=>g(v), ¢'(v) and a leA such that g,f,»pre: = Gy Prgmis
AZFW)s FoaPracor = Gyl uP s 304 Sy Pryons = dypuPrgor- Then

r
Iy Dot uPrmr = 9vly oS ul -

We choose now u'zp by (e). Clearly, Iy Doy = g;qg’(v)n., which shows that
g =¢', i.e. proves that fis an epimorphism.

Remark 3. If M = 4, fis the identity, and g,,/;, = fop,» for u<p’, we
speak of a special map of systems f: G—H (see 2.2 in [7]). In this case if all S, are
epimorphisms, condition (e) is clearly satisfied and f is an epimorphism (see 4.3
in [7]).

8.4. We now characterize monomorphisms in pro(4).

THeOREM 6. Let G = (G, pyy, A) and H = (H,, q,,,, M) be pro-groups and
let f» G—H be a morphism of pro-groups given by f: M—A and Jut Gry—H,. The
morphism f is a monomorphism in pro(4) if and only if it has the following property

(m) for each L€ A there is a pe M and there is a X' 2, f(u) such that

Pr{fuPrwr) ) = 1.

Proof. Let us first assume that f is a monomorphism given by a special map
of systems (see Remark 6). Then the kernel of fis the system N = (V,, P Nrs M),
where N, = (fﬂ)"lﬂ):Gn (see 4.2 in [7]). Since f is a monomorphism, N = 0,
i.e. for each e M there is a p'>pu such that

(13) Pueir N (1) = 1.

In order to derive the necessary condition (m) in the general case one can
apply 2.2 of [7]. There an explicit construction is described which assigns to every
map of systems f an equivalent special map f'. It suffices now to see how the con-
dition (13) for f " can be expressed in terms of the original map f. This is not difficult
although somewhat tedious and we omit it. .

We also omit the proof of sufficiency of (m) which is straightforward and
similar in nature to the proof of the sufficiency of (e) in Theorem 5.
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8.5. THEOREM 7. Fvery bimorphism f: G—~H of pro-groups is an isomorphism.

Proof, There is no loss of generality in assuming that f is given by a special
map of systems (see 2.2 in [7]), ie. that G = (G,, Py, M), H = (H,, 4,5, M)
and f is given by homomorphisms f,: G,—H, such that g,,f, = fup, for u< I
Since f is a monomorphism, we conclude by Theorem 6 that every u admits
a pu*>p such that

(14) Puel ) ) = 1.

Since f is also an epimorphism, we conclude by Theorem 5 that there is aﬂl’ Zu*
such that
(1 5) q;t*;t’(Hu') Cf;;*(.Gu*) .

Therefore, for each x, € H, there is a y,. € G, such that

(16) qp.*u’(xu’) = f;t*(y ;A*) -

If Y0, ¥i» are two such elements, then f. maps (y,) 'y into 1 so that (14)
implies pp(y,) = Pus(¥ys). In other words, p,«(y,) is independent of the choice
of y,s € G« satisfying (16). We obtain thus a well-defined map /1,2 H,,:—G, such that

an Sl = Qe s
(18) : hyfor = Pas -

It is readily verified that /,,. is a homomorphism.

All this shows that we may assume that for any A<A’, A # 1’, a homo morphism
Byt Hyu—G, satisfying (17) and (18) is given. Indeed, one can define a new order-
ing <’ putting A<’A" if A = A’ or if there is a homomorphism 7, satisfying (17)
and (18). Since each A€ A admits a A’ such that A<’/ the index set (4, <) can
be replaced by (A4, <).

Note that for A<, <1, by (18)

(19) Maaiantin = ManJaiPass = PaaPrgy = Piay -

Let A: A—A be any function such that i(1)>A for each le A (we may as-
sume that 4 has no maximal element). Let f,: Hy;,,—~G, be the homomorphism
Mgy Then 1 and hy, 2e A, determine a morphism h: H—G. Indeed, if 1<’ there
is a Ay >h(4), h(4). It follows from (19) that
(20) MaGnaSoy = Paay = PasParny = Paz My Guanadta, -

By. (17), fi,ha,2, = a2, for any A,>2, and therefore (20) yields
21 I, Th(yaz = Doy Incaryay

By (17) and (18) for every Ae A we have fil, = quy and i fiay = Pagy
which proves that fk =1 and hf = 1. This completes the proof of Theorem 7
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