

Table des matières du tome XCI, fascicule 3

	Pages
T. Przymusiński, Normality and paracompactness in subsets of product spaces	161-165
W. Hanf, Representing real numbers in denumerable Boolean algebras	167-170
P. Kranz, Extension of a valuation on a lattice	171-178
J. R. Martin, On a simply connected 1-dimensional continuum without the fixed	
point property	179-182
J. Luh, Rings in which every proper right ideal is maximal	183-188
G. M. Reed, On subspaces of separable first countable T_2 -spaces	189-202
- and P. L. Zenor, Metrization of Moore spaces and generalized manifolds	203-210
J. Chaber, Metacompactness and the class MOBI	211-217
R. F. Dickman, Jr., Multicoherent spaces	219-229
F. Richman, A constructive modification of Vietoris homology	231-240
R. H. Rosen, An annulus theorem for suspension spheres	241-245

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction et de l'Échange: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

Normality and paracompactness in subsets of product spaces

hv

Teodor Przymusiński (Warszawa)

Abstract. Let M be a metric space and G an open subset of the product space $M \times Y$.

Theorem 1. If Y is hereditarily paracompact, then: G is normal \Leftrightarrow G is paracompact \Leftrightarrow G is countably paracompact.

Theorem 2. If Y is hereditarily normal and M is dense-in-itself, then: G is normal \Leftrightarrow G is countably paracompact.

Theorem 3. If Y is hereditarily normal and hereditarily countably paracompact, then: G is normal \Leftrightarrow G is countably paracompact.

1. Introduction. Throughout this paper M is assumed to be a metric space and G is an open subset of the product space $M \times Y$.

The aim of this note is to study the relation between normality, paracompactness and countable paracompactness in open subsets of the product space $M \times Y$.

Results of Tamano [8], Morita [4] and Starbird and Rudin [7] imply the following facts:

- A. If Y is paracompact, then: $M \times Y$ is normal $\Leftrightarrow M \times Y$ is paracompact $\Leftrightarrow M \times Y$ is countably paracompact.
- B. If Y is normal and M is non-discrete, then: $M \times Y$ is normal $\Leftrightarrow M \times Y$ is countably paracompact.
- C. If Y is normal and countably paracompact, then: $M \times Y$ is normal $\Leftrightarrow M \times Y$ is countably paracompact.

In this paper we prove analogous theorems for open subsets G of the product space $M \times Y$.

Theorem 1. If Y is hereditarily paracompact, then: G is normal \Leftrightarrow G is paracompact \Leftrightarrow G is countably paracompact.

THEOREM 2. If Y is hereditarily normal and M is dense-in-itself, then: G is normal \Leftrightarrow G is countably paracompact.

THEOREM 3. If Y is hereditarily normal and hereditarily countably paracompact, then: G is normal \Leftrightarrow G is countably paracompact.

1 - Fundamenta Mathematicae T. XCI

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

COROLLARY. If Y is a generalized ordered space (1), then: G is normal \Leftrightarrow G is countably paracompact.

Modifying the proofs of Morita [4], Nagami proved in [5]

D. Let Y be hereditarily normal (resp. hereditarily paracompact). If G is countably paracompact, then G is normal (resp. paracompact).

In Section 2 we modify the proof of Starbird-Rudin's theorem ([8], Theorem 1) and obtain the following:

THEOREM 4. Let M be dense-in-itself (or let Y be hereditarily countably paracompact). If G is normal, then G is countably paracompact.

Theorems 1, 2 and 3 are immediate consequences of Theorem 4 and Nagami's D. In connection with Theorem 1, let us recall, that there exists a hereditarily paracompact (generalized ordered) space Y and a separable metric space M such that $M \times Y$ is not normal (Michael [3]). It is also consistent with the axioms of set theory to assume that there exists a hereditarily paracompact (generalized ordered) space X such that $Y \times Y$ is normal but not paracompact (Przymusiński [6]).

2. Generalization of Starbird-Rudin's theorem. In this section we shall prove Theorem 5, which is a generalization of Starbird-Rudin's theorem ([7], Theorem 1). Theorem 4 follows immediately from this result.

The proof of Theorem 5 is based on the idea used by Starbird and Rudin in [7], but its technical form has been essentially modified and complicated.

THEOREM 5. Assume that for every isolated $x \in M$ the space

$$G_{\mathbf{x}} = \{ y \in Y \colon (x, y) \in G \}$$

is countably paracompact. If G is normal, then G is countably paracompact.

Proof of Theorem 5. Let G be an open and normal subspace of $M \times Y$ and $\{F_n\}_{n \in \omega}$ a sequence of closed in G sets such that $\bigcap_{n \in \omega} F_n = \emptyset$ and $F_{n+1} \subset F_n$ for every $n \in \omega$. We have to prove that there exists a sequence $\{C_n\}_{n \in \omega}$ of closed in G sets satisfying $\bigcup C_n = G$ and $C_n \cap F_n = \emptyset$ (cf. [1], Corollary 5.2.2).

Denote by M_0 the set of all non-isolated points of M and let $\mathscr{B} = \bigcup_{n \in \omega} \mathscr{B}_n$, where \mathscr{B}_n is a locally finite open covering of M consisting of sets of diameter less than $1/2^n$. We may obviously assume that $\mathscr{B}'_n \cap \mathscr{B}'_m = \emptyset$, where $n \neq m$ and $\mathscr{B}'_n = \{B \in \mathscr{B}_n \colon B \cap M_0 \neq \emptyset\}$. Let us choose from every $B \in \mathscr{B}' = \bigcup_{n \in \omega} \mathscr{B}'_n$ distinct points p_B and q_B in such a way that no point of M is selected twice (see [8], Lemma). The sets $P_n = \{p_B \colon B \in \mathscr{B}'_n\}$, $Q_n = \{q_B \colon B \in \mathscr{B}'_n\}$, $P = \bigcup_{n \in \omega} P_n$ and $Q = \bigcup_{n \in \omega} Q_n$ have the following properties:

- belonging to U,
 - (ii) P_n and Q_n are discrete and closed in M,

(iii) $P \cap Q = \emptyset$.

For every $n \in \omega$ and $B \in \mathcal{B}'$ define

$$\begin{split} U_{B,n} &= \left\{ y \in Y \colon \left\{ x \in M \colon (x,y) \in G \right\} \cap B \cap P_n \neq \emptyset \right\}, \\ V_{B,n} &= \left\{ y \in Y \colon \left\{ x \in M \colon (x,y \in G) \cap B \cap Q_n \neq \emptyset \right\}, \\ D_{B,n} &= (B \cap P_n) \times (Y \bigcup_{i=0}^{n-1} U_{B_i,i}) \cap G, \\ E_{B,n} &= (B \cap Q_n) \times (Y \bigcup_{i=0}^{n-1} V_{B_i,i}) \cap G, \\ D_B &= \bigcup_{n \in \mathcal{N}} D_{B,n}, \quad E_B &= \bigcup_{n \in \mathcal{N}} E_{B,n}. \end{split}$$

The sets $U_{B,n}$ and $V_{B,n}$ are obviously open in Y and consequently the sets $D_{B,n}$ and $E_{B,n}$ are closed in G.

We shall show that the sets D_B and E_B are also closed in G. Let $(x, y) \in G \setminus D_B$. If $x \in \bigcup_{n \in B} (B \cap P_n)$, then there is an $n \in \omega$ and $p \in B \cap P_n$ such that

$$p \in \{x' \in M : (x', y) \in G\}$$
.

It follows that $y \in U_{B,n}$, $(x, y) \in M \times U_{B,n}$ and for every k > n the intersection $(M \times U_{B,n}) \cap D_{B,k}$ is empty. Hence D_B is closed in G. In an analogous way one can prove the closedness of E_B .

For every $B \in \mathcal{B}'$ there exists precisely one m such that $B \in \mathcal{B}'_m$. Let

$$A_{B} = \overline{\left\{ y \in Y \colon \left((B \cap M_{0}) \times \{y\} \right) \cap F_{m} \neq \emptyset \right\}} ,$$

$$K_{B} = D_{B} \cap (X \times A_{B}) , \quad L_{B} = E_{B} \cap (X \times A_{B}) ,$$

$$K_{n} = \bigcup \left\{ K_{B} \colon B \in \mathcal{B}'_{n} \right\} , \quad L_{n} = \bigcup \left\{ L_{B} \colon B \in \mathcal{B}'_{n} \right\} , \quad K = \bigcup_{n \in \omega} K_{n} , \quad L = \bigcup_{n \in \omega} L_{n} .$$

For every $B \in \mathcal{B}'_m$ the following conditions are satisfied:

- (2) (i) if $((B \cap M_0) \times \{y\}) \cap F_m \neq \emptyset$, then there exist $p, q \in B$ such that $(p, y) \in K_B$ and $(q, y) \in L_B$,
 - (ii) $L_B \cup K_B \subset B \times A_B$,
 - (iii) the sets K and L are disjoint and closed in G.

Ad (i). There exists an $x \in B \cap M_0$ such that $(x, y) \in F_m \subset G$. The set $U = \{x' \in M : (x', y) \in G\} \cap B$ is open in M and $x \in U \cap M_0$. By (1) we have $U \cap P \neq \emptyset$ and $U \cap Q \neq \emptyset$. Let $n_0 = \min\{n : U \cap P_n \neq \emptyset\} = \min\{n : y \in U_{B,n}\}$,

^(*) Subspaces of linearly ordered topological spaces are called generalized ordered. Any such space is hereditarily normal and hereditarily countably paracompact (cf. [2]).

 $k_0 = \min\{k: U \cap Q_k \neq \emptyset\} = \min\{k: y \in V_{B,k}\}, p \in U \cap P_{n_0} \text{ and } q \in U \cap Q_{k_0}. \text{ Then } y \in A_B, (p, y) \in D_{B,n_0} \subset D_B, (q, y) \in E_{B,k_0} \subset E_B \text{ and consequently } (p, y) \in K_B \text{ and } (q, y) \in L_B.$

Ad (ii). Clear.

Ad (iii). The disjointness of K and L follows from (1). As the family \mathscr{B}'_n is locally finite, the sets K_n and L_n are closed in G. Let $(x,y) \in G \setminus K$. There exist a $k \in \omega$ such that $(x,y) \notin F_k$, an open ball $B(x,1/2^{n-1})$ in M and an open neighbourhood T of y in Y such that n > k and $(B(x,1/2^{n-1}) \times T) \cap F_k = \emptyset$. We shall prove that for every $m \ge n$ the intersection $(B(x,1/2^n) \times T) \cap K_m = \emptyset$. By (ii) it suffices to prove that $(B(x,1/2^n) \times T) \cap (B \times A_B) = (B(x,1/2^n) \cap B) \times (T \cap A_B) = \emptyset$, for every $B \in \mathscr{B}'_m$. If $B(x,1/2^n) \cap B \ne \emptyset$ then $B \subset B(x,1/2^{n-1})$ and $(B \times T) \cap F_m \subset (B \times T) \cap F_k = \emptyset$ and consequently $T \cap A_B = \emptyset$. This shows that K is closed in G. In an analogous way one can prove the closedness of L.

By the normality of G let U and V be open subsets of G satisfying $K \subset U$, $L \subset V$ and $\overline{U}^G \cap \overline{V}^G = \emptyset$. For every $n \in \omega$ find a closed covering $\{S_B\}_{B \in \mathscr{B}'_n}$ of M_0 such that $S_B \subset B$ for every $B \in \mathscr{B}'_n$ (cf. [1], Theorem 1.5.18) and define $T_B = \{y \in Y: (B \times \{y\}) \cap U = \emptyset \text{ or } (B \times \{y\}) \cap V = \emptyset\}$ and $C'_n = \bigcup_{B \in \mathscr{B}'} (S_B \times T_B) \cap G$.

As the sets T_B are closed in Y and the family $\{S_B\}_{B \in \mathscr{A}'_n}$ is locally finite, we conclude that the sets C'_n are closed in G. Moreover, the following conditions are satisfied:

(3) (i) $C'_m \cap F_m = \emptyset$ for $m \in \omega$,

(ii)
$$\bigcup_{n \in \omega} C'_n = (M_0 \times Y) \cap G$$
.

Ad (i). If $(x, y) \in C'_m \cap F_m$, then there is a $B \in \mathscr{B}'_m$ such that $x \in S_B \subset B$ and $y \in T_B$, hence, for instance, $(B \times \{y\}) \cap U = \emptyset$. We infer from (2) and the inequality $((B \cap M_0) \times \{y\}) \cap F_m \neq \emptyset$, that there exists a $p \in B$ such that $(p, y) \in K_B \subset U$, which is a contradiction.

Ad (ii). If $(x, y) \in G$ and $x \in M_0$, then $(x, y) \notin \overline{U}$ or $(x, y) \notin \overline{V}$. Let, for instance, $(x, y) \notin \overline{U}$. There exists an $n \in \omega$, a $B \in \mathcal{B}'_n$ and an open neighbourhood T of $y \in Y$ such that $x \in S_B \subset B$ and $(B \times T) \cap \overline{U} = \emptyset$. It follows that $y \in T \subset T_B$ and consequently $(x, y) \in (S_B \times T_B) \cap G \subset C'_n$.

As M is metric, the open set $M \setminus M_0$ can be represented as a union $\bigcup_{n \in \omega} Z_n$ of closed subsets of M such that $Z_{n+1} \supset Z_n$ for $n \in \omega$. For every $x \in M \setminus M_0$ define $G_x = \{y \in Y: (x, y) \in G\}$ and $F_{x,n} = \{y \in Y: (x, y) \in F_n\}$. By the assumption, the space G_x is countably paracompact, so one can find closed subsets $C_{x,n}$ of G_x such that $F_{x,n} \cap C_{x,n} = \emptyset$, $\bigcup_{n \in \omega} C_{x,n} = G_x$ and $C_{x,n+1} \supset C_{x,n}$. The closed subset $C''_n = \bigcup_{x \in Z_n} (\{x\} \times C_{x,n})$ of G satisfies $C''_n \cap F_n = \emptyset$ for $n \in \omega$ and $\bigcup_{n \in \omega} C''_n = ((M \setminus M_0) + Y) \cap G$. To complete the proof, it suffices to put $C_n = C'_n \cup C''_n$.

References

- [1] R. Engelking, General Topology, Warszawa 1976.
- [2] D. J. Lutzer, On generalized ordered spaces, Dissertationes Math. 89, Warszawa 1976.
- [3] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), pp. 375-376.
- [4] K. Morita, Note on the product of a normal space with a metric space, unpublished.
- [5] K. Nagami, Hereditary properties of product spaces, Tôhoku Math. J. 21 (1969), pp. 39-46.
- [6] T. Przymusiński, A Lindelöf space X such that X² is normal but not paracompact, Fund. Math. 78 (1973), pp. 291-296.
- [7] M. Starbird and M. E. Rudin, Products with a metric factor, preprint.
- [8] H. Tamano, Note on paracompactness, Journ. Math. Kyoto Univ. 3-1 (1963), pp. 137-143.

NSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Accepté par la Rédaction le 20, 5, 1974