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Local expansions, derivatives, and fixed points
by

Ira Rosenholtz (Laramie, Wyoming)

Abstract. Using covering space techniques, we obtain a fixed point theorem for open local
expansions defined on compact, connected metric spaces. We then use this result to obtain some
fixed point theorems for manifolds and some fixed point theorems using the derivative.

Introduction. Let (X, d) be a metric space. The statement that the function
f: X—>X is a local expansion means that f is continuous and that for each x e X,
there is an open set U containing x and a real number M>1 so that if y and z belong
to U, then d(f(),f(2))2Md(y, z). In this paper we prove the following:

TueoreM. If (X, d) is a compact, connected metric space and f: X—X is an
open (*) local expansion, then f has a fixed point.

(The proof uses covering space techniques (!) and is constructive. But the
reader will note that the technique used in the Banach Contraction Theorem,
namely taking iterates, will almost never work for local expansions — once a point
gets close to a fixed point its iterates start moving away. In fact, roughly the idea
is to do the “opposite” of taking iterates, to very carefully take “roots”.) We use
this theorém to obtain some fixed point theorems for manifolds and some fixed
point theorems using the derivative, The reader should consult a paper of M. Edel-
stein [1] for corresponding results on local contractions.

Proof of the theorem. Suppose that fis an open local expansion from the
compact connected metric space (X, d) to itself. Then, in particular, £ is a local
homeomorphism of X onto X. So, by a lemma of S. Eilenberg [2], there exist two
positive number 7, and &, such that each subset 4 of X of diameter less than g,
determines a decomposition of the set f~(4) with the following properties:

DFHA) =A; U4, u...UA,,

2) f maps each 4; homeomorphically onto 4,

3) each 4; has diameter less than #,,

4) if j # k, then no point of 4; is closer than 2y, to a point of 4,.

() By “open” here we mean that £ takes open subsets of X to open subsets of X.
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2 I. Rosenholtz

Hence, for our open local expansion, there is a positive number § and an M>1
such that:

a) if d(x,y)<$, then d(f(x),f(»)=Md(x, y),

b) if 7 is an open set of diameter less than 6 and if g f7Y(V), then there is
a unique open set containing g of diameter less than (1/M)$ which maps homeo-
morphically onto V.

This last condition enables us to “lift” chains of small open sets, one link at
a time, just as if 7 were a covering map in the classical sense (see Massey [3] for an
excellent treatment of covering maps).

Let V4, Vs, ..., V, be a fixed finite open cover of X so that the diameter of
each V; is less than 5. And now suppose that x, is any point of X and that f(xo)
# X Then since X is connected, there is a chain of open sets chosen from among
Vi, Vas ooy Vy from f(x,) t0 xo. Lift this chain to a chain of open sets from x, to
a point x4 such that f(x,) = xo. Then lift this chain to a chain of open sets from x4
to a point x, such that f(x,) = x4, etc.

- flxo) Xo Xy Xa

6 wae s

Notice that since the original chain had length at most nd, the length of the first

1 . .
lifted chain is at most A—{né, and, in general, the length of the kth lifted chain is

1
at most —]\T‘ né.

In addition, the chains intersect, so if j<k,

1 {1 no no
d(xj,xk)sWi115+—Mj—+5715+...+~—nc5<MJH M' =MJ i)
Thus {x;} is a Cauchy sequence, which therefore converges to a point y € X. But

since f(x;) = x;., and f is continuous,

JO) = flim x) = lim f(x;) = limx;_, =y,
Jow joeo J=oo

and, as promised, f has a fixed point.

Remark. Look at how beautifully this works in practice! Let X be the unit
circle in the plane, i.e. {z| |z| = 1}, and let f: X—X be defined by f(z) = z*. Start-
ing with xq = i, f(xo) = —1, so if we consider the short arc from —1 to i, the
proof above essentially lifts this to the short arc from i to e™*. This, in turn,
gets lifted to the short arc from €™/ to e™'®, etc. This sequence converges to 1 which,
in this case, happens to be the unique fixed point of the function. (In general, the
fixed point will not be unique.) Notice, though, that this taking “roots” process
must be done carefully, or you end up all over the place. It is more delicate than
simply picking any point in the inverse image and repeating.
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Some consequences. In this section, we use the theorem to obtain some fixed
point theorems for manifolds and some fixed point theorems using the derivative.
By the word “manifold”, we always mean “compact, connected manifold without
boundary”.

CoroLLARY 1. If fis a local expansion from an n-dimensional manz'fold to itself,
then f has a fixed point.

Proof. Here, the Invariance of Domain Theorem, gives us openness “for
free”, so we just apply our theorem.

Remark. It is interesting to note here that if a manifold admits a local ex-
pansion, then it definitely does not have the fixed point property.

COROLLARY 2. Suppose M is an n-manifold in R¥, and f is a C* function from
a neighborhood of M to R* and taking M to M. Suppose also that for each ae M,
the differential at a is an expansion (i.e. there is an m>1 such that |df(a) h|=mlh]
for heR"). Then f has a fixed point.

Proof. In the course of proving the Inverse Function Theorem, K. Smith
proves the following fact in his Primer of Modern Analysis (see Smith [5],
pp. 234-235):

Let f: R"—R" be C! at . Then for each positive number ¢, there is a positive
number § such that if [x—aj<d and |y—a|<é, then

L) =G —df(@) (x—y)| <elx—y] .

Using our assumption that |df(a)h|zmlh| and taking & = L(m—1), we see that
there is a positive number & so that if {x—a]<d then

=Dz 3m+Dx~y .

Thus fis a local expansion from M to itself, and so, by Corollary 1, f has a fixed
point.

COROLLARY 3. Let M be a smooth n-manifold, and suppose f: M—M is a C* map
whose differential is an expansion at each point. Then f has a fixed point.

We omit the proof of Corollary 3. The interested reader can supply a proof
using the techniques of this paper. However, a proof using different techniques
can be found in M. Shub’s paper [4].

ExampLE. We conclude with an example of a local expansion of a compact,
connected metric space to itself which has no fixed points. This shows that the some-
what unfortunate hypothesis that the map be open is essential.

Let X denote the following subset of the plane:

1*
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4 I. Rosenholtz

Give X the arc-length metric. The map is constructed roughly as follows: stretch
each of the small circles onto the big circle; stretch each of the upper and lower
semi-circles of the big circle first around a smaller circle, then across the other
semi-circle, and finally around the other smaller circle. .

For those who prefer a formula, we let f: X—X be defined by:

2(z—% if Re(@)=1,

2z+3)  if Re(x)< -1,
@ =1 3z7°-% if  I<Re()<l,
P it —i<Re(®)<i,

—1z7%4+3 if —1<Re(@<—%.

The reader can check thatsthis is indeed a local expansion with no fixed points.
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On the *topology and its application
by

Hiroshi Hashimoto (Kofu)

Abstract. The purpose of the present paper is to study the relation between the set of the first
category and the null set by introducing the *topology to Ti-space. As a result of this application,
we made clearer the similarity and difference of the set having the Baire property and the measurable
set in the sense of Lebesgue.

§ 1. Introduction. Let / be a T space defined by the closure operation X—X.
‘We denote by P some property about the subsets of 7, and by P the family of all
subsets of / which satisfy P. We say that a subset X has the properry P at a point
p el if there exists a neighbourhood ¥(p) of p such that V(p) X e P. We denote
by X* the set of points at which X does not have the property P, namely X*
= {p/VV(p), V(p) X & P}. Assume that the family P is an ideal, ie.,

) (1) the conditions X P and YcX imply YeP,
(i) the conditions X€ P and YeP imply X+ YeP,

then the operation X—X* has the following properties

(a) X* is closed, (b) if XY, then X*c Y*,
(2 (©) X*™cXx*cX, (d) if G is open, then GX™* = G{GX)*,

(&) (XYycX* Y* () X*—Y*c(X—Y)*
Assume further that the property P satisfies the relation
3) {XeP} = {XX* =0} = {X* =0},
then :

(@) (X—X*)* =0, namely X—X*e P,
4) (b)) X** = X%

(c) if YeP, then (X4 Y)* = X*
(see [2], [3]).

In the following, we shall now assume that P satisfies the conditions (1) and (3)

and that every single element-subset of I belongs to P. Two important examples

of the family P of this kind are the family of the sets of the first category and the
family of the sets of measure zero (in the sense of Lebesgue).
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