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Abstract. Let f: (a, b)—R be a strictly increasing function (of class CP((a, b))), k-convex for
all ke{l,...,p}, and such that a<f(x)<x in (g, b) and s := lim f'(x) (0, 1]. A necessary and
x—a+
sufficient condition is given in order that f possess an iteration group {f/},er such that for every
positive u the function f* is k-convex for all ke{1,..., p}.

§1. Let j? denote a positive integer, in the sequel regarded as fixed. A function
f: (a,b)=R, —co<a<b< + oo, is said to be p-convex iff the inequality

) a7 = 0PI () s iz
=0

holds for all pairs (x, %) € (a, b) x (0, o) such that x+ (p+1)he(a, b). For p = 1
the functional inequality (1) may equivalently be written in the form

Jﬂ-}) JSOHO)

(2) f( 2 2 3 x,ye(a,b).

Functions for which (2) is fulfilled (i.e., 1-convex functions) will simply be referred
to as convex functions. It is well known (see, for example, [2] and [6]) that even
very weak regularity assumptions on a p-convex function f, for instance Lebesgue
measurability, imply that

3 feC™ Y (a, b)).

In the sequel we shall deal with monotonic p-convex functions only and so 3
will automatically be valid. In that case (cf. [6]) relation (1) implies that Fe s
convex.

We shall adopt the following hypothesis:

(Hy) f: (@, b)~R is %-convex for all ke {l, ..., p}, f is strictly increasing in
(¢, b) and a<f(x)<x holds for all x & (a, b). )

DEFINITION. An iteration group {f},er of a function fis said to be p-convex
iff for every positive u and for every ke {1, ., p} f*is k-convex.
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The notion of an iteration group may be found e.g. in [1], [3], [5]. The problem
of investigation of convex iteration groups was first raised by M. Kuczma [3].
In [5], [9], [10] and [11] convex and so called absolutely monotonic iteration groups
were studied. The latter may now be defined as iteration groups which are p-convex
for all positive integers p.

The following question arises in a natural way: find necessary and sufficient
conditions for the existence of a p-convex iteration group of a function f fulfilling
(H,). The aim of this paper is to give a solution of the question just presented.
This yields simultaneously a new proof of a theorem concerning absolutely mono-
tonic iteration groups (see [11]). In Section 4 we also give an example of a convex
iteration group which is not 2-convex.

§ 2. In this section we shall give a necessary condition for the existence of
a p-convex jteration group of a function f for which (H,) is satisfied.
Note that on account of (3) and of the convexity of @1 the one-sided deriv-
“atives £ and f® exist on (4, b) and fulfil the inequalities

0<fl(p) gfr(l-")_
Define Z; as the set of all points x in (a, b) at which f%(x) does not exist, i.e.
Z; = {xe(a, b): 0<fP0x)<fP(x)}.

It is not difficult to check the following

LemMa 1. If functions ¢ and ) of the type (a, b)>R are both from the class
C™Y(a, b)), p=>2, the derivatives @, o, P, Y and the superposition ¢ o\
do exist on (a, b), and if \y is an increasing function on (a, b), then (¢ o« )\ and
(@ « )P exist on (a, b) and

@ )P = (0P o YW+ (0" o) PP > 04,41,--.,q.;((P(q) o)l e

D1senns@nSp—1

@V = @M DU+ DU+ 3 egpna(@P )Py

DG 1seensn S P

Here Cp 4, 4,4, denote non-negative constants for ¢, gy, g5, ., g, € {1, ..., p—1}.

LEMMA 2. Under the assumptions of the preceding Lemma the inclusion
@ A ZycZ oy
holds provided ¢’ and W' are both positive and ¢P <. Moreover, in that case,
5) (@, ) nZ,cy (Zgow)

Proof. Take an x€Zy. Then y{P(x) <yP(x). Since Py () <eP( (x)) and
6 P'®)>0,  Y'(x)>0

and

@'((x))>0,
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kY

on account of Lemma 1 we obtain the inequality

(@ o NIPX)<(9 o YY) ,
which says that XE€Zyoy-

In order to prove (5) take a y e ((a, B)) n Z,,. Then there exists an x e (a, b)
such that y = (x) and

0<o"(3) <o) .
In view of (6), with the use of Lemma 1 we obtain
(@ s WP < (@ s YY),
which simply means that X€LZsu, 1€, ¥ =Y (x) EV(Z,.,)-

THEOREM 1. Suppose that f satisfies (H,). If f possesses a p-comvex iteration
group, then fe C*((a, b)).

Proof. There exists a function ¢ fulfilling (H,) and such that
. P*(x) = f(x) for

Obviously, ¢ has a p-convex iteration group {¢"},.r with ¢* = f*/2. Suppose that

x€(a, b).

® Z,# 0.

(8) together with (7) easily implies that Z, # @. Thus we are able to take an x,
such that

© Xo€Z,.
There exists a ¢ e R such that the function ¢: (— o0, ¢)—>R given by the formula
glw) = ¢~ "(xo)

is continuous and strictly increasing (see [1]). Moreover, ¢ must be positive since-
9(0) = x, does exist. Consequently

xp = ¢"(9)) € ¢"((a, b))
Now, conditions (9) and (10) imply

(11) 9@) = ¢7"(%0) € 9™ (Zpnp (@, B)))
Moreover, making use of (5) with = ¢* we get the inclusion
(12) Z pogel(@, ) = @ (Z 1)

valid for all ue (0, ¢). Now the relation

(13) (00, &) Zpuss

(10) for all ue(0,c).

for all ue(0,¢).

for all ue(0,c¢)
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results immediately from (11) and (12). Without loss of generality one may assume
that c<1 and hence that 1—u is positive for u € (0, ¢). Applying 4) for ¢**1 and
o'~ instead of ¢ and ¥, respectively, we infer by (7) that

(14) ZIPM—I-ICZ,I,(u')-l)-(-(I—u) = Zq,g = Zf for all ue (O, C) .

Since g is a continuous and non-constant function (g is strictly increasing), we infer
that ¢((0, ¢)) is an interval. However, this is impossible since Z, is at most de-

numerable whereas (13) and (14) imply the inclusion 9((0, ©))=Z;. Thus (8) is .

false, i.e., /@ does exist on (2, b). Moreover, /7, as a derivative of a convex func-
tion, must necessarily be continuous (see, for instance [7D.

Observe that if a function f fulfilling (FL,) possesses a p-convex iteration group
{f"er, then, for every positive ue R, the function f* also possesses a p-convex
iteration group. Namely, the formula (f*)° := f*, veR, defines such a group.
Therefore, on account of Theorem 1 we obtain the following

CoRrOLLARY. If a function f satisfies (H;) and possesses a p-comvex iteration
group {f*Vucrs then f*e C%(a, b)) for every positive real u.
Remark. A differentiable function f fulfilling the conditions (H;) and lim f'(x)
x—rat

# 0 may have at most one p-convex iteration group. In fact, a p-convex iteration
group of a function f yields simultaneously a convex iteration group for f. On the
other hand, under the above assumptions it is shown in [5] that a convex iteration
group of f must be the principal iteration group and thus it is unique. Consequently,
a p-convex iteration group of f, if it does exist, must be unique and must coincide
with the principal iteration group of f.

Now, the question of the existence of the p-convex iteration group of a func-
tion f fulfilling (F,) remains to be answered. Theorem 1 shows that this question
should be stated for CP-functions only.

§ 3. The main existence theorem will be preceded by the following

Lemma 3 (cf. [7], Theorem 25.7). Let f,: (@, b)—R be an increasing, convex
and differentiable function for n = 1,2, ... If {fy}n=1 is pointwise convergent to
a Cl-function f on (a,b), then {f;},=y is pointwise convergent to f' on (a, D).

Now, suppose that

(15)  f satisfies (H), fe C*((a, D)) and lim f'(x) =:se€(0,1].

Tt is known (the detailed references may be found in [10]) that in the case where
s€(0, 1) the principal solution ¢ of the Schrider equation

(16) o(f)) = s0()
generates the principal iteration group {f"},.g of f:

') = 07 (s%(x)) for xe(a,b).
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Likewise, in t = i u i
he case where s = 1, the family {f"}uer given by the formula -

f'&) = o Huta(), xe(—o,b) (Y,

where o denotes the principal solution of Abel’s equation

(17 2(f(¥) = a(x)+1,
yields the principal iteration group of f.

Our assumptions on f guarantee (cf. also [10]) the differentiability of the

principal sol}ltions o and o of (16) and (17), respectively, as well as the existence
of the function % given by the formula

.

(18) 5 i= o Wmy = lim O 0
u u=0 u l .
[07(;) for s =1.

'THEOREM 2.- Let assumptions (15) be satisfied. Then the Dprincipal iteration group
of fis p~convex if and only if the function h given by (18) is k-comvex for ke {1, ..., p}.

P1 oof. In the case p = 1 our assertion reduces to the main result from [Rﬁ.
Thus, it suffices to consider p>2 only.

The necessity is obvious.

Sufficiency. Suppose that & given by (i8) is k-convex for ke{l,...p}h
Ac{cording to [10] f possesses the unique convex iteration group { T uer- We’are E
going to show this group to be p-convex. For an indirect proof suppose that there
exists a ke {2, ..., p} such that f* is not k-convex for some positive u. We may
assume that & is the smallest positive integer with this property, i.e. that f* are
I-convex for all /e {1, ..., k—1} and all positive ». By the corollary to Thec;rem 1
it follows that f*e C*"((a, b)) for every positive v.

Now, (9% is not convex in (a, b). Consequently, by means of (2), one
can find x and y such that a<x<y<b and

(=D ({TZ) N < (%00 + (f")”‘""(y))
2 2

whence, obviously, the inequality

(19) (fu)(k— 1) (i‘;!) o (fn)(k* 1)(«\‘):-2!- (fu)(k— 1)()1)

results, with some real » greater than 1. At first, we shall assume that k>3. The

particular case k = 2 will be considered separately. Replacing f* by f*2 . f4?
(*) s =1 implies a = —oo. Analogously, s ¢ (0, 1) implies a>—oo.

3 — Fundamenta Mathematicae, T. XCI
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in (19), on account of Lemma 1 and the I-convexity of f*/% for all Ie {1, ..., k—1},
we easily get the following alternative of conditions:

+y\F
(D)ool

(D (FRR) Y ) (PR DR Y0
>
2

or

(205) (f"’z)'(f"/z(%ty»(f”“)”"1)(3%)

i W2y (F20) (%P + (PR (FPON SRR
2

Now, (20a) implies

) uf2 g u/2y(e—= 1) ( fu uj2\(e—=1) ( ]2
(21a) (fu/l)(k—l)(f/ (x)';f /z(y)>>%(f /2)k ! (f Iz(x))-i;‘(f ) (f (y))

while the inequality

" (21b)

x+3\_, @+ VG)
T)”

u/2\(k—1)
™ ( 3
results from (20b). Indeed we have

w2y (k=1) ( fu/2( ul2y(k—1) ( Fu/2
22) (fu/z)(k—l)(fx,/z(Dj%‘j>)>%(f Y B(f z(>~))-i2-(f =1 (F412(3))

provided (20a) occurs (hence, since (f*/%)*~%) is increasing and f* is convex,
(21a) results immediately from (22)). To show this, suppose that (22) does not
hold, i.e., that the inequality

) (fulZ)(k— 1)(fu/2(ﬁ_¥>> < (fu/Z)(k—- 1) (fu/Z(x)) + Oﬁu/Z)(k—- 1) (fu/Z(y))

2 2

is satisfied. Since k33, (/%) and hence also [(f“*)']*"* must be convex. Con-
sequently we have

(23)

(fu/?.)l(ﬂ)k- 1 < (fulZ):(x)k— 1 + (fu/2)/(y)k—- 1 '
2 )
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Multiplying (22") and (23), we obtain

wne=1yf w2 X1V ,,,x_+y"”1
oDl

< [(fu/Z)(k-— 1) (f"/z(x)) (fu/?.)l(x)k— 1 + (fu/Z)(k- 1) (f"’z(y)) (fufz)l(y)k— 1 +

4
N (fu/Z)(k— 1)(fu/2(x)) (fu/2)l(y)k—- 1 +(fu/2)(k— 1)(fu/2(y)) (fulz)r(x)k— 1]
4
<x Uu/l)(k- 1)(fu/2(x)) (fulz)r(x)k— 1 + (fu/z)(k— 1)(fu/2(y)) (fu/Z)l(y)k—l
5 .

The latter inequality results simply from the fact that
[(fu/Z)(k—- 1 )(fu/Z(x)) _ U{'u/l)(k‘ 1) (fulz(y))] [(fu/z)r(y)k— 1__ (fu/z)/(x)k— 1] < 0 )

which, of course, remains true in view of the monotonicity of (f*?)%*~1, 42 and
[(£*/%)7*~*. Thus, a contradiction with (20a) is obtained, which shows the validity
the of implication (20a)=(22) (and hence also of (20a)=-(21a)).

The implication (20b)=>(21b) can be derived analogously.

Put x; := fY*(x), y, := f**(y) whenever (21a) occurs and x, := X, ¥, 1= ¥
in the case where (21b) is satisfied (if (21a) and (21b) are both fulfilled, then we
put x; 1= x, y, := y). Consequently, we have

(fuIZ)(k—- 1)(x1 +J’1) —y (f"lz)(k_l)(xﬂ + (f“ll)(k—l?(Y1) .
2 2

By induction, we construct two sequences, {x,};=, and {y,} 2. ,, both contained
in (a, b) and having the properties
xn< y" 3

(f"'2><k-1>(xn +y"> D) £ ()
2 2

29

for all positive integers n. Moreover, it is readily seen that x, = f**(x) as well as
n

Yo =S "(y) where u,:=uy 2 %, c;e{0,1}, i=1,...,n n=1,2,.. Cleatly,
i=1

both of the sequences just constructed are convergent: x,—f"°(x) =:x, and p,

o0
—f*(y) =: y,; here uy 1= u.}:12“c,-. Moreover,
=

25) a<xy<yp<b.

One the other hand,
2" ”

(26) __(fu/2 ‘)(k"l)_)h(k—-l) as n—o,
u

3
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uniformly on every compact subset of (a, b). Indeed, recalling that k>3, since
2"

f "/2")(""2) is convex one can make use of Lemma 3 and apply the well-known

theorem for convergent sequences of continuous monotonic functions. It is also
well known that uniform convergence on every compact subset of (a, b) is equiv-
~alent to so called continuous convergence. Consequently, by means of (24), (25)
and (26) we get

ple- 0 (xo ;—y()) =x

as x>1. However, this is incompatible with the assumed /k-convexity of .
It remains to consider the particular case k = 2. The formula (19) becomes

( fu),(x_;r_y) pin )

h(k— 1)(x0)+h(k—1)(y0) - h(k—l)(xo)_i_h(k—,l)(yo)
2 2

whence, by putting f* = f*/* o f*/2, the alternative

(272) (fll/Z)/(.f“/-z(x) +fu/2(y)> >\/;ﬂ_(fu/2)/(fu/2(x))_; (fu/Z)r(fUIZ(y))
| 2
or
/ /2y 2\
(7b) oy(5) G [ (O

can be obtained. Inductively, by a method similar to that employed in the preceding
case we construct two convergent sequences {x,}i=, and {y,};2; such that

(fu/l)'(xn:yn) - 1\7; (fu/Z")/(xn) + (fulzn)IO’) ,

=1,2,..
2

28

whence, substracting the unity from both sides of (28) and dividing by u/2", we get

gy ()1

29) .
( ) u/ n
(7™ ()~ 1 + Y () —1
o uf2" uf2" +1 %1 )
P 3 " PRI n=1,2,..
) —x
Since Pt x € (a, b), are clearly convex for all positive ¥, Lemma 3 and (29)
lead to ’
hl 5 ]l 1 1(an ¢’
(30) h,(xo ;‘%)2 (’Co); W (yo) o lnx> @ (%);h (¥0) ,
u

p-convex iteration groups 37
where x, and y, denote the limits of {x,}7x, and {y,}s>, respectively. However,
(30) contradicts the 2-convexity of % and the proof is completed.

§ 4. Observe that the principal iteration group of an absolutely monotonic
function f is absolutely monotonic if and only if it is p-convex for. every positive
integer p. This, however, by Theorem 2, implies that the principal iteration group
of fis absolutely monotonic if and only if the function % given by (18) is p-convex
for all positive integers p. Thus the main result of [11] has just been derived from ours.

The example of an absolutely monotonic iteration group given in [11] yields
simultaneously an example of a p-convex iteration group for an arbitrary p. But,
of course, f may happen to possess a p-convex iteration group which is not (p+1)-
convex, as can be seen from the following

Exampre. Take f(x):= sx+x* se(0,1), xe(0,1—s) and consider the
function which is given- by (18) where o(x) = lim f"(x)[f"(x,), xo€ (0, 1—s).

n=+o
Clearly, ¢ is an absolutely monotonic solution of the Schrdder equation (S) and
so also & is defined by the formula

G(x) 1= lim Sl"f"(x) for xe(0,1-5).

n—+w

Moreover, on account of Koenig’s theorem [4, page 140], we have

3D 7(0) =1
and
(32) o(x) =n5(x) for xe(0,1-5).

Evidently, n is non-negative since both of the functions ¢ and & are non-negative.
However, o(x,) = 1, whence the condition

(33) n>0
results immediately from (32). We also have
o'(x) = n5'(x) for xe€(©,1-3),
which, by virtue of (31) and (33), implies
(34) g (x)=zn>0 for xe[0,1-s).

Consequently, the formula
o(x)
A(x) = (Ins) —
(@) = n9) 7o

defines an analytic function on the interval [0, 1—s). One can easily check that this
function yields a solution of the functional equation

(35) h(sx+x%) = (s+2x)h(x) for xe[0,1-5)
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such that A(0) = 0 and A'(0) = Ins. Suppose that

A(x) = (Ins)x+ex* +esx®+ ... for  xe[0,1-5)

yields a solution of (35). A simple calculation shows that

Ins d —2lns
¢, = and ¢y = —5—.
27 s 5(s3~2)

Thus we get the existence of a positive b<1—s such that #">0 and 4"'<0 on
(0, b), i.e., h is convex but not 2-convex on (0, b). On account of Theorem 2, f pos-
sesses a convex but not 2-convex iteration group.
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Mappings outo circle-like continua
by

J. Krasinkiewicz (Warszawa)

Abstract. The main object of the present paper is to give a characterization of continua which
can be mapped onto non-planar circle-like curves. This result is then applied to show that certain:
classes of continua cannot be mapped onto such curves. These results extend several well-known
facts in this field.

The term compactum is used to mean a compact metric space. A connected
compactum is called a continuum. By a curve we mean a one-dimensional con-
tinvum. The terms map and mapping will be used interchangingly to mean a con-
tinuous function. A map f: X—7Y is said to be an e-mapping, >0, provided
diamf~(y)<e for every y e Y. Throughout the paper we denote by S the unit
circle in the complex plane and by I the unit interval [0, 1] of reals. A continuum
X is called circle-like (snake-like) if for every e>0 there exists an s-mapping of X
onto S (onto I, respectively). Clearly, any circle-like or snake-like continuum is
a curve. The above classes of curves have been extensively studied by several
authors. Known results show an important difference between the class of circle-
like curves which can be embedded in the plane and the others. This difference
will also be underlined by the results of this paper. Our main result gives a charac-
terization of continua which can be mapped onto non-planar circle-like curves.
This result solves a problem raised by Henderson in [7], and extends his result in
this direction. We obtain also generalizations of the results of Ingram [8]-

1. Some remarks on Abelian groups. Let G be an Abelian group. Denote by N
the set of natural numbers, N = {1, 2, ...}. We say thatg e G is divisible by a natu-
ral number », notation: nfg, if g = n-g’ for some g' € G. For every g e G we define

d(g) = sup{neN: n/g} .

Clearly, d(0) = co. If d(g)< co, then we say that g is finitely divisible; otherwise g is
called infinitely divisible. If every element of G different from the neutral element 0 is
finitely divisible, then we- simply say that G is finitely divisible. Notice that every
free Abelian group is finitely divisible.

1.1. If m,ne N are relatively prime, g € G, mfg and nfg, then m-nfg.
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