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Invariant uniformization

by

Dale Myera * (Honolulu)

Abstract. We show that the invariant version of the Kondo-Addison Uniformization
Theorem fails. Several counterexamples of algebraic interest are presented.

Can one pick a point from each countable linear order? To make this problem
model-theoretically interesting we identify isomorphic structures and to make it
nontrivial in ZFC, set theory with choice, we require that the picking be done in
a countable-ordinal-sequence-definable way. Roughly speaking, a set is definable
from a countable sequence of ordinals iff for some ZF formula ¢ and some countable
sequence o of ordinals, it is the unique solution of ¢ (x, «). A set definableinany mathe-
matically accepted way will be countable-ordinal-sequence-definable, Henceforth
we shall interpret “one can pick a point (proper substructure, proper extension, etc.)
from each linear order” as meaning that there is a countable-ordinal-sequence-
definable function which assigns to each isomorphism type of a countable linear
order the isomorphism type of a point (proper substructure, proper extension etc.)
of the linear order, i.e., to the isomorphism type of {4, <) it assigns the isomorphism
type of some structure (4,<, a) where ae 4 ({4, B,<) where BS4, {(B, 4,<>
where 4 = B, etc.). “One cannot always pick...” shall be interpreted as meaning that
it is relatively consistent with ZFC that there is no countable-ordinal-sequence-
definable function which picks... All of the results below of the form “one cannot
always pick a..” have as consequences “it is relatively consistent with ZF and
the principle of dependent choices that there is no function (definable or not) which
selects a..".

We first show that one cannot always pick points from certain structures called
bireals and then show that: One cannot always pick a point from each countable
linear order or from cach countable semigroup and one cannot always pick a proper
substructure for each countable algebra which has such. Although one can always
pick a proper extension by adding a new point, it is relatively consistent with the
existence of an inaccessible cardinal that one cannot pick a countable nonisomorphic
extension of each countable structure which has such. It is also relatively consistent

* The author is grateful to Robert L, Vaught and ‘Gerald E. Sacks for assistance with and
interest in this paper. ‘ ‘
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with the existence of an inaccessible that one cannot pick a cofinal subset of order
type <o from each countable well-order. In the following paper Hanf shows the
unsolvability of the long open problem of picking an ordered basis for each count-
able Boolean algebra.

We now put these problems in the setting of descriptive set theory. The spaces
considered below will be cartesian products of countably many copies of w, 2(°",
and ", n = 1, 2, ... Given a subset X of such a space consisting of, say, triples
{x,y,2), X is inmvariant iff (x,y,z)e X and {w, x, ¥, 2> = {w, x', ', z'> implies
{x',¥,z)e X. A subset ¥ of X is an invariant uniformization of X with respect
to z iff Y is invariant, 3z({x, p, z) € X) iff Fz({x,y, 2> € ¥), and {x,y, z) and
{x,y,2z'>e Y implies {0, x,y, 2) = {w, x,y,2'>. Invariant uniformization with
respect to y and z is defined similarly. Clearly, one can pick a point from each
countable linear order iff there is an invariant countable-ordinal-sequence-definable
uniformization with respect to p of {{<, p) €2°*“xw: {w, <) is a linear order}
and one can pick a proper substructure for each countable 1-unary algebra iff there
is' an invariant countable-ordinal-sequence-definable uniformization of {{f,U)
€ 0 x2%: Uis closed under f}: Similarly, the other problems of the previous para-
graph are equivalent to invariant uniformization problems.

An enumeration of a structure is an ordering of its universe of type . Most
algebraic and model-theoretic constructions on countable structures are either
deterministic, i.e., involve no arbitrary choices (for example, the construction of
the subalgebra generated by a given set), or are deterministic modulo an enumer-
ation of the structure’s universe as are most constructions which use Zorn’s Lemma
(for example, the extension of an ideal to a prime ideal). In the section on enumer-
ations we show that a wide class of invariant uniformization problems reduce to
the problem of picking an enumeration of each countable structure.

If one cannot pick a point from each linear order, then clearly 2°*“.x w has
no invariant countable-ordinal-sequence-definable uniformization with respect to
the last coordinate. Hence

THEOREM 1. It is relatively consistent with ZEC that there is an invariant A9 set
with no invariant countable-ordinal-sequence-definable uniformization.

The classical analogue [5, p. 130] requires a I 1 set.

A consequence of this corollary and. Shoenfield’s Absoluteness Lemma is the
solution of a problem of Vaught that inspired this paper: Is there an invariant n :
set with no invariant I 1 uniformization? There is. Thus in contrast to the Strong
Separation [6] and Reduction [12, 13, 14] Principles, the Kondo-Addison Uniformi-
zation Theorem fails for invariant sets. In the last section we prove there is an in-
“variant 49 set with no invariant uniformization in o, the smallest family contain-
ing the open sets and closed under complementation, countable union, and the
‘operation (4); i.e., fusion, see [3]. =
. . One cannot go much further in ZF since in ZF+V = 1, every invariant 11}
set has an invariant é% uniformization. But using results of Solovay we can show
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that if there is o measurable cardinal or even if wil<w, for every real r, then
here is an invariant 47 set with no invariant uniformization by a Borel combi-
nation of llé sets, .

Bireals, A hireal is a structure {4,<,U) for which {4 <) has order type
w*+w and Us A, One can think of a bireal as an o*+w sequence of 0’s and 1s.

TuroreM 2. It is relatively consistent with ZFC that there is no countable-
ordinal-sequence-definable choice function for the family of (unordered) pairs of
isomorphism types of bireals.

Proof, The proof is a routine Cohen forcing argument using undefinability meth-
ods of Lévy and Solovay. Jech [2] or Scott [8] may be used for notational reference.

Let / be the set of integers. Let B be the complete Boolean algebra of regular
open sels of the space 2”2”1 under the product topology. Let P = {fe ™2
dom(f) is a flinite subset of w x2x1I} be identified with the set of Baire intervals
of 2°0*2%T For g e wy, let P, = {feP: dom(f)cax2xI}, let B, be the complete
subalgebra generated by P, and let H, be the group of automorphisms of B which
leave clements of B, fixed. Note: B = (J B,. We shall suppose that in V7, the

aE my
B-valued extension of the universe V, ||x = yfl = 1 implies x = y. Each he H,
determines & unique automorphism h: ¥’ V¥ which leaves elements of ¥ fixed.

Lumua 3. If te V7 is definable in V* from a countable ordinal sequence s€ V>,
then for some o & w(, h{t) = ¢ for all he H,.

Proof. Suppose s is a countable ordinal sequence in V2. Then, since B satisfies
the countable chain condition, {|ls(m) = f]: new and § is an ordinal of VY is
countable and hence s V% for some « € w,. If  is the unique solution of (¢, 5|
=1 and i heH, then |t 9| =1=~h()=n"hlyE )l = “'/’(’E_(E)_”E(_Sl)”
= | (h(2), s)Il and so by uniqueness h(f) = t.

1'501'»55 ew and o€ {0, 11, let r,, be the bireal I, <,Uyin V2 for which < lS
the usual ordering of the integers and U is the B-valued subset of J such that for
il lieU| = {fe2"***"; f(a,0,i) = 1} € B.Note: |[roo=rull = 0. For aew,
and je I let A,; be the permutation of @, x 2% T whose value at {B,o,i>is{p,a,iy
it Pk, (P, ik it p=oand o =0, and {§,0,i—j> if f=a and ¢ =1
Extend fi,; to 8 and ¥* in the usual way. Note: ;€ H,, lluj(rm,);r“({_,),_ and for
any pe P and aew; there is a jel such that pAh,(p) # 0, just pick j so that
dom(p) n dom (g (p)) N Qa}x2x 1) = . ) )

Now suppose Lhere is a countable-ordinal-sequence-definable: choice func:tlon
for pairs of isomorphism types of bireals in ¥ B, Then there is a countable—ordmgl—
sequence-definable choice Tunction f for the family of pairs of bireals such that
regr and s = 8 implies £({r, s}) = f({r', 5'}). By the lemma we may pick an ¢ € oy,
50 that h(f) = f for he Hy. Now 1f({ry0: rai}) = taoll V If({re0: raa}) = rasll = 1
50 one of the disjuncts, suppose it is the first, is nonzero. Then for some pe P,

P ”f({rm()s ”al}) = ”aoﬂ .
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Pick j so that p Ak, (p) # 0. Since
haj(l’)éhzj(”f({"ao’ Fard) = Faoll) = 1f({taj(ra0), Hajlra)}) = o j(rao)
< f{raos D) 2 7l
AP f{Fa0s Tas}) = Foo Af({a0s s }) 2 1] = 0,
a contradiction.
COROLLARY 4. One cannot always pick a point from each bireal.

Proof. Each point of a bireal divides it into a pair of reals in the obvious way.
Hence if one-could pick a point from each bireal, the problem of choosing one of
a pair of isomorphism types of bireals would be reduced to the solvable problem
of choosing one of a pair of ordered pairs of reals.

.COROLLARY 5. It is relatively consistent with ZEC that there is no countable-
ordinal-sequence-definable function which selects a point from each countable set
of reals.

Proof. One can pick points from eventually periodic bireals, hence, by the
above, one cannot always pick points from bireals which are not eventually periodic.
For such bireals (4, <,U), each point ae 4 is uniquely determined by its cut
{{bed: bza},<,U). Hence one cannot always pick a cut from the set of all
cuts of each such bireal. But then one cannot always pick a real from each count-
able set of reals.

'Some unsolvable problems.

THEOREM 6. One cannot always pick:

(1) a point from each countable linear order,

(@) a point from each countable semigroup,

(3) @ proper substructure from each countable structure which has such,
and, if the existence of an indccessible cardinal is consistent,

(4 a countable nonisomorphic extension of éach countable structure.

Proof. (1) For any bireal ...0 1 1 0 0... the choice of a point or even De-
dekind cut of a linear order of type v 240 +34n+3+n+24+n+2 ..., where 5 is
the order type of the rationals, definably determines a point in the bireal which,
by the previous section, is not always possible.

(2) For any linear order (L, <), each point in the semigroup (L, max.{,}>
determines a point in the linear order.

. (3) For any bireal <I, <, U}, each proper substructure of {1, the <-immediate
successor operation, U) is generated by a unique point and thus determines a point
of the bireal. ‘

(4) Each element a of a structure (A, Uy, Uy, ..», where U,S 4, determines
areal rcw by neriff xe U,. Given a countable set X of reals, let { ¥, U, ,Us, ..>
be a structure such that each of its elements determines a real in X and each real
in X is determined by infinitely many of its elements. Then every countable non-
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isomorphic extension of {(Y,U;,U,,...> determines a proper countable extension
of X. Hence if one could pick such extensions in a countable-ordinal-sequence-
definable way, one could, by iterating this process of extension w, times, construct
a countable-ordinal-sequence-definable set of reals of cardinality 8, . But it is rela-
tively consistent with the existence of an inaccessible that &, 5 2% and every count-
able-ordinal-sequence-definable set of reals has cardinality 8, or 2.

Among other things, one cannot always pick a nontrivial subset, equivalence
relation, or automorphism for each countable structure which has such and one
cannot always pick a fixed point (f(x) = x) from each 1-unary algebra with exactly
two fixed points. One cannot always pick for each countable tree a branch running
through it. One cannot always pick for each countable partial order a linear order
extending it. One cannot always pick a maximal ideal for each countable, cylindric
algebra with constants. Hence, given an appropriate definition of “theory” (one
must not require a well-ordering of the similarity type), one cannot always pick
a completion of each consistent countable theory.

In the model constructed in the previous section V = L[a] for s@ine acw;.
Hence GCH and o} = w, held. A consequence of the latter is that one can pick
an enumeration of each countable well-order. We show in the next section that
this is not always possible.

Well-orders.

THEROREM 7. It is relatively consistent with ZFC+3 an inaccessible cardinal
that one cannot pick an enumeration of each countable well-order.

Proof. (The author acknowledges Gerald E. Sack’s gracious assistance with
this proof.) Assume that every countable-ordinal-sequence-definable set of reals
contains a perfect set. This assumption is relatively consistent with the existence
of an inaccessible by [11]. Suppose E is an invariant countable-ordinal-sequence-
defingble uniformization of {(<,<,>: {w, <) is a well-order and {w, <,) has
order type w}. Then W = {Rcoxw: {w,¢, R) = {w, <,, <y for some
{<, <, > €E} is an uncountable countable-ordinal-sequence-definable set con-
taining exactly ‘one representative of each countable well-order type. Let W* be
a perfect subset of W, Hence W* is I19 and cofinal in W. Hence R is a well-ordering
iff for some R'e W*, {w, R) is isomorphic to an initial segment of {w, R"). But
this is impossible since “R is a well-ordering” is not Zi. '

By the same argument and [10] we have that if there is a measurable cardinal
or even if a)ﬁ‘[’kwl for every real r, then there is no invariant _22; uniformization
of {{<,<>: {w, <) is a well-order and {w, <,> has order type w}.

COROLLARY 8. It is relatively consistent with ZFC+ 3 an inaccessible cardinal
that one cannot always pick a cofinal subset of type <w from each countable well-order.

Proof. Suppose it is possible to pick a cofinal subset of type <w from each
countable well-order, We show that one can then pick an enumeration of each
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well-order. Let (4,<)> be a well-order. Let {a, ¢y,...} be the assigned cofinal
subset listed in order. Let {aq, ¢y, ...} be, in order, the assigned cofinal subset
of {[a;, a;41), <D. Define a;jy, i etc. likewise. Let a e 4. Let s(0) be the least
ie w such that a<a;, ..., let s(n+1) be the least i & w such that a<ayeyer)...smis -
Since dyo)=ayoys(1y =+ cannot be an infinite strictly decreasing sequence, there
must be at least m such that @ = dyo)x1).,.com- The map a -<s(0), s(1), ..., s(m)>
is 1-1 from A into the set of finite sequences of natural numbers. Hence the usual
enumeration on the latter set definably determines an enumeration of {4, <).

Enumeration: a universal Eé problem.

THEOREM 9. If £2 3% is a collection of sets closed under finite intersection and
second-order existential wq'uamtiﬁcatr’on and if E = {{R,<>: Rewxw and {w, <)
has order type w} has an invariant uniformization in X, then so does every invariant
2;; class.

Proof. Let X be as hypothesized and let F be an invariant uniformization of E.
It suffices’to pro;e that every invariant II 1 set X has an invariant 2 uniformization.
Suppose X consists of pairs (R, S) and is to be uniformized with respect to S.
For any R, let <y be a well-ordering of L[R] such that (Vx<p»)(p(x,)) is Ag
in R and y if ¢ is 43, see [1]. Let Y= {(R, e X: A<, R,SVKR,<>eFA
{w,e, R, 8D =<{w, <, R, S)A{R, SHYeXn L[R’]A(VS”<R,S’)'((R’, Sy ¢X N
N L[RD)}. Clearly Y is invariant and uniform. If @S)(KR, ) € X), then by in-
variance there is an S’ such that (R’, $'> € X where (R, <) e F and {w, &, R'>
=~ {w, <, R) and by Shoenfield’s Absoluteness Lemma [9] there is such an §’
in L[R] and so (AS)KR,S> e Y). Thus Y is an invariant uniformization of X.
Finally, Y is Z since the first conjunct of the matrix of its definition is ¥ and the
others are _Z_;

Invariant descriptive set theory. Let X = {{S,U,p)e2°"“%x2"xw;: S is the
graph of the immediate successor operation of a nonperiodic bireal {w, <,U)}.
The product topology on X is the topology it inherits as a subspace of 2¢* “ x 2” x w.
With this topology X is separable and, by [4, p. 207, K(b)], metrically topologically
complete.

THEOREM 10. The set X is not invariantly uniformized with respect to p by any
set with the Baire property in the product topology.

Proof. The proof is similar to the forcing proof in the section on bireals. We
shall identify elements {S,U, p) of X with the structures {w, S,U, p> of a first-
order language with symbols for S, U, and p. The UC, topology on X is the
topology whose closed sets are generated by the sets Mody(a) where o is a finite
universal sentence of the language and Mody (o) is the class of its models in X.
For iel, let @(p;) be the formula (Vx)(x the ith successor (negative successors
are predecessors) of p implies ¢ (x)). Then in the theory of X, Vxg(x)« A ¢ (p)

: isl
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and the sentences S(p’, pj) and pi = pj are either true or false and so may be elim~
inated. Thus in the theory of X all universal sentences are equivalent to conjunctions
of finite Boolean combinations of the sentences Up’ with ie I Thus the open sets
of the UCy topolo_gy are gencraled by finite conjunctions of the basis sets Mod x(UpY)
and Mody (71 Up") with ie L

. Suppose P X invariantly uniformizes X with respect to p and has the Baire
property in the product topology. Then P is equivalent modulo a meager set of the
product topology to an open set Q of the UC, topology (see, e.g., the proof of

11

Theorem 3.4 in [2]). Let 50 X = X by s({w, <, U, pd) = {w, <, U, p'> and let 5 be

onio
the /th power of s under composition, i e . Then X is the disjoint union of the sets
(s"(P), i e I. Since X is not meager in itself under the product topology, P is not
meager in X. Hence Q is nonempty and must include a nonempty intersection
0, N ..n 0O, of UC, basis sets. But clearly for some, in fact almost all, i/,
(0N 0 0) N (YO N .. 0 0,) # @ But then Q M (s)*(Q) includes a set
which is open in the UC, and hence open in the finer product topology. This is
impossible since P rv(sH*(P) = & implies O M (s')*(Q) is a meager set of the product
topology. :

If X has no invariant uniformization with the Baire property, then X and
hence the whole space 2°%“x2%xw has no invariant uniformization in &, the
smallest family containing the open sels and closed under complementation, count-
able union, and the operation (4), i.e., fusion, see [3]. Hence

COROLLARY 11, There is an invariant AY set which is not invariantly uniformized
by any set in .
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