On Darboux selections
by

Jack Ceder (Santa Barbara, Cal.)

Abstract. The main result is the following: if F is a planar set hitting each vertical line in
a non-void countable set with the property that F hits each horizontal open interval having points
of F above and below it, then there exists a subset G of F having the same property and which hits
each vertical line exactly once.

In Bruckner and Ceder [1] the following question was posed: Given real-
valued functions fi.fs,-.,f; eachhaving domain (— o0, co0) such that the union
of their graphs is a connected set, does there exist a connected function g on
(— o0, co) such that for all x, g(x) = fi(x) for some i?

This question remains unsolved (except, of course, when k& = 1). Example 1
below shows that there need not be any such function g when the number of func-
tions is countably infinite. However, in the way of a partial solution, if the con-
dition of connectedness is relaxed to the “property of Darboux” then a significant
positive tesult is obtained (Theorem 1). -

A real-valued function f on (=00, 00) is Darboux provided it maps intervals
into intervals and it is connected if its graph is connected. It turns out that a Dar-
boux function can be characterized by the fact that its graph over any subinterval
cannot be separated by a horizontal line whereas a connected function can be
characterized by the (obviously stronger) fact that its graph over any subinterval
cannot be separated by a continuum. (See [1] for a fuller explanation.)

The concept of a union of graphs being Darboux is formulated in a more
general way as follows: A set valued function ¢ from E = (—c0, co) onto the
non-void subsets of E is called a carrier. The sets {x} x @(x) will be called cross
sections of ¢. By the graph of ¢ we mean the set gro = U{{x}xo(x): xeE}.

A carrier ¢ is called Darboux if for each open subinterval I of E the set
{y: yep(x) for some xel} is an interval. A carrier ¢ is called connected if
U{{x}x o (x): x e E} is a connected set. A carrier ¢ is called strongly connected
if for each open subinterval I of E the set U{{x}xp(x): xel} is connected.
A strongly connected carrier is easily seen to be Darboux. However, a connected
carrier need not be Darboux as shown by Example 1. Finally, a function fonEis
called a selection for ¢ provided f(x) € ¢(x) for all x& E.
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The above unsolved question, the cited example and theorem can be phrased
in carrier-selection terminology as follows:

QUESTION 1. Does there exist a connected selection for a connected carrier
on E with finite cross sections?

ExAMPLE 1. There exists a connected carrier on £ with denumerable cross
sections having no connected selection.

It is unknown whether one can make the carrier strongly connected in the
statement of Example 1.

THEOREM 1. A Darboux carrier in E with countable cross sections admits
a Darboux selection.

In other words, if Fis a planar set hitting each vertical line in a non-void
countable set with the property that F hits each horizontal open interval having
points of F above and below it, then there exists a subset G of F having the same
property and which hits each vertical line exactly once. .

The above theorem cannot be improved to apply to arbitrary cross sections
as shown by the following example.

EXAMPLE 2. There exists a Darboux and strongly connected carrier with
intervals as cross sections admitting neither a Darboux selection nor a connected
- selection. :

Proof. Decompose E into disjoint sets 4, B and C where A is the set of ration-
als and B and C are each c-dense in E. Then define

E if xed,
@(x) =1[0,1] if xeB,
[2,3] if xeC.

’Clearly @ is strongly connected and Darboux. However, if fis any selection for ¢
then the image under f of any interval contains [0, 1] and [2, 3] but only countdbly
many points of (1, 2). Hence, f cannot be connected or Darboux.

The proofs of Example | and Theorem 1 appear later.

Theorem 1 gives a sufficient condition on a Darboux carrier to admit a Darboux
selection in terms of the cardinality of the cross sections. It says that if the cross
sections are small enough cardinality-wise, then there is a” Darboux selection. If,
however, the cross sections of an arbitrary carrier have cardinality ¢ the carrier
may not admit a Darboux selection (e.g., Example 2), but there will be a Darboux
selection .provided the cross sections fit together in a nice enough way. One well-
known result in this direction is that a carrier ¢ on E defined by ¢(x) = (/1 (x), 9 (x))
where g is lower-semicontinuous and / is upper-semicontinuous, admits a contin-
uous (hence, connected and Darboux) selection.

Another sufficient condition for a given carrier to admit a Darboux sccuon
is the following
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THEOREM 2. If ¢ is a carrier with the property that each horizontal open interval
which has points of gro above and below it intersects ¢ cross sections, then ¢ admits

‘a Darboux selection.

Proof. Well-ordered the collection f of all open horizontal intervals which
have points of gr¢ above and below by the ordinal ¢ so that f = {B,: a<c}. By’
transfinite induction choose b, € (gronB,)— U {¥(by): B<a} where V(by) is the
vertical line passing through by. Let F = {b,: a<c}. For x ¢ domF choose d,
arbitrarily in ¢ (x). Put f = Fu{(x, d,): x ¢ dom F}. Then fis obviously a Darboux
selection for ¢.

A related previously known result is the following

TaeorReM 3 (Ceder and Weiss [4]). If the cross sections of a carrier @ are open
intervals of the form {x} x (g (x), h(x)) and each horizontal open interval having points
of gro above and below it intersects ¢ cross sections, then there exists a Darboux
selection f of ¢ such that (1) has cardinality 0 or ¢ for each J.

The condition of either Theorem 3 (or 2) is clearly not necessary. Moreover,
it is met, for example, when both g and 4 are Darboux functions in Baire class 1.
Incidentally, if g and / are Darboux functions in Baire class 2 the condition of”
Theorem 3 need not hold and there does not necessarily exist a Darboux selectwn
See [4] and [2] for details. -

For related results regarding selections which are open and Darboux or Darboux
and in Baire class o see Ceder and Weiss [4], Ceder and Pearson [3] and Bruckner,.
Ceder and Pearson [2]. For results regarding continuous selections in a more
general topological setting see Michael [5], for example.

Before presenting the construction of Example | and the proof of Theorem 1,.
we need to establish the following terminology. A function will be identified with -
its graph. The symbol [4]| will denote the cardinality of 4. Cardinal numbers will
be taken to be ordinal numbers which are not in one-to-one correspondence with
smaller ordinals. If ze E2, then H(z) and V(z) will denote the horizontal and
vertical line through z respectively.

ExaMpLE 1. There exists a connected carrier on E with denumerable cross
sections admitting no Darboux (and hence connected) selection.

Proof. Let ¢ denote the family of all non-void nowhere dense closed subsets.
of the plane which cannot be covered by a small (i.e., less than ¢) number of hori-
zontal or vertical lines. Well-order %, union the set of all horizontal lines and all
rational vertical open intervals by the ordinal ¢ and write it as {4,},<.. By trans-
finite induction on ¢ we will define a set {a,: a<c} with a, € 4, as follows: choose a,.
to be any point in 4,. Now suppose a, has been choosen for each a<f. Pick @
to be any point in the set

Ag— U{H(auV(a,): ‘oc<ﬁ} , if  Aye9,
{au: ABEH(az)} » if - U{H(a:z): O!<ﬁ} =4,
—U{H(a,): a<p}, it - Ag— U{H(@a): a<f} # 4.
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It is easily verified that the selection of a, is always possible.

Let us define ¢ by {x}x¢(x) = {a,: a,€ V(x)}. Then clearly |¢(x)| = % so
each cross section is denumerable and dense. Also it is clear that each horizontal
line hits gro exactly once, ie., |{x: ye@(x)}| =1. Moreover, gre hits each
member of 4 by construction.

To show gre¢ is connected, let us suppose that gro is disconnected by two
non-void open sets each hitting gro and having the property that the union of
their closures is E*. Let G denote the boundary of one of these. By construction
gro hits G if Ge %. Hence G ¢ 4 and G is contained in the union of a small number
of rational and horizontal lines. Moreover, since gro hits each vertical interval,
gr o must be contained in the union of a small number of horizontal lines. From
this it follows that some horizontal line is contained entirely in G. But this is in
contradiction to the fact that gre hits each horizontal line. Therefore, gre is con-
nected.

Now suppose there exists a connected selection f for ¢. Since gre hits each
horizontal line exactly once f must be one-to-one. Now suppose a<c<b. If f(c) is
not between f(a) and f(b), then a vertical open half ray with end at (e, f(c}) union
a horizontal open half ray with end at (a, f(a)) or (b, f(B)) would separate f. There-
fore, f is strictly monotonic. A similar argument shows that f is also con-
tinuous.

Thus the image under f of the unit open interval (0, 1) is an open interval J.
‘Let K be an open interval in J centered at f(4). Then the projection of K upon
V(%,f(%)) contains another point z of gr¢. Hence, H(z) hits gro at z and a point
of f, which contradicts the fact that each horizontal line hits gr¢ once. Hence no
connected selection exists.

Obviously the ¢ of Example 1 is not strongly connected. It is unknown if such
an example exists for a strongly connected carrier .

Before starting the proof of Theorem 1 we introduce the following terminology.
Let ¢ denote any Darboux carrier with countable cross sections. We say that
a point z of the graph of ¢ is a singleton point of gr¢ provided |V(z) A gro| =
We say that z € gro is a density point of gr¢ ifthere exists a dense-in-itself A= H(z)n
N gro for which ze 4. We say that z e gro is a segregated point of gre if z is not
a singleton or density point.

First we need the following three lemmas, the first of which is well known.

LemMA 1. Each linear set L can be decomposed into two disjoint sets one of which,
D(L), is den;’@-in—itself and the other, C(L), is a countable scattered set (i.e.,
tains no dense-in-itself subset).

it con-

Proof. Let L be a linear set and & be the set of all dense-in-itself subsets of L.
By Zorn’s lemma we may choose a maximal member B(L) of . Put C(L) = L—
—B(L). Then C(L) has no dense-in-itself subset. Moreover, if [C(L)|> %o, then
the set of condensation points of C(L) forms a dense-in-itself set. Hence, C(L) is
-countable and scattered. :
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In the next lemma we prove that Theorem 1 is valid for a special kind of
Darboux carrier.

LeMMA 2. A Darboux carrier yy with denumerable cross sections having no segre-
gated point admits a Darboux selection.

Proof. Let # = {H(z): z € gr}. Then for each H e 2 the linear set Hgry
can be decomposed into a dense-in-itself set D(H) and a countable scattered set C(H).
Moreover, each D(H) can be decomposed into a family of disjoint sets each N,-
dense-in-itself, {D,(H): « € I'(H)} where I'(H) is some ordinal <c. Hence, HNgry
= U{D(H): «e'(H)} u C(H).

Now for any planar set 4 put

M(A) = U{D,(H): there exist He #, a e I'(H)
such that D(H) n U{V(2): ze A} # A}.

M(4) and G,,1(4) = M(G,(4)) and put G(4
U G,(4). The sets G(D,(H)) are called networks and we put 4 = {G(D,(H)):

By induction define Gy(4) =

H € .?f weI'(H)}. Then the following facts are easy to prove: Each network
G (D,( H)) is countable; N;, N, e A imply N; = N, or N; n N, = A; each non-
empty N n H is No-dense in each D(H) for He o and distinct x-projections of
members of 4" are disjoint.

If ze C(H), then V(2) n gryy = {z}. Hence, letting A4~ be the system of net-
works for y, gryy = U A& U U {C(H): He #}.

Next we define for each network N € 4 a function fy S N such that fy is dense
in any non-empty H n N for H € 2#. To this end let {O,};, be the set of all rational
open horizontal intervals which hit N. Pick wo€ Op 0 N and W1 € Opyy 0 N—

— U V(wy). Put fy = {w;:
i=0
Finally put

iew}.

f) = fulx) if
feyl if

It is easily checked that f is a Darboux selection for .

x e domfy for some N,
x ¢ U {domfy: Ne #}.

We now proceed to take care of the general case of a carrier with segregated
points. The procedure will be to judiciously remove points from the cross sections
in order to obtain a Darboux “subcarrier” without segregated points and then
apply Lemma 3.

LEMMA 3. Let S denote the set of segregated points of ¢ and let F be a countable
dense subset of greo.

Then there exists a function g<S such that

(1) If B is an open interval in some H(z) having endpoints in \) {V(x): weF 3
Jor which |B n S|=Ng, then Bng # A.

) D(H)— U {V(w): weg} is dense-in-itself for each o and H.

2 — Fundamenta Mathematicae, T, XCI
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Proof Define networks as in the proof of Lemma 2 except one combines
Do(H) and C(H) into a new Do(H). Call the system of networks .#. Then as before
one can show that each M e . is countable and the x-projections of distinct
members of .# are disjoint.

For each M e ., let {B,;}{%, be an enumeration of the rational, horizontal
open intervals which intersect some D(H n M) for He . Let {By;41}i%o be an
enumeration of all horizontal open intervals having endpoints in {J {V(w): we F}
and containing infinitely many points- of S n M. (Without loss of generality we
may assume that there is such a sequence.)

Pick by induction

b;eSn B— U {Vy: j<i} if
bye M n B— U {V(by: j<i} if
Clearly the choice of b; is always possible.

Put gy = {by;r1: i€w}. Now define g = U {gy: Me M} Clearly g is
a function contained in S. Then g satisfies conditions (1) and (2). To show (1), let B
be such an open interval in H(z). Let M be the network containing Do(H) (and
hénce B N S). Then by construction g,, hits B. )

To show (2), consider any D,(H). Let M be the network containing D,(H).
By construction the corresponding set {b,;: i € w} forms a dense subset of D,(H)-
— U {¥(w): wegy} and hence of D(H)— U {V(w): weg}, finishing the proof
of Lemma 3.

iis odd,

iis even.

We now define a new subcarrier y of ¢ by the following procedure: from
a cross section {x}x¢(x) we remove

all points except (x,g(x)) if xedomg,
all points in § if xedomS-—domg and
{x}xe())=S # 4,
all points but one if xedomS—domg and
{x}xpx)<=S.
Hence,
range(g N V(x)) if xedomg,
o (x) if x¢domS,

range[({x} x ¢(x))—S] if xedomS—domg and
((x}xp@)—S # 4,
xedomS—domg and
xIxp(x)eS,

Y (x) =
{»}, where (x,7) is if
any point in
Sngro

Then .we may prove the following:
(@ gsgrysgro,

(b) ¥ is Darboux,

(c) ¥ has no segregated points.
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Part (a) is obvious. To prove Y is Darboux, let us suppose V¥ is not
Darboux. Then there are points (a, b) and (¢, d) in'gryy and an open segment B
above the open interval (a, ¢) and between the two points which fails to intersect
gry. Since griy < gro and Fis a countable dense subset of gre and ¢ is Darboux,
we may take the points (a, b) and (¢, d) to be in gro and assume B has endpoints
in U {V(w): we F}. Then B must contain points of gry which have been removed.
First of all B contains no density points of ¢ because of part (2) of Lemma 3. Hence,
B contains only segregated points of gro.

By part (1) of Lemma 3, B cannot contain infinitely many segregated points
of gre. Hence, B only contains a finite number of segregated points of gr ¢ which
we order in ascending horizontal order zy, z,, ..., z;,. Suppose without loss of
generality that the point (¢, d) is above B and (a, b) is below it. Then, because ¢ is
Darboux there can be no point of {z}x¢(z,) below B and there is a point of
{z;} x @(z,) above B since z, is not a singular point. The same can be said of z,.;.
Continuing in this way it is also true for z,. Hence there is no point of {z,} x ¢ (z()
below B and there is a point, say w, in {z;} X ¢(z,) above B. Now applying the
Darboux condition gr¢-crosses B between (a,b) and w, a contradiction to the
fact that z; was the first such point.

To show ¥ has no segregated points let us suppose z = (x, y) is a segregated
point of . Then z is not a singleton point of ¥ so that Y (x) = @ (x) or ¥ (x)
= range[({x} x ¢ (x))—S] in which case x¢domS or x edomS—domg where
({x}x @(x))—S # A respectively. In either of these cases, it follows that z is a den-
sity point of grg. There exists an « such that z e D, (H(2)).

However, the only points in D,(H(z)) which were removed were points in -
U {V(w): weg} by the definition of y. But by part (2) of Lemma 3 D,(H)—
— U {¥(w): weg} is dense in itself and moreover contains z. Therefore z is a density
point for ¥, a contradiction. :
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