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THEOREM. There exist non-metric hereditarily indecomposable continua.

Proof. Let, in the above construction, X and Tj *(x) for each x & X be heredi-
tarily indecomposable metric continua; e.g. pseudo-arcs. By Lemma 1, Note 1 and
Note 2, we infer that § in this construction is a non-metric hereditarily indecompo-
sable continuum.
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Paracompactness of topological completions
by
- Tadashi Ishii (Shizuoka)

Abstract. Let X be a completely regular T, space, and u(X) a topological completion of X
(that is, a completion of X with respect to its finest uniformity agreeing with the topology of X).
If w(X) is paracompact, then X is said to be pseudo-paracompact. In this paper some remarkable
properties of pseudo-paracompact spaces are studied.

1. Introduction. The purpose of this paper is to- give detailed proofs for the
author’s abstract [6]. Throughout this paper all spaces are assumed to be complete-
ly regular T5. For every space X, we denote by u its finest uniformity agreeing with
the topology of X, that is, u is the family of all normal open coverings of X. Con-
cerning. pseudo-paracompactness, the following results are known.

TuporeM 1.1 (Morita [13]). For every M-space X u(X) is a paracompact
M -space.

TaeoreM 1.2 (Howes [5]). 4 space X is pseudo-paracompact if and only if every
weakly Cauchy filter in X with respect 1o | is contained in some Cauchy filter with
respect 10 .

. Let {U;] 1 e A} be the family of all normal open coverings of a space X. A filter
& = {F,} in X is weakly Cauchy with respect to u if for any A € A there exists U e 1,
such that U n F, # @ for every F, € §. In other words, a filter § is weakly Cauchy
with respect to p if for any A€ 4 there exists a filter §, stronger than § such that
LU for some Uell, and L e §;. In this paper we shall study further results related
to pseudo-paracompactness. § 2 contains other characterizations of pseudo-para-
compact spaces and another proof of Howes’s theorem. Furthermore it is shown by
an example that there exists a strongly normal (i.e., countably paracompact and
collectionwise normal) space which is not pseudo-paracompact. § 3 is concerned with
the following:

(1) The sum theorems of pseudo-paracompact spaces.

(?) The sucffient conditions for the preimage X of a paracompact space (or
a paracompact g-space [10]) ¥ under a closed map f to be pseudo-paracompact.

(3) The invariance of strongly normal pseudo-paracompactness under a perfect
map.

(4) Characterizations of pseudo-locally-compact and pseudo-paracompact
spaces.

5 — Fundamenta Mathematicae t. XCII
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A space X is said to be pseudo-locally-compact (pseudo-Lindelof ete.) if p(X)
is locally compact (resp. Lindelof etc.). Concerning (4) other characterizations than
Morita’s [14] will be given. Finally in § 4 we shall study some properties of pseudo-
Lindelof spaces. '

2. Characterizations of pseudo-paracompact spaces. Concerning the topological
completion of a space X, we use the' terminology and the basic results due to
Morita [13]. Let {®,] yeI'} be the family of all normal sequcmes which consist
of normal open coverings of X. Let us put @, = o, i=1,2,..}, where 2,
is a star refinement of U, (that is, {St(U, llym)\ Uel[,,,‘i,l}>1[w)_ for each 7. We
denote by (X, @,) the topological space obtained from X by taking

{St(x, Uyl i=1,2,..}

as a basis of nelghborhoods at each point x of X. Let X/®, be the quotient space
obtained from (X, @,) by defining those points x and y with y € St(x, 1[,,,) for each i to
be equivalent. Let us denote by i, the identity map from X onto (X, &,) and by @, the
quotient map from (X, ¢,) onto X/®,. If we put

@y = Gy oiy: X~ X|D,,

then @, is a continuous map from X onto a metrizable space X/®,. Let us now in-
troduce a partial order in {®,| yeI'}. If for each i there exists Uy, & &; such that
U, > U, we write &, <®P;. Suppose that &, <P;<&,. Then it is easy to ‘see that the
canonical map q)';: X|®;— X|®, is continuous and

o5 =0, @ o0=0¢).

An open covermg D = {0,} of Xis said to be extendable to u(X) if there exisls
an open covering O = {0,} of u(X), say an extension of O, such that O, = da, ~nX
for each a. It shoud be noted that every normal open covering of X has an extension
to p(X) which is a normal open covering of u(X) (cf. [11, (I) Lemma 8 and (II)
Lemma 1]). )

THEOREM 2.1. For a space X, the following conditions are equivalent.

(a) X is pseudo-paracompact.

(b) Every open covering of X which is extendable to u(X) is a normal covering.

(¢). The product of X with every compact space is pseudo-normal.

(d) Every weakly Cauchy filter in X with respect to u is contained in some Cauchy
filter with respect to p.

(&) If & is a filter in X such that the image of & has a clusier point in any metric

space into which X is continuously mapped, then § is contained in some Cauchy filter
with respect to .

The equivalence of (a) and (d) is due to Howes [5], but another proof is given
below.

° ©
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Proof of Theorem 2.1. (a)—(b) is obv1ous

(a)(c). Let K be an arbitrary compact. space. Then by [13 Theorem 5.1] we
have u(Xx K) = p(X)x K. As was proved by Tamano [16, Theorem 2], a space Y is
paracompact if and only if' ¥'x K is normal for every compact space X. Hence (2)
and (c) are equivalent.

(b)—(d). Suppose that a weakly Cauchy filter § = {F,} in X with respect to wis
not contained in any Cauchy filter with respect to u. Then each point x of y(X)
has an open neighborhood N(x) such that N(x) n F) = @ for some Fum eq.
Let W = {N(x) N X| x e pu(X)}. Then by (b) W is a normal open covering of X.
Since § is a weakly Cauchy filter with respect to u, we have (N(x) n X) " F, # @
for some x & u(X) and for any «, which is a contradiction. Thus (d) holds.

(d)e+(e). This immediately follows from the fact that a filter § in X is weakly
Cauchy with respect to p if and only if the image of § has a cluster point in any
metric space into which X is continuously mapped (cf. [1]).

(e)—(a). Let § = {F,} be a filter base in p(X) such that the image of F has
a cluster point in any metric space into.which x(X) is continuously mapped. Since,
for any ¢@,: X—X|®,, u(e,) carries [_E(X) into X/d, ([13]), wu(e,)(F) has a cluster
point in X/®,. Let us put §, = ¢, (u((/),)(iE)} for each y eI’ and

® = U{%v VEF}'

Then ® is a filter base in X; this follows from the fact that for @, and &, there exists @,
such that ¢, <@, and ¢;<P,. Now we prove that the image of G has a cluster point
in any metric space into which X is continuously mapped. To show this, it suffces
to prove that ¢,(®) has a cluster point in X/®, for each y € I'. Suppose that @, < ;.
Since ¢, = <pg o (5, we have u(p,) = (pf, o u(p;), and hence for each Fe &

w05 (e (F)) = @5 fP.s(;ﬂ,; Hulps)(F)))
= 03 (ulen (F))
= l"((/)y) (F ) >

which shows that ¢ (&,) = ¢,(&,). For &, and ®; which satisfy neither &,<®;
nor. $5< &, we take @, such that ¢,<®, and ¢;<®,. Then, since for each Fe§

o7 (e ) = 07 (wlos) (F))
o] (1le) () = we)F)

we have u(:py)(l")C(p,((p,, 1(u(tpa)(}o))) for each Fe §, which shows that cach ele-
ment of ¢,(&,) is contained in the corresponding element of ¢, (Fs) as above. Con-
sequently it follows that ¢,(®) has a cluster point in X/®, for each 7. Hence
by (¢) ® has a cluster point u in u(X). To show that & has a cluster point , suppose
to be contrary. Then there exists an open neighborhood U of  in u(X) such that
Un F, =@ for some a. Let {G, H} be a normal open covering of x(X) such that
1l
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we G Uand u e u(X)~cLH. Then there exists normal sequence {ﬁ7,| i=1,2,.}
of open coverings of u(X) such that n,, ={G, H}. X we put

w,=N,nX, &={Uli=12.},

then u(p,)(F) does not cluster at (@) @). But this is impossible, since
0,8, (= 1(9,)()) has a cluster point p(¢,)(). Therefore § has a cluster point u,
and hence y(X) is paracompact by Corson’s theorem [1]. Thus we complete the
proof.

ExAMPLE 2.2 (A space which is strongly normal but not pseudo-paracompact).

Let X be the subspace of the product ] R, which consists of those points which
aed

have at most a countable number of non-zero coordinates, where A is an uncountable

index set and R, is the real line for each o € 4. In [2], Corson proved that X is strongly

normal and that v(X) = [ R,, where v(X) is the realcompactification of X. Now
aed

we prove that
H(X) = o(X).

For this purpose, it suffices to show that any normal open covering 2l of X admits
a countable normal open refinement. Let &, = {U,| i=1,2, .2} be a normal
sequence of open coverings of X, where U, = U Then there exists a continuous
map ¢, from X onto a metric space X|®,. Since X| |®, is separable by [2, Corollary 4],
U admits a countable normal open refinement. Hence we have u(X) = v(X). As

is well known, []R, is not normal ([15]). Hence X is not pseudo-normal.
ag A .

3. Some properties of pseudo-paracompact spaces.!

THEOREM 3.1. If there exists a normal open covering U = {U,} of X such that
each subspace U, is pseudo-paracompact, then X is pseudo-paracompact.

Proof. Let © be any open covering of X which is extendable to u(X). We
prove first that U, n O(= {U, n O] 0 e D}) isa normal open covering of the sub-
space U,. Let i; U,—cl,x U, be an inclusion map. Since any closed subspace of
a topologically complete space is also topologically complete by [13, Theorem 1.5),
¢l U, is topologically complete. Hence u(i) carries u(U,) into ¢l U,. Let I§]
be an extension of O to u(X). Let us put &, = u(i)~clynUs 0 D) for each a.
Then G, is an open covering of u(U,), and hence it is a normal covering of u(U,) by
paracompactness of u(U,). Since it U,—cl,nU, is an inclusion map, we have
U, G, = U, n D, which shows that U, » D is a normal open covering of U,.
Therefore by [12, Theorem 1.2], O is a normal covering of X. Hence X is pseudo-
paracompact by Theorem 2.1. Thus we complete the proof.

TaEOREM 3.2. Let {F,| a € Q} be a locally finite closed covering of X such that each
subspace F, is pseudo-paracompact. If X is strongly normal, then X is pseudo-
‘paracompact.

Proof. Let O be any open covering of X which is extendable to u(X). By the
similar way as in the proof of Theorem 3.1, we can prove that F, DO is a normal

° ©
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open covering of F,. Hence F, D has a locally finite closed refinement
8, = {L,yl Ae 4,}. Let us put & = {J) 2,. Then 8 is a locally finite closed refinement
of ©. Since X is strongly normal, there exists a locally finite open covering,
® = {Gyl Aed,, 0e Q} of X such that L,;=G,; for any « and A (Katétov [7]),
where we may assume that @& is a refinement of O. Since X is normal, & is
a normal open covering of X. Hence by Theorem 2.1, X is pseudo-paracompact.
Thus we complete the proof.

Tt should be noted that Theorem 3.2 can be also proved by making use of
Theorem 3.14.

Now let f: X—Y be a continuous map. Then there exists its extension
BCH): B(X)—B(Y), where B(S) denotes the Stone-Cech compactification of a space S,
and it is known that f(f) carries u(X) into u(Y) ({13]). We denote this map by u(f).
A continuous map f'from a space X onto a space Y is called a WZ-map ([8]), a Z-map,
or a quasi-perfect (resp. perfect) map if it satisfies (1), (2), or (3) below respectively:

M) B~ @) = clynf ') for each ye ¥.

(2) f(Z) is closed in Y for each zero-set Z of X.

(3) f is a closed map such that f™1(y) is countably ‘compact (resp. compact)
for each ye Y.

Every closed map is a Z-map, and every Z-map is a WZ-map (8D.

The following theorem is concerned with a relation between f and u(f), and it
is used to show that the preimages of paracompact spaces under quasi-perfect maps
are pseudo-paracompact. P

THEOREM 3.3. Iff is a quasi-perfect map from a space X onto a topologically com-
plete space Y, then w(f): w(X)— Y is perfect. More generally, if f is a WZ-map Sfrom
a space X onto a topologically complete space Y such that f ~1(y) is relatively pseudo-
compact for each ye Y, then u(f): p(X)—Y is perfect.

A subset A of a space X is said to be relatively pseudo-compact if every real-

valued continuous function on X is bounded on A4. To prove Theorem 3.3, we use
the following lemma. v :

Lemma 3.4 (Dykes [31). If F is a relatively pseudo-compact closed subset of a topol-
ogicully complete space, ihen F is compact.

Proofl of Theorem 3.3. Let f be a WZ-map from a space X onto a topologi-
cally complete space Y such that f7'(y) is relatively pseudo-compact. Since
clynf () is compact for cach ye ¥ by Lemma 3.4, we have

BUOTION = clponS ™10 = S “G).

Hence, if we put X, = B(F)" (), then X< Xy u(X)=p(X), which implies that
1(X) = u(X,) by [13, Lemma 2.3). As is easily shown, the preimage of a topologically
complete space under a perfect map is also topologically complete. Therefore we
we have X, = u(X), which shows that p(f): p(X)—Yis perfect. Thus we complete
the proof. .
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COROLLARY 3.5. If f is a quasi-perfect map from a space X onto a paracompact
space Y, then X is pseudo-paracompact. More generally, if [ is a WZ-map from
@ space X onto a paracompact space Y such that £~ () is relatively pseudo-compact
for each ye ¥, then X is pseudo-paracompact.

Tn case the fibers {f ()} are not necessarily relatively pseudo-compact, we
have the following theorem.

THEOREM 3.6. If there exists a Z-map f from a space X onto a paracompact space Y
such that Bf ") (= the boundary of f ~1(3)) is relatively pseudo-compact and [~ y)
is pseudo-paracompact for each ye Y, then X Is pseudo-paracompact.

We prove the above theorem by making use of the following lemma.

LemMa 3.7. If there exists a Z-map f from a space X onto a paracompact space Y
such that Bf ~(y) is relatively pseudo-compact and for any open covering O of X which
is extendable to p(X),f () n O is a normal covering of the subspace ™' (y) for edch
ye Y, then X is pseudo-paracompact. ,

Proof. Let © be any open covering of X which is extendable to pu(X). Then
by our assumption, f ~1(») A O is a normal covering of £~1(y), and hence it has a lo-
cally finite cozero refinement O, in f ~1(y). Since Bf ~'(y)is relatively pseudo-com-
pact in X, tl,,®Bf ™ '(») is compact by Lemma 3.4. Therefore we have

LpBf TiWeEn0; v w0, 0,60 (=1, ..n,
where n0; = u(X)—clg(X—0). Lgf Ci i = 1, ..., be closed sets in cl, B/ ()
such that cl,nBf () = t) C, and C,=n0, for each i. Since each C; is compact,
there exists cozero-sets (*:, e Gy and zero-sets Fi, ...: F, of u(X) such that
C,cF,cGicno;.
If we put G, = G;n X and F; = F;n X, then we have
n n n
Bf ()= iylFrleglGrc Uo;.

=1
Let us put

n
9, = (f7"0)~ UF)n D,
i=
Then it is easily shown that each element of D;, is a cozero-set in X, since each element
of O, is a cozero-set in f~!(y). Hence, if we put
U =0,0{G@|i=1,..,n},
then 1, is a locally finite collection of cozero-sets in X and covers f ~1(y). Therefore

there exists an open neighborhood N(p) of y such that

0N U0 0'e0; (UG,
1=

* ©

icm
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n
since U {0'] 0" D} L ( U1 G is a cozero-set containing £~ () and fis a Z-map.
1=

Let S be a subset of Y such that %ff‘(s) = @ for each se S. Then f~*(s) is open
and closed in X for s& 8, and hence it is a cozero-set in X. This implies that the
one-point set {s} is open and closed for se S. Hence if we put

G = (NG| re Y=8tu s seS},
U = f"Y6),

then © is a normal open covering of ¥ by paracompactness of Y, and hence 2 is
a normal open covering of X. Let {H,| « e A} be a locally finite cozero refinement
of 1. As an open covering of H,, we take H, N 1, in case H,cf "*(N(3)) (v e Y—S5)
and H,yn Dy in case Hyaf ™ () (s S). In this way we can construct a locally finite
cozero refinement of ©. As is well known, every locally finite cozero covering of X'is
normal, and hence O is normal, Therefore by Theorem 2.1, X is pseudo-paracompact,
Thus we complete the proof,

Proof of Theorem 3.6. Since Y is paracompact, u(f) carries u(X) onto Y.
Let © be any open covering of X which is extendable to p(X). Then it is proved
that f~'(») n O is a normal open covering of F7Y(y). Indeed, let i,: f7(y)
—u(f) " '(y) be an inclusion map for each y € ¥. Then u(i,) carries w{f10)) into
w(f)"'G), and hence u(h)™ (NI N 8) is a normal open covering of
1(f~1() by paracompactness of u(f~'(»)), where D is an extension of O to p(X).
Therefore f~'(») N O is a normal covering of £~*(y), since

F710) oG @D T A B) =T n D

Consequently, X is pseudo-paracompact by Lemma 3.7. Thus we complete the
proof.

As an application of Theorem 3.6, we can prove the following theorem.

THEOREM 3.8. If there exists a Z-map f from a space X onto a paracompact
g-space Y such that f~'(p) is pseudo-paracompact for each y e Y, then X is pseudo-
paracompact. . '

This theorem is a direct consequence of Theorem 3.6 and the following lemma
which is a modilication of Michael’s theorem [10, Theorem 2.1J.

Limva 3.9. Let f be a Z-map from a space X onto a q-space Y. Then Bf ()
is relatively pseudo~compact for each y &Y.

Prool. Suppose that Bf ™ '(y,) is not relatively pseudo-compact for a point yo
ol Y. Then there exists 4 real-valued continuous function 4 on X which is unbounded
on B~ (py). Let {x} be a sequence of points of Bf ~(y,) such that

[ACr D> A1
1If we put .
M= (o th()—h(x)I<3}
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then x;€ ¥V, i=1,2, .., and {V;} is discrete. Since Y is a g-space, there exists
a sequence { N} of open neighborhoods of y, such thatif y; & N, then {y,} has a cluster
point in Y. Hence we can take a sequence {z;} of points of X, a sequence {Z;} of
zero-sets of X and a sequence {H;} of cozero-sets of X such that

. zye ZycHie (Vi 0 fTAND)—F (o) s
zeZ,cHelV, ﬂf_l(Nt)“f~1f(jl<)le)]"f_I(J’o): i22.

Then we have f(Z) N f(Zg) = @ for j # k. Since {H,} is discrete and Z;=H; for
e

i=1,2,.., it is easily proved that {J Z,, is a zero-sct in X for any subsequence
n=1 !
-]
{Z,] n =1,2,..} of {Z}}, which implies that f( | Z,) is closed in Y. But {f(z)}
n=1

(4]
has a cluster point y, in Y, since f(z)) € N;. By closedness of f( U Z)), we have
=1
¥, €f(Z) for some k. This is a contradiction, since f( U Z}) is closed and
1%k
AUZ)nf(Z) =3. Thus we complete the proof.
i#k

CoRrOLLARY 3.10. Let f be a closed (or Z-) map from a space X onto a metric
space Y. Then X is pseudo-paracompact in the following cases.

(@) f1(y) is an M-space for each ye Y.

(b) f~2(¥) is paracompact for each ye Y.

In Theorem 3.6 (Theorem 3.8), we can not exclude the assumption that Bf ~1(y)
is relatively psendo-compact (resp. Y is a g-space). We can show these facts by the
same example below, in which we make use of the closed map from the space I/
(cf. [4, 6Q]) onto the quotient' space II/D. i

. Exampre 3.11. Let'p be a one-one map of N onto Q, where N (resp. Q) is the
set of positive integers (resp. rational numbers). For each irrational number r, we
select an increasing sequence {s,} of rationals converging to . For each such sequence,
consider the subset E = {p~'(s,)| n = 1,2, ...} of N, and let & be the family of all
such sets E. For each Ee €, let E' = clyyE—N. We construct a set D selecting one
point pg from each set E' and define I7 to be the subspace N U D of AN. Then IT is
not normal but realcompact ([4, 8H]). By identifying each point of the discrete closed
set D, we get the quotient space [1/.D. Since JI/.D is o-compact, it is paracompact,
Fet S be the quotient map from I7 onto JI/D. Then fis a closed map such that £~ 1(y)
is a metric space for each y e II/D and that

Bf"'y) =D for yell/D-N,
Bf ) =@ for yeN.

l}ut IT is not pseudo-normal, since T is topologically complete and non-normal.
In Theorem 3.8, we can not replace “Z-map” by “open map”.

@ © ‘
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ExampLE 3.12. Let X be a metric space and ¥ a paracompact space such that
the product X'x Y is ‘not normal ([9]). Since X and Y are topologically complete,
so is XxY by [13, Theorem 1.5]. Hence Xx Y is not pseudo-normal. Let
¢: Xx Y—=X be the projection map. Then ¢ is an open map from Xx Y onto
a metric space X such that ¢~*(x) is paracompact for each x e X.

As for Corollary 3.10, we note that if X is the inverse image of a metric space ¥
under a closed map fsuch that £~*(y) is an M~-space (paracompact), then X is not
necessarily an M-space (resp. paracompact). Hoshina proved this for the paracom-
pact case by the following example (cf. [4, 5T]), and the same example shows that
this is also true for the case of M-spaces. ,

ExAMPLE 3.13. Let § be an infinite maximal family of infinite subsets of the
set N of positive integers such that the intersection of any two is finite. Let
D = {og] Fe§} be a new set of distinct points, and let ¥ = N u D with points
of N discrete and neighborhoods of oy € D those subsets of W containing oy and all
but finitely many points of F. Then ¥ is completely regular and pseudo-compact
but not countably compact, Lét ¥/D be the quotient space obtained from ¥ by
identifying each point of .D. Then ¥/D is homeomorphic to the one-point compact-
ification of N, and hence it is metrizable. Let ¢: ¥—¥/D be the quotient map. Then

‘it is easily shown that ¢ is a closed map and ¢~ *(y) is a metric space for each y € ¥/D.

But ¥ is neither an M-space nor a paracompact space.

THEOREM 3.14. Let 2 X~ ¥ be a quasi-perfect map. If X is strongly normal and
pseudo-pardacompact, so is Y.

Proof. Since a normal space is strongly normal if and only if for every locally
finite collection {F;} of closed subsets there exists a locally finite collection {G;} of
open subsets such that F;= G, for each 1 (Katetov [7]), it is easy to see that the image
of a strongly normal space under a quasi-perfect map is also strongly normal. To
prove that ¥ is pseudo-paracompact, let O be an open covering of ¥ which is extend-
able to u(Y). Then £~%(D) is an open covering of X which is extendable to x(X).
Hence by paracompactness of u(X), f~ (D) has a locally finite closed refinement
{K,} in X. Therefore © has a locally finite closed refinement { f(K)}. Since Y is
strongly normal, there exists a locally finite open covering {H,} of Y such that
F(K)< H, for each «, where we may assume that {H,} refines O. Hence O is a normal
covering, since {H,} is a normal covering. Therefore by Theorem 2.1, Yis pseudo-
paracompact. Thus we complete the proof.

TaroREM 3.15. For a space X, the following condilions are equivalent.

(a) X is pseudo-locally-compact and pseudo-paracompact.

(b) There exists a normal open covering W = {U,} of X such that each U, is
relatively pseudo-compact in X.

(c) There exists a normal sequence {2,} of open coverings of X such that for each
x e X, St(x, Wy, is relatively pseudo-compact in X for some k(x).

(d) There exists a Z-map f from X onto a locally compact metric space ¥ such
that f=Y(¥) is relutively pseudo-compact for each ye Y.
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() There exists a Z-map f from X onto « locally compact paravompuact space Y
such ‘that f~*(y) is relatively pseudo-compact for each y € Y.

(f) There exists a WZ-map ffrom X onto a locally compact paracompuct space ¥
such that f~Y(y) is relatively pseudo-compact for each ye Y.

The equivalence of (z) and (b) is due to K. Morita [14], who proved also the
equivalence of (a) and (d) independently.

Proof. (b)—(c) and (d)—(e)—(f) are obvious.

(a)—~(b). Since pu(X) is locally compact and paracompact, each point x ol u(X)
has an open neighborhood U(x) such that cl,x) U(x) is compact. Let us put
U = {U(x) n X| xe p(X)}. Then it is easy to see that U satisfies the required prop-
erties, since {U(x)| x € u(X)} is a normal covering of p(X).

(©)—(d). Let {K,} be a decreasing sequence of zero-sets of X such that
K,=St(x, 2,) for some x e X and for each n. Then by our assumption, there is
some K,, which is relatively pseudo-compact in X. Since cl, K, is compact, {K,}
has a cluster point in u(X). Now we prove that () K, 5% @. For this purpose, assume
to be contrary, and let H, = X—K,. Then {H,} is a normal open covering of X,
since any countable cozero covering is normal. Hence {H,} is extendable to u(X),
which implies that ()clx K, =@. This is a contradiction. Therefore we have
N K, # @. Consequently by [8] there exists a Z-map f from X onto a metric space ¥
such that £ ~Y(y) is relatively pseudo-compact for each y & Y. From the construction
of Y it follows that Y is locally compact, and hence (d) holds,

(f)—(a). This is a direct consequence of Theorem 3.3.

Thus we complete the proof.

4. I?seudo-Linde]Bf property. For a space X we denote by v the uniformity
of X which consists of all countable normal open coverings of X. As for the charac-
terizations of pseudo-Lindeldf spaces, we have the following theorem.

THEOREM 4.1. For a space X, the following conditions are equivalent.

(a) X is pseudo-Lindelof.

(b) X is pseudo-pgraco;npact and any normal open covering of X has a countable
subcovering. '

(c) Every open covering of X which is extendable to u(X) has a countable sub-
covering.

) (d) Every weakly Cauchy filter in X with respect to v is contuined in some Cauchy
filter with respect to p.

‘(c) If & {‘s a filter in X such that the image of § has a cluster point in any separable
metric space into which X is continuously mapped, then % is contained in some Cuuch y
filter with respect to p.

The equivalence of (a) and (b) was proved by Howes [5].

Proof. (a)—(b)~+(c) are obvious.

‘ (c)—s(.d). Sl.ippose that a weakly Cauchy filter § = {F,} in X with respect to v is
not contained in any Cauchy filter with respect to y. Then each point x of u(X)

©
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has a cozero neighborhood N(x) such that N(x) n F, = @ for some F, e &
By (c), an open covering {N(x) n X| xeu(X)} of X has a countable subcovering
{N@x) N X| x;ep(X), i =1,2,..}, which is a normal covering of X, Since T is
a wenkly Cauchy fifter with respect to v, we have (N(x) n X) N F, = N(x) n F, # @
for some j and for each «, which is a contradiction. Thus (d) holds.

(d)«>(e). This follows from the fact that a filter § in X is weakly Cauchy with
respect to v if and only if the image of § has a cluster point in any separable metric
space into which X is continuously mapped.

(e)->(a). Let & = {F,} be a filter base in u(X) such that the image of § has
a cluster point in any separable metric space into which u(X) is continuously rapped.
Let {@,] y & I'} be the family of all normal sequences consisting of countable normal
open coverings of X, Then foy any map ¢,: X—X/®,, {u(p,)(F,)} has a. cluster
point in X/, , since X/®, is a separable metric space. Let us put §, = @; (u(e,)(¥)
for each y, and let ;

' = U {§lrel}.
By the similar way as in the proof of (e)—(a) in Theorem 2.1, it is proved that &
is a filter base in- X such that the image of & has a cluster point in any separable
metric space into which X is continuously mapped. Therefore by () & has
a cluster point u in u(X). Furthermore, it can be easily shown that u is a cluster
point of §, from which it follows that u(X) is Lindelsf (cf. [1]). Thus we
complete the proof. )

As is easily seen [rom the equivalence of (a) and (¢) in Theorem 4.1, the image of
a pseudo-Lindel8f space under a continuous map is pseudo-Lindeldf., This result
was first pointed out by K. Morita. Therefore it follows that if a space X is the
countable union of pseudo-Lindelsf subspaces, then X is also pseudo-Lindelst.

THEOREM 4.2. If there exists a Z~-map f from a space X onto a Lindeldf space Y
such that =) is pseudo-Lindeldf for each ye Y, then X is pseudo-Lindeldf.

To prove this theorem, we use the following lemma.

LEMMA 4.3. If there exists a Z-map f from a space X onto a Lindeldf space Y such
thut for any open covering O of X which is extendable to p(X), f ~4y) N O has a count-
able subcovering for each y & Y. then X is pseudo-Lindeldf. .

Proof. Let © = {0,} be any cozero covering of X which is extendable to u(X).
Then for each y e Y, f'(p) is covered by a countable number of elements of O,

o0

that is, ' U Oy Oy €D (= 1,2, ..). Since U1 0,, is a cozero-set in X
[N i=

and [ is o Z-map, there exists an open neighborhood N(y) of y such that
o

£ (NGY)e U 0y By the Lindelot property of ¥, the covering {NO)| y & ¥}
I=1

of ¥ admits a countable subcovering (N(»)| y,€ ¥in =1,2,..}. Since f~H(NG.)
is covered by a countable number of elements of O for each n; O has a countable sub-
covering. Hence by Theorem 4.1, X is pseudo-Lindelsf. Thus we complete the proof.

[
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Proof of Theorem4.2. By the similar argument as in the proof of Theorem 3.6,
it is proved that if O is an open covering of X which is extendable to u(X), then
f7'(» N D has a countable subcovering. Hence by Lemma 4.3 the theorem holds,
Thus we complete the proof.

Finally we raise a problem concerning pseudo-paracompactness: Is the image
of a pseudo-paracompact space under a perfect map psendo-paracompact ?

The referee has kindly pointed out to the author that the following problems
has been solved negatively by R. Pol: | )

(1) Ts the preimage of a pseudo-paracompact space under a perfect map pseudo-
paracompact ? )

(2) Is pseudo-paracompactness hereditary to every closed subspace?

(3) Are the problems (1) and (2) affirmative, for pseudo-Lindels! spaces?

The following examples are due to R. Pol.

EXAMPLE 4.4. There exists a space X and its closed subspace A such that X is
pseudo-compact and that A is not pseydo-normal. '

Proof. Let D = {0, 1, 2} be a three-point discrete space and D™ its &, ~product.
Let X = {x| x has at most &, coordinates different from 0} and K = {1, 21", Then
KnZX=0. Take AcK which is not pseudo-normal and let X = 4 U X. Then
A = K n Xis closed in X and since by Mazur’s theorem X is C-embedded in DM
we have p¥ = pX = D™, Hence X is pseudo-compact,

EXAMPLE 4.5. There exists a perfect mapping f Y- X such that Y is not pseudo-
normal, but X is pseudo-compact. ‘

Proof. Take ¥ = X @ 4, where X and A are as in Example 4.4 and X o 4
denotes the topological union of X and 4. Let f: X @ 4~ X be an identity map on X
and 4. Then fis perfect, X is psendo-compact and since (X ® 4) = uX ® ud,
the space Y is not pseudo-normal. ‘

The author would like to thank the referee who indicated Examples 4.4 and 4.5
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