A. Emeryk

64

THEOREM. There exist non-metric hereditarily indecomposable continua.

Proof. Let, in the above construction, X and $T_x^{-1}(x)$ for each $x \in X$ be hereditarily indecomposable metric continua; e.g. pseudo-arcs. By Lemma 1, Note 1 and Note 2, we infer that S in this construction is a non-metric hereditarily indecomposable continuum.

References

- [1] D. P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38 (1971), pp. 15-20.
- and L. R. Rubin, Indecomposable continua in Stone-Čech compactification, Proc. Amer. Math. Soc. 39 (1973), pp. 427-433.
- [3] H. Cook, Continua which admit only the identity mapping onto non-degenerate subcontinua, Fund. Math. 60 (1967), pp. 241-249.
- [4] A. Emeryk, An atomic map onto an arbitrary metric continuum, Fund. Math. 77 (1972); pp. 145-150.

SILESIAN UNIVERSITY, Katowice

Accepté par la Rédaction le 19. 8. 1974

Paracompactness of topological completions

b

Tadashi Ishii (Shizuoka)

Abstract. Let X be a completely regular T_2 space, and $\mu(X)$ a topological completion of X (that is, a completion of X with respect to its finest uniformity agreeing with the topology of X). If $\mu(X)$ is paracompact, then X is said to be *pseudo-paracompact*. In this paper some remarkable properties of pseudo-paracompact spaces are studied.

1. Introduction. The purpose of this paper is to give detailed proofs for the author's abstract [6]. Throughout this paper all spaces are assumed to be completely regular T_2 . For every space X, we denote by μ its finest uniformity agreeing with the topology of X, that is, μ is the family of all normal open coverings of X. Concerning pseudo-paracompactness, the following results are known.

THEOREM 1.1 (Morita [13]). For every M-space X $\mu(X)$ is a paracompact M-space.

Theorem 1.2 (Howes [5]). A space X is pseudo-paracompact if and only if every weakly Cauchy filter in X with respect to μ is contained in some Cauchy filter with respect to μ .

- Let $\{\mathfrak{U}_{\lambda}|\ \lambda\in\Lambda\}$ be the family of all normal open coverings of a space X. A filter $\mathfrak{F}=\{F_{\alpha}\}$ in X is weakly Cauchy with respect to μ if for any $\lambda\in\Lambda$ there exists $U\in\mathfrak{U}_{\lambda}$ such that $U\cap F_{\alpha}\neq\emptyset$ for every $F_{\alpha}\in\mathfrak{F}$. In other words, a filter \mathfrak{F} is weakly Cauchy with respect to μ if for any $\lambda\in\Lambda$ there exists a filter \mathfrak{F}_{λ} stronger than \mathfrak{F} such that L=U for some $U\in\mathfrak{U}_{\lambda}$ and $L\in\mathfrak{F}_{\lambda}$. In this paper we shall study further results related to pseudo-paracompactness. § 2 contains other characterizations of pseudo-paracompact spaces and another proof of Howes's theorem. Furthermore it is shown by an example that there exists a strongly normal (i.e., countably paracompact and collectionwise normal) space which is not pseudo-paracompact. § 3 is concerned with the following:
 - (1) The sum theorems of pseudo-paracompact spaces.
- (2) The sucffient conditions for the preimage X of a paracompact space (or a paracompact q-space [10]) Y under a closed map f to be pseudo-paracompact.

(3) The invariance of strongly normal pseudo-paracompactness under a perfect map.

- (4) Characterizations of pseudo-locally-compact and pseudo-paracompact spaces.
- 5 Fundamenta Mathematicae t. XCII

A space X is said to be pseudo-locally-compact (pseudo-Lindelöf etc.) if $\mu(X)$ is locally compact (resp. Lindelöf etc.). Concerning (4) other characterizations than Morita's [14] will be given. Finally in § 4 we shall study some properties of pseudo-Lindelöf spaces.

T. Ishii

2. Characterizations of pseudo-paracompact spaces. Concerning the topological completion of a space X, we use the terminology and the basic results due to Morita [13]. Let $\{\Phi_{\gamma} | \gamma \in \Gamma\}$ be the family of all normal sequences which consist of normal open coverings of X. Let us put $\Phi_{\gamma} = \{\mathfrak{U}_{\gamma l} | i = 1, 2, ...\}$, where $\mathfrak{U}_{\gamma l+1}$ is a star refinement of $U_{\gamma l}$ (that is, $\{St(U, \mathfrak{U}_{\gamma_{l+1}}) | U \in \mathfrak{U}_{\gamma_{l+1}}\} > \mathfrak{U}_{\gamma l}$) for each i. We denote by (X, Φ_{γ}) the topological space obtained from X by taking

$$\{ \operatorname{St}(x, \mathfrak{U}_{y_i}) | i = 1, 2, ... \}$$

as a basis of neighborhoods at each point x of X. Let X/Φ_{γ} be the quotient space obtained from (X, Φ_{γ}) by defining those points x and y with $y \in \operatorname{St}(x, \mathfrak{U}_{\gamma_i})$ for each i to be equivalent. Let us denote by i_{γ} the identity map from X onto (X, Φ_{γ}) and by $\widetilde{\varphi}_{\gamma}$ the quotient map from (X, Φ_{γ}) onto X/Φ_{γ} . If we put

$$\varphi_{\gamma} = \tilde{\varphi}_{\gamma}^{\gamma} \circ i_{\gamma} : X \rightarrow X/\Phi_{\gamma} ,$$

then φ_{γ} is a continuous map from X onto a metrizable space X/Φ_{γ} . Let us now introduce a partial order in $\{\Phi_{\gamma}|\ \gamma\in\Gamma\}$. If for each i there exists $\mathfrak{U}_{\delta_{j}}\in\Phi_{\delta}$ such that $\mathfrak{U}_{\delta_{j}}>\mathfrak{U}_{\gamma_{i}}$, we write $\Phi_{\gamma}<\Phi_{\delta}$. Suppose that $\Phi_{\gamma}<\Phi_{\delta}<\Phi_{\delta}$. Then it is easy to see that the canonical map $\varphi_{\gamma}^{\theta}$: $X/\Phi_{\delta}\to X/\Phi_{\gamma}$ is continuous and

$$\varphi_{\gamma}^{\delta} \circ \varphi_{\delta} = \varphi_{\gamma}, \quad \varphi_{\gamma}^{\delta} \circ \varphi_{\delta}^{\varepsilon} = \varphi_{\gamma}^{\varepsilon}.$$

An open covering $\mathfrak{D}=\{O_\alpha\}$ of X is said to be *extendable* to $\mu(X)$ if there exists an open covering $\mathfrak{T}=\{\tilde{O}_\alpha\}$ of $\mu(X)$, say an extension of \mathfrak{D} , such that $O_\alpha=\tilde{O}_\alpha\cap X$ for each α . It shoud be noted that every normal open covering of X has an extension to $\mu(X)$ which is a normal open covering of $\mu(X)$ (cf. [11, (I) Lemma 8 and (II) Lemma 1]).

THEOREM 2.1. For a space X, the following conditions are equivalent.

- (a) X is pseudo-paracompact.
- (b) Every open covering of X which is extendable to $\mu(X)$ is a normal covering.
- (c) The product of X with every compact space is pseudo-normal.
- (d) Every weakly Cauchy filter in X with respect to μ is contained in some Cauchy filter with respect to μ .
- (e) If $\mathfrak F$ is a filter in X such that the image of $\mathfrak F$ has a cluster point in any metric space into which X is continuously mapped, then $\mathfrak F$ is contained in some Cauchy filter with respect to μ .

The equivalence of (a) and (d) is due to Howes [5], but another proof is given below.

Proof of Theorem 2.1. (a) \rightarrow (b) is obvious.

(a) \leftrightarrow (c). Let K be an arbitrary compact space. Then by [13, Theorem 5.1] we have $\mu(X \times K) = \mu(X) \times K$. As was proved by Tamano [16, Theorem 2], a space Y is paracompact if and only if $Y \times K$ is normal for every compact space K. Hence (a) and (c) are equivalent.

(b) \rightarrow (d). Suppose that a weakly Cauchy filter $\mathfrak{F} = \{F_{\alpha}\}$ in X with respect to μ is not contained in any Cauchy filter with respect to μ . Then each point x of $\mu(X)$ has an open neighborhood N(x) such that $N(x) \cap F_{\alpha(X)} = \emptyset$ for some $F_{\alpha(X)} \in \mathfrak{F}$. Let $\mathfrak{W} = \{N(x) \cap X \mid x \in \mu(X)\}$. Then by (b) \mathfrak{W} is a normal open covering of X. Since \mathfrak{F} is a weakly Cauchy filter with respect to μ , we have $(N(x) \cap X) \cap F_{\alpha} \neq \emptyset$ for some $x \in \mu(X)$ and for any α , which is a contradiction. Thus (d) holds.

(d) \leftrightarrow (e). This immediately follows from the fact that a filter \mathfrak{F} in X is weakly Cauchy with respect to μ if and only if the image of \mathfrak{F} has a cluster point in any metric space into which X is continuously mapped (cf. [1]).

(e)—(a). Let $\mathfrak{F}=\{F_\alpha\}$ be a filter base in $\mu(X)$ such that the image of \mathfrak{F} has a cluster point in any metric space into which $\mu(X)$ is continuously mapped. Since, for any $\varphi_\gamma\colon X\to X/\Phi_\gamma$, $\mu(\varphi_\gamma)$ carries $\mu(X)$ into X/Φ_γ ([13]), $\mu(\varphi_\gamma)(\mathfrak{F})$ has a cluster point in X/Φ_γ . Let us put $\mathfrak{F}_\gamma=\varphi_\gamma^{-1}(\mu(\varphi_\gamma)(\mathfrak{F}))$ for each $\gamma\in\Gamma$ and

$$\mathfrak{G} \; = \; \bigcup \; \{\mathfrak{F}_{\gamma} | \; \; \gamma \in \Gamma \} \; .$$

Then \mathfrak{G} is a filter base in X; this follows from the fact that for Φ_{γ} and Φ_{δ} there exists Φ_{ϵ} such that $\Phi_{\gamma} < \Phi_{\epsilon}$ and $\Phi_{\delta} < \Phi_{\epsilon}$. Now we prove that the image of \mathfrak{G} has a cluster point in any metric space into which X is continuously mapped. To show this, it suffices to prove that $\varphi_{\gamma}(\mathfrak{G})$ has a cluster point in X/Φ_{γ} for each $\gamma \in \Gamma$. Suppose that $\Phi_{\gamma} < \Phi_{\delta}$. Since $\varphi_{\gamma} = \varphi_{\gamma}^{\delta} \circ \varphi_{\delta}$, we have $\mu(\varphi_{\gamma}) = \varphi_{\gamma}^{\delta} \circ \mu(\varphi_{\delta})$, and hence for each $F \in \mathfrak{F}$

$$\begin{split} \varphi_{\gamma} & (\varphi_{\delta}^{-1} \big(\mu(\varphi_{\delta})(F) \big) \big) = \varphi_{\gamma}^{\delta} \circ \varphi_{\delta} \big(\varphi_{\delta}^{-1} \big(\mu(\varphi_{\delta})(F) \big) \big) \\ & = \varphi_{\gamma}^{\delta} \big(\mu(\varphi_{\delta})(F) \big) \\ & = \mu(\varphi_{\gamma})(F) \; , \end{split}$$

which shows that $\varphi_{\gamma}(\mathfrak{F}_{\delta}) = \varphi_{\gamma}(\mathfrak{F}_{\gamma})$. For Φ_{γ} and Φ_{δ} which satisfy neither $\Phi_{\gamma} < \Phi_{\delta}$ nor $\Phi_{\delta} < \Phi_{\gamma}$, we take Φ_{δ} such that $\Phi_{\gamma} < \Phi_{\delta}$ and $\Phi_{\delta} < \Phi_{\delta}$. Then, since for each $F \in \mathfrak{F}$

$$\varphi_{\varepsilon}^{-1}(\mu(\varphi_{\varepsilon})(F)) \subset \varphi_{\delta}^{-1}(\mu(\varphi_{\delta})(F)),$$

$$\varphi_{\gamma}(\varphi_{\varepsilon}^{-1}(\mu(\varphi_{\delta})(F))) = \mu(\varphi_{\gamma})(F),$$

we have $\mu(\varphi_{\gamma})(F) \subset \varphi_{\gamma}(\varphi_{\delta}^{-1}(\mu(\varphi_{\delta})(F)))$ for each $F \in \mathfrak{F}$, which shows that each element of $\varphi_{\gamma}(\mathfrak{F}_{\delta})$ is contained in the corresponding element of $\varphi_{\gamma}(\mathfrak{F}_{\delta})$ as above. Consequently it follows that $\varphi_{\gamma}(\mathfrak{G})$ has a cluster point in X/Φ_{γ} for each γ . Hence by (e) \mathfrak{G} has a cluster point u in $\mu(X)$. To show that \mathfrak{F} has a cluster point u, suppose to be contrary. Then there exists an open neighborhood U of u in $\mu(X)$ such that $U \cap F_{\alpha} = \emptyset$ for some α . Let $\{G, H\}$ be a normal open covering of $\mu(X)$ such that

 $u\in G\subset U$ and $u\in \mu(X)-\mathrm{cl}\,H$. Then there exists a normal sequence $\{\widetilde{\mathfrak{U}}_{\gamma_i}|\ i=1,2,\ldots\}$ of open coverings of $\mu(X)$ such that $\widetilde{\mathfrak{U}}_{\gamma_1}=\{G,H\}$. If we put

$$\mathfrak{U}_{y_i} = \widetilde{\mathfrak{U}}_{y_i} \cap X, \quad \Phi_{y} = \{\mathfrak{U}_{y_i} | i = 1, 2, ...\},$$

then $\mu(\varphi_{\gamma})(\mathfrak{F})$ does not cluster at $\mu(\varphi_{\gamma})(u)$. But this is impossible, since $\varphi_{\gamma}(\mathfrak{F}_{\gamma})(=\mu(\varphi_{\gamma})(\mathfrak{F}))$ has a cluster point $\mu(\varphi_{\gamma})(u)$. Therefore \mathfrak{F} has a cluster point u, and hence $\mu(X)$ is paracompact by Corson's theorem [1]. Thus we complete the proof.

EXAMPLE 2.2 (A space which is strongly normal but not pseudo-paracompact). Let X be the subspace of the product $\prod_{\alpha \in A} R_{\alpha}$ which consists of those points which

have at most a countable number of non-zero coordinates, where A is an uncountable index set and R_{α} is the real line for each $\alpha \in A$. In [2], Corson proved that X is strongly normal and that $v(X) = \prod_{\alpha \in A} R_{\alpha}$, where v(X) is the realcompactification of X. Now we prove that

$$\mu(X)=v(X).$$

For this purpose, it suffices to show that any normal open covering $\mathfrak U$ of X admits a countable normal open refinement. Let $\Phi_{\gamma} = \{\mathfrak U_{\gamma_i} | i=1,2,...\}$ be a normal sequence of open coverings of X, where $\mathfrak U_{\gamma_1} = \mathfrak U$. Then there exists a continuous map ϕ_{γ} from X onto a metric space X/ϕ_{γ} . Since X/ϕ_{γ} is separable by [2, Corollary 4], $\mathfrak U$ admits a countable normal open refinement. Hence we have $\mu(X) = v(X)$. As is well known, $\prod_{i=1}^{N} R_{\alpha}$ is not normal ([15]). Hence X is not pseudo-normal.

3. Some properties of pseudo-paracompact spaces.

THEOREM 3.1. If there exists a normal open covering $\mathfrak{U} = \{U_{\alpha}\}$ of X such that each subspace U_{α} is pseudo-paracompact, then X is pseudo-paracompact.

Proof. Let $\mathfrak D$ be any open covering of X which is extendable to $\mu(X)$. We prove first that $U_{\alpha} \cap \mathfrak D (= \{U_{\alpha} \cap O \mid O \in \mathfrak D\})$ is a normal open covering of the subspace U_{α} . Let $i \colon U_{\alpha} \to \operatorname{cl}_{\mu(X)} U_{\alpha}$ be an inclusion map. Since any closed subspace of a topologically complete space is also topologically complete by [13, Theorem 1.5], $\operatorname{cl}_{\mu(X)} U_{\alpha}$ is topologically complete. Hence $\mu(i)$ carries $\mu(U_{\alpha})$ into $\operatorname{cl}_{\mu(X)} U_{\alpha}$. Let $\widetilde{\mathfrak D}$ be an extension of $\mathfrak D$ to $\mu(X)$. Let us put $\mathfrak G_{\alpha} = \mu(i)^{-1}(\operatorname{cl}_{\mu(X)} U_{\alpha} \cap \widetilde{\mathfrak D})$ for each α . Then G_{α} is an open covering of $\mu(U_{\alpha})$, and hence it is a normal covering of $\mu(U_{\alpha})$ by paracompactness of $\mu(U_{\alpha})$. Since $i \colon U_{\alpha} \to \operatorname{cl}_{\mu(X)} U_{\alpha}$ is an inclusion map, we have $U_{\alpha} \cap G_{\alpha} = U_{\alpha} \cap \mathfrak D$, which shows that $U_{\alpha} \cap \mathfrak D$ is a normal open covering of U_{α} . Therefore by [12, Theorem 1.2], $\mathfrak D$ is a normal covering of X. Hence X is pseudoparacompact by Theorem 2.1. Thus we complete the proof.

Theorem 3.2. Let $\{F_{\alpha}|\alpha\in\Omega\}$ be a locally finite closed covering of X such that each subspace F_{α} is pseudo-paracompact. If X is strongly normal, then X is pseudo-paracompact.

Proof. Let \mathfrak{D} be any open covering of X which is extendable to $\mu(X)$. By the similar way as in the proof of Theorem 3.1, we can prove that $F_{\sigma} \cap \mathfrak{D}$ is a normal

open covering of F_{α} . Hence $F_{\alpha} \cap \mathfrak{D}$ has a locally finite closed refinement $\mathfrak{Q}_{\alpha} = \{L_{\alpha\lambda} | \lambda \in \Lambda_{\alpha}\}$. Let us put $\mathfrak{Q} = \bigcup \mathfrak{Q}_{\alpha}$. Then \mathfrak{Q} is a locally finite closed refinement of \mathfrak{D} . Since X is strongly normal, there exists a locally finite open covering, $\mathfrak{G} = \{G_{\alpha\lambda} | \lambda \in \Lambda_{\alpha}, \alpha \in \Omega\}$ of X such that $L_{\alpha\lambda} \subset G_{\alpha\lambda}$ for any α and λ (Katětov [7]), where we may assume that \mathfrak{G} is a refinement of \mathfrak{D} . Since X is normal, \mathfrak{G} is a normal open covering of X. Hence by Theorem 2.1, X is pseudo-paracompact. Thus we complete the proof.

It should be noted that Theorem 3.2 can be also proved by making use of Theorem 3.14.

Now let $f: X \to Y$ be a continuous map. Then there exists its extension $\beta(f): \beta(X) \to \beta(Y)$, where $\beta(S)$ denotes the Stone-Čech compactification of a space S, and it is known that $\beta(f)$ carries $\mu(X)$ into $\mu(Y)$ ([13]). We denote this map by $\mu(f)$. A continuous map f from a space X onto a space Y is called a WZ-map ([8]), a Z-map, or a quasi-perfect (resp. perfect) map if it satisfies (1), (2), or (3) below respectively:

- (1) $\beta(f)^{-1}(y) = \operatorname{cl}_{\beta(X)} f^{-1}(y)$ for each $y \in Y$.
- (2) f(Z) is closed in Y for each zero-set Z of X.
- (3) f is a closed map such that $f^{-1}(y)$ is countably compact (resp. compact) for each $y \in Y$.

Every closed map is a Z-map, and every Z-map is a WZ-map ([8]).

The following theorem is concerned with a relation between f and $\mu(f)$, and it is used to show that the preimages of paracompact spaces under quasi-perfect maps are pseudo-paracompact.

THEOREM 3.3. If f is a quasi-perfect map from a space X onto a topologically complete space Y, then $\mu(f): \mu(X) \to Y$ is perfect. More generally, if f is a WZ-map from a space X onto a topologically complete space Y such that $f^{-1}(y)$ is relatively pseudocompact for each $y \in Y$, then $\mu(f): \mu(X) \to Y$ is perfect.

A subset A of a space X is said to be relatively pseudo-compact if every real-valued continuous function on X is bounded on A. To prove Theorem 3.3, we use the following lemma.

LEMMA 3.4 (Dykes [3]). If F is a relatively pseudo-compact closed subset of a topologically complete space, then F is compact.

Proof of Theorem 3.3. Let f be a WZ-map from a space X onto a topologically complete space Y such that $f^{-1}(y)$ is relatively pseudo-compact. Since $\operatorname{cl}_{u(X)}f^{-1}(y)$ is compact for each $y \in Y$ by Lemma 3.4, we have

$$\beta(f)^{-1}(y) = \operatorname{cl}_{\beta(X)} f^{-1}(y) = \operatorname{cl}_{\mu(X)} f^{-1}(y)$$
.

Hence, if we put $X_0 = \beta(f)^{-1}(Y)$, then $X \subset X_0 \subset \mu(X) \subset \beta(X)$, which implies that $\mu(X) = \mu(X_0)$ by [13, Lemma 2.3]. As is easily shown, the preimage of a topologically complete space under a perfect map is also topologically complete. Therefore we we have $X_0 = \mu(X)$, which shows that $\mu(f) \colon \mu(X) \to Y$ is perfect. Thus we complete the proof.

71

COROLLARY 3.5. If f is a quasi-perfect map from a space X onto a paracompact space Y, then X is pseudo-paracompact. More generally, if f is a WZ-map from a space X onto a paracompact space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$, then X is pseudo-paracompact.

In case the fibers $\{f^{-1}(y)\}\$ are not necessarily relatively pseudo-compact, we have the following theorem.

THEOREM 3.6. If there exists a Z-map f from a space X onto a paracompact space Y such that $\mathfrak{B}f^{-1}(y)$ (= the boundary of $f^{-1}(y)$) is relatively pseudo-compact and $f^{-1}(y)$ is pseudo-paracompact for each $y \in Y$, then X is pseudo-paracompact.

We prove the above theorem by making use of the following lemma.

LEMMA 3.7. If there exists a Z-map f from a space X onto a paracompact space Y such that $\mathfrak{B}f^{-1}(y)$ is relatively pseudo-compact and for any open covering \mathfrak{D} of X which is extendable to $\mu(X)$, $f^{-1}(y) \cap \mathfrak{D}$ is a normal covering of the subspace $f^{-1}(y)$ for each $y \in Y$, then X is pseudo-paracompact.

Proof. Let $\mathfrak D$ be any open covering of X which is extendable to $\mu(X)$. Then by our assumption, $f^{-1}(y) \cap \mathfrak{D}$ is a normal covering of $f^{-1}(y)$, and hence it has a locally finite cozero refinement \mathfrak{D}_{ν} in $f^{-1}(y)$. Since $\mathfrak{B}f^{-1}(y)$ is relatively pseudo-compact in X, $\operatorname{cl}_{u(X)}\mathfrak{B}f^{-1}(y)$ is compact by Lemma 3.4. Therefore we have

$$\operatorname{cl}_{n(x)}\mathfrak{B}f^{-1}(y)\subset\eta O_1\cup\ldots\cup\eta O_n, \quad O_i\in\mathfrak{D}\ (i=1,\ldots,n)\ ,$$

where $\eta O_i = \mu(X) - \operatorname{cl}_{\mu(X)}(X - O_i)$. Let C_i , i = 1, ..., n, be closed sets in $\operatorname{cl}_{\mu(X)} \mathfrak{B} f^{-1}(y)$ such that $\operatorname{cl}_{\mu(X)}\mathfrak{B}f^{-1}(y)=\bigcup\limits_{i=1}^n C_i$ and $C_i{\subset}\eta O_i$ for each i. Since each C_i is compact, there exists cozero-sets $\widetilde{G}_1,...,\widetilde{G}_n$ and zero-sets $\widetilde{F}_1,...,\widetilde{F}_n$ of $\mu(X)$ such that $C \subset \widetilde{F} \subset \widetilde{G} \subset nO$.

If we put $G_i = \tilde{G}_i \cap X$ and $F_i = \tilde{F}_i \cap X$, then we have

$$\mathfrak{B}f^{-1}(y)\subset\bigcup_{i=1}^nF_i\subset\bigcup_{i=1}^nG_i\subset\bigcup_{i=1}^nO_i.$$

Let us put

$$\mathfrak{D}_{y}' = (f^{-1}(y) - \bigcup_{i=1}^{n} F_{i}) \cap \mathfrak{D}_{y}.$$

Then it is easily shown that each element of \mathfrak{D}'_{ν} is a cozero-set in X, since each element of \mathfrak{D}_{n} is a cozero-set in $f^{-1}(y)$. Hence, if we put

$$\mathfrak{U}_{y}=\mathfrak{D}'_{y}\cup\left\{ G_{i}|\ i=1,...,n\right\} ,$$

then \mathfrak{U}_{y} is a locally finite collection of cozero-sets in X and covers $f^{-1}(y)$. Therefore there exists an open neighborhood N(y) of y such that

$$f^{-1}(N(y)) \subset \bigcup \{O' | O' \in \mathfrak{D}'_{y}\} \cup (\bigcup_{l=1}^{n} G_{l}),$$

since $\bigcup \{O' | O' \in \mathfrak{D}'_y\} \cup (\bigcup_{i=1}^n G_i)$ is a cozero-set containing $f^{-1}(y)$ and f is a Z-map.

Let S be a subset of Y such that $\mathfrak{B}f^{-1}(s) = \emptyset$ for each $s \in S$. Then $f^{-1}(s)$ is open and closed in X for $s \in S$, and hence it is a cozero-set in X. This implies that the one-point set $\{s\}$ is open and closed for $s \in S$. Hence if we put

$$\mathfrak{G} = \{ N(y) | y \in Y - S \} \cup \{ s | s \in S \},$$

$$\mathfrak{U} = f^{-1}(\mathfrak{G}),$$

then 0 is a normal open covering of Y by paracompactness of Y, and hence $\mathfrak U$ is a normal open covering of X. Let $\{H_{\alpha} | \alpha \in A\}$ be a locally finite cozero refinement of \mathfrak{U} . As an open covering of H_{α} , we take $H_{\alpha} \cap \mathfrak{U}_{\gamma}$ in case $H_{\alpha} \subset f^{-1}(N(\gamma))$ $(\gamma \in Y - S)$ and $H_s \cap \mathfrak{D}_s$ in case $H_s \subset f^{-1}(s)$ $(s \in S)$. In this way we can construct a locally finite cozero refinement of \mathfrak{D} . As is well known, every locally finite cozero covering of X is normal, and hence $\mathfrak D$ is normal. Therefore by Theorem 2.1, X is pseudo-paracompact. Thus we complete the proof.

Proof of Theorem 3.6. Since Y is paracompact, $\mu(f)$ carries $\mu(X)$ onto Y. Let $\mathfrak D$ be any open covering of X which is extendable to $\mu(X)$. Then it is proved that $f^{-1}(y) \cap \mathfrak{D}$ is a normal open covering of $f^{-1}(y)$. Indeed, let $i_v: f^{-1}(y)$ $\rightarrow \mu(f)^{-1}(y)$ be an inclusion map for each $y \in Y$. Then $\mu(i_v)$ carries $\mu(f^{-1}(y))$ into $\mu(f)^{-1}(y)$, and hence $\mu(i_v)^{-1}(\mu(f)^{-1}(y)\cap \mathfrak{S})$ is a normal open covering of $\mu(f^{-1}(y))$ by paracompactness of $\mu(f^{-1}(y))$, where $\widetilde{\mathfrak{D}}$ is an extension of \mathfrak{D} to $\mu(X)$. Therefore $f^{-1}(y) \cap \mathfrak{D}$ is a normal covering of $f^{-1}(y)$, since

$$f^{-1}(y) \cap \mu(i_y)^{-1} \big(\mu(f)^{-1}(y) \cap \widetilde{\mathfrak{D}} \big) = f^{-1}(y) \cap \mathfrak{D} \ .$$

Consequently, X is pseudo-paracompact by Lemma 3.7. Thus we complete the proof.

As an application of Theorem 3.6, we can prove the following theorem.

THEOREM 3.8. If there exists a Z-map f from a space X onto a paracompact q-space Y such that $f^{-1}(y)$ is pseudo-paracompact for each $y \in Y$, then X is pseudoparacompact.

This theorem is a direct consequence of Theorem 3.6 and the following lemma which is a modification of Michael's theorem [10, Theorem 2.1].

LEMMA 3.9. Let f be a Z-map from a space X onto a q-space Y. Then $\mathfrak{B}f^{-1}(v)$ is relatively pseudo-compact for each $y \in Y$.

Proof. Suppose that $\mathfrak{B}f^{-1}(y_0)$ is not relatively pseudo-compact for a point y_0 of Y. Then there exists a real-valued continuous function h on X which is unbounded on $\mathfrak{B}f^{-1}(y_0)$. Let $\{x_i\}$ be a sequence of points of $\mathfrak{B}f^{-1}(y_0)$ such that

$$|h(x_{i+1})| > |h(x_i)| + 1$$
.

If we put

$$V_i = \{x | |h(x) - h(x_i)| < \frac{1}{2} \},$$

then $x_i \in V_i$, i = 1, 2, ..., and $\{V_i\}$ is discrete. Since Y is a q-space, there exists a sequence $\{N_i\}$ of open neighborhoods of y_0 such that if $y_i \in N_i$ then $\{y_i\}$ has a cluster point in Y. Hence we can take a sequence $\{z_i\}$ of points of X, a sequence $\{Z_i\}$ of zero-sets of X and a sequence $\{H_i\}$ of cozero-sets of X such that

$$\begin{split} z_1 \in Z_1 \subset H_1 \subset \left(V_1 \cap f^{-1}(N_1)\right) - f^{-1}(y_0) \;, \\ z_i \in Z_i \subset H_i \subset \left[V_i \cap f^{-1}(N_i) - f^{-1}f(\bigcup_{j < i} Z_j)\right] - f^{-1}(y_0), \quad i \ge 2 \;. \end{split}$$

Then we have $f(Z_j) \cap f(Z_k) = \emptyset$ for $j \neq k$. Since $\{H_i\}$ is discrete and $Z_i \subset H_i$ for i = 1, 2, ..., it is easily proved that $\bigcup_{n=1}^{\infty} Z_{i_n}$ is a zero-set in X for any subsequence $\{Z_{i_n} | n = 1, 2, ...\}$ of $\{Z_i\}$, which implies that $f(\bigcup_{n=1}^{\infty} Z_{i_n})$ is closed in Y. But $\{f(z_i)\}$

has a cluster point y_1 in Y, since $f(z_l) \in N_i$. By closedness of $f(\bigcup_{l=1}^{l} Z_l)$, we have $y_1 \in f(Z_k)$ for some k. This is a contradiction, since $f(\bigcup_{l \neq k} Z_l)$ is closed and $f(\bigcup_{l \neq k} Z_l) \cap f(Z_k) = \emptyset$. Thus we complete the proof.

COROLLARY 3.10. Let f be a closed (or Z-) map from a space X onto a metric space Y. Then X is pseudo-paracompact in the following cases.

- (a) $f^{-1}(y)$ is an M-space for each $y \in Y$.
- (b) $f^{-1}(y)$ is paracompact for each $y \in Y$.

In Theorem 3.6 (Theorem 3.8), we can not exclude the assumption that $\mathfrak{B}f^{-1}(y)$ is relatively pseudo-compact (resp. Y is a q-space). We can show these facts by the same example below, in which we make use of the closed map from the space II (cf. [4, 6Q]) onto the quotient space II/D.

EXAMPLE 3.11. Let φ be a one-one map of N onto Q, where N (resp. Q) is the set of positive integers (resp. rational numbers). For each irrational number r, we select an increasing sequence $\{s_n\}$ of rationals converging to r. For each such sequence, consider the subset $E = \{\varphi^{-1}(s_n)| n = 1, 2, ...\}$ of N, and let $\mathfrak E$ be the family of all such sets E. For each $E \in \mathfrak E$, let $E' = \operatorname{cl}_{\beta N} E - N$. We construct a set D selecting one point p_E from each set E' and define Π to be the subspace $N \cup D$ of βN . Then Π is not normal but realcompact ([4, 8H]). By identifying each point of the discrete closed set D, we get the quotient space Π/D . Since Π/D is σ -compact, it is paracompact. Let f be the quotient map from Π onto Π/D . Then f is a closed map such that $f^{-1}(y)$ is a metric space for each $y \in \Pi/D$ and that

$$\mathfrak{B}f^{-1}(y) = D$$
 for $y \in \Pi/D - N$,
 $\mathfrak{B}f^{-1}(y) = \emptyset$ for $y \in N$.

But Π is not pseudo-normal, since Π is topologically complete and non-normal. In Theorem 3.8, we can not replace "Z-map" by "open map".

As for Corollary 3.10, we note that if X is the inverse image of a metric space Y under a closed map f such that $f^{-1}(y)$ is an M-space (paracompact), then X is not necessarily an M-space (resp. paracompact). Hoshina proved this for the paracompact case by the following example (cf. [4, 5I]), and the same example shows that this is also true for the case of M-spaces.

EXAMPLE 3.13. Let \mathfrak{F} be an infinite maximal family of infinite subsets of the set N of positive integers such that the intersection of any two is finite. Let $D = \{\alpha_F | F \in \mathfrak{F}\}$ be a new set of distinct points, and let $\Psi = N \cup D$ with points of N discrete and neighborhoods of $\alpha_F \in D$ those subsets of Ψ containing α_F and all but finitely many points of F. Then Ψ is completely regular and pseudo-compact but not countably compact. Let Ψ/D be the quotient space obtained from Ψ by identifying each point of D. Then Ψ/D is homeomorphic to the one-point compactification of N, and hence it is metrizable. Let $\varphi: \Psi \to \Psi/D$ be the quotient map. Then it is easily shown that φ is a closed map and $\varphi^{-1}(y)$ is a metric space for each $y \in \Psi/D$. But Ψ is neither an M-space nor a paracompact space.

THEOREM 3.14. Let $f: X \rightarrow Y$ be a quasi-perfect map. If X is strongly normal and pseudo-paracompact, so is Y.

Proof. Since a normal space is strongly normal if and only if for every locally finite collection $\{F_{\lambda}\}$ of closed subsets there exists a locally finite collection $\{G_{\lambda}\}$ of open subsets such that $F_{\lambda} = G_{\lambda}$ for each λ (Katetov [7]), it is easy to see that the image of a strongly normal space under a quasi-perfect map is also strongly normal. To prove that Y is pseudo-paracompact, let $\mathfrak D$ be an open covering of Y which is extendable to $\mu(Y)$. Then $f^{-1}(\mathfrak D)$ is an open covering of X which is extendable to $\mu(X)$. Hence by paracompactness of $\mu(X)$, $f^{-1}(\mathfrak D)$ has a locally finite closed refinement $\{K_{\alpha}\}$ in X. Therefore $\mathfrak D$ has a locally finite closed refinement $\{f(K_{\alpha})\}$. Since Y is strongly normal, there exists a locally finite open covering $\{H_{\alpha}\}$ of Y such that $f(K_{\alpha}) = H_{\alpha}$ for each α , where we may assume that $\{H_{\alpha}\}$ refines $\mathfrak D$. Hence $\mathfrak D$ is a normal covering, since $\{H_{\alpha}\}$ is a normal covering. Therefore by Theorem 2.1, Y is pseudoparacompact. Thus we complete the proof.

THEOREM 3.15. For a space X, the following conditions are equivalent.

- (a) X is pseudo-locally-compact and pseudo-paracompact.
- (b) There exists a normal open covering $\mathfrak{U} = \{U_{\alpha}\}$ of X such that each U_{α} is relatively pseudo-compact in X.
- (c) There exists a normal sequence $\{\mathfrak{U}_n\}$ of open coverings of X such that for each $x \in X$, $\mathrm{St}(x, \mathfrak{U}_{k(x)})$ is relatively pseudo-compact in X for some k(x).
- (d) There exists a Z-map f from X onto a locally compact metric space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$.

- (e) There exists a Z-map f from X onto a locally compact paracompact space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$.
- (f) There exists a WZ-map f from X onto a locally compact paracompact space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$.

The equivalence of (a) and (b) is due to K. Morita [14], who proved also the equivalence of (a) and (d) independently.

Proof. (b) \rightarrow (c) and (d) \rightarrow (e) \rightarrow (f) are obvious.

- (a) \rightarrow (b). Since $\mu(X)$ is locally compact and paracompact, each point x of $\mu(X)$ has an open neighborhood U(x) such that $\operatorname{cl}_{\mu(X)}U(x)$ is compact. Let us put $\mathfrak{U} = \{U(x) \cap X \mid x \in \mu(X)\}$. Then it is easy to see that \mathfrak{U} satisfies the required properties, since $\{U(x) \mid x \in \mu(X)\}$ is a normal covering of $\mu(X)$.
- (c) \rightarrow (d). Let $\{K_n\}$ be a decreasing sequence of zero-sets of X such that $K_n \subset \operatorname{St}(x, \mathfrak{U}_n)$ for some $x \in X$ and for each n. Then by our assumption, there is some K_m which is relatively pseudo-compact in X. Since $\operatorname{cl}_{\mu(X)}K_m$ is compact, $\{K_n\}$ has a cluster point in $\mu(X)$. Now we prove that $\bigcap K_n \neq \emptyset$. For this purpose, assume to be contrary, and let $H_n = X K_n$. Then $\{H_n\}$ is a normal open covering of X, since any countable cozero covering is normal. Hence $\{H_n\}$ is extendable to $\mu(X)$, which implies that $\bigcap \operatorname{cl}_{\mu(X)}K_n = \emptyset$. This is a contradiction. Therefore we have $\bigcap K_n \neq \emptyset$. Consequently by [8] there exists a Z-map f from X onto a metric space Y such that $f^{-1}(y)$ is relatively pseudo-compact for each $y \in Y$. From the construction of Y it follows that Y is locally compact, and hence (d) holds.
 - (f) \rightarrow (a). This is a direct consequence of Theorem 3.3.

Thus we complete the proof.

4. Pseudo-Lindelöf property. For a space X we denote by v the uniformity of X which consists of all countable normal open coverings of X. As for the characterizations of pseudo-Lindelöf spaces, we have the following theorem.

THEOREM 4.1. For a space X, the following conditions are equivalent.

- (a) X is pseudo-Lindelöf.
- (b) X is pseudo-paracompact and any normal open covering of X has a countable subcovering.
- (c) Every open covering of X which is extendable to $\mu(X)$ has a countable subcovering.
- (d) Every weakly Cauchy filter in X with respect to υ is contained in some Cauchy filter with respect to $\mu.$
- (e) If F is a filter in X such that the image of F has a cluster point in any separable metric space into which X is continuously mapped, then F is contained in some Cauchy filter with respect to μ.

The equivalence of (a) and (b) was proved by Howes [5].

Proof. (a) \rightarrow (b) \rightarrow (c) are obvious.

(c) \rightarrow (d). Suppose that a weakly Cauchy filter $\mathfrak{F} = \{F_{\alpha}\}$ in X with respect to v is not contained in any Cauchy filter with respect to μ . Then each point x of $\mu(X)$

 $(d) \leftrightarrow (e)$. This follows from the fact that a filter \mathfrak{F} in X is weakly Cauchy with respect to v if and only if the image of \mathfrak{F} has a cluster point in any separable metric space into which X is continuously mapped.

(c) \rightarrow (a). Let $\mathfrak{F}=\{F_{\alpha}\}$ be a filter base in $\mu(X)$ such that the image of \mathfrak{F} has a cluster point in any separable metric space into which $\mu(X)$ is continuously mapped. Let $\{\phi_{\gamma}|\ \gamma\in \Gamma\}$ be the family of all normal sequences consisting of countable normal open coverings of X. Then for any map $\phi_{\gamma}\colon X\rightarrow X/\Phi_{\gamma}, \{\mu(\phi_{\gamma})(F_{\alpha})\}$ has a cluster point in X/Φ_{γ} , since X/Φ_{γ} is a separable metric space. Let us put $\mathfrak{F}_{\gamma}=\phi_{\gamma}^{-1}(\mu(\phi_{\gamma})(\mathfrak{F}))$ for each γ , and let

$$\mathfrak{G} = \bigcup \left\{ \mathfrak{F}_{\gamma} | \gamma \in \Gamma \right\}.$$

By the similar way as in the proof of (e) \rightarrow (a) in Theorem 2.1, it is proved that \mathfrak{G} is a filter base in X such that the image of \mathfrak{G} has a cluster point in any separable metric space into which X is continuously mapped. Therefore by (e) \mathfrak{G} has a cluster point u in $\mu(X)$. Furthermore, it can be easily shown that u is a cluster point of \mathfrak{F} , from which it follows that $\mu(X)$ is Lindelöf (cf. [1]). Thus we complete the proof.

As is easily seen from the equivalence of (a) and (c) in Theorem 4.1, the image of a pseudo-Lindelöf space under a continuous map is pseudo-Lindelöf. This result was first pointed out by K. Morita. Therefore it follows that if a space X is the countable union of pseudo-Lindelöf subspaces, then X is also pseudo-Lindelöf.

THEOREM 4.2. If there exists a Z-map f from a space X onto a Lindelöf space Y such that $f^{-1}(y)$ is pseudo-Lindelöf for each $y \in Y$, then X is pseudo-Lindelöf.

To prove this theorem, we use the following lemma.

LEMMA 4.3. If there exists a Z-map f from a space X onto a Lindelöf space Y such that for any open covering $\mathfrak D$ of X which is extendable to $\mu(X)$, $f^{-1}(y) \cap \mathfrak D$ has a countable subcovering for each $y \in Y$, then X is pseudo-Lindelöf.

Proof. Let $\mathfrak{D} = \{O_{\alpha}\}$ be any cozero covering of X which is extendable to $\mu(X)$. Then for each $y \in Y$, $f^{-1}(y)$ is covered by a countable number of elements of \mathfrak{D} , that is, $f^{-1}(y) = \bigcup_{i=1}^{\infty} O_{\alpha_i}$, $O_{\alpha_i} \in \mathfrak{D}$ (i = 1, 2, ...). Since $\bigcup_{i=1}^{\infty} O_{\alpha_i}$ is a cozero-set in X and f is a Z-map, there exists an open neighborhood N(y) of y such that $f^{-1}(N(y)) = \bigcup_{i=1}^{\infty} O_{\alpha_i}$. By the Lindelöf property of Y, the covering $\{N(y) \mid y \in Y\}$ of Y admits a countable subcovering $\{N(y_n) \mid y_n \in Y, n = 1, 2, ...\}$. Since $f^{-1}(N(y_n))$ is covered by a countable number of elements of \mathfrak{D} for each n, \mathfrak{D} has a countable subcovering. Hence by Theorem 4.1, X is pseudo-Lindelöf. Thus we complete the proof.

Proof of Theorem 4.2. By the similar argument as in the proof of Theorem 3.6. it is proved that if \mathfrak{D} is an open covering of X which is extendable to $\mu(X)$, then $f^{-1}(v) \cap \mathfrak{D}$ has a countable subcovering. Hence by Lemma 4.3 the theorem holds. Thus we complete the proof.

Finally we raise a problem concerning pseudo-paracompactness: Is the image of a pseudo-paracompact space under a perfect map pseudo-paracompact?

The referee has kindly pointed out to the author that the following problems has been solved negatively by R. Pol:

- (1) Is the preimage of a pseudo-paracompact space under a perfect map pseudoparacompact?
 - (2) Is pseudo-paracompactness hereditary to every closed subspace?
 - (3) Are the problems (1) and (2) affirmative for pseudo-Lindelöf spaces? The following examples are due to R. Pol.

Example 4.4. There exists a space X and its closed subspace A such that X is pseudo-compact and that A is not pseudo-normal.

Proof. Let $D = \{0, 1, 2\}$ be a three-point discrete space and D^{\aleph_1} its \aleph_1 -product. Let $\Sigma = \{x \mid x \text{ has at most } \mathbf{x}_0 \text{ coordinates different from } 0\}$ and $K = \{1, 2\}^{\aleph_1}$. Then $K \cap \Sigma = \emptyset$. Take $A \subset K$ which is not pseudo-normal and let $X = A \cup \Sigma$. Then $A = K \cap X$ is closed in X and since by Mazur's theorem Σ is C-embedded in D^{\aleph_1} we have $\mu\Sigma = \mu X = D^{\aleph_1}$. Hence X is pseudo-compact.

Example 4.5. There exists a perfect mapping $f: Y \rightarrow X$ such that Y is not pseudonormal, but X is pseudo-compact.

Proof. Take $Y = X \oplus A$, where X and A are as in Example 4.4 and $X \oplus A$ denotes the topological union of X and A. Let $f: X \oplus A \rightarrow X$ be an identity map on X and A. Then f is perfect, X is pseudo-compact and since $\mu(X \oplus A) = \mu X \oplus \mu A$, the space Y is not pseudo-normal.

The author would like to thank the referee who indicated Examples 4.4 and 4.5.

References

- [1] H. H. Corson, The determination of paracompactness by uniformities, Amer. J. Math. 80 (1958), pp. 185-190.
- [2] Normality of subsets of product spaces, Amer. J. Math. 81 (1959), pp. 785-796.
- [3] N. Dykes, Mappings and realcompact spaces, Pacific J. Math. 31 (1969), pp. 347-358. [4] L. Gilman and M. Jerison, Rings of continuous functions, Princeton, N. J. 1960.
- [5] N. R. Howes, On completeness, Pacific J. Math. 38 (1971), pp. 431-440.
- [6] T. Ishii, Paracompactness of topological completions, Proc. Japan Acad. 50 (1974), pp. 33-38.
- [7] M. Katětov, Extensions of locally finite coverings, Colloq. Math. 6 (1958), pp. 141-151.
- [8] T. Isiwata, Mappings and spaces, Pacific J. Math. 20 (1967), pp. 455-480.
- [9] E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), pp. 375-376.
- [10] A note on closed maps and compact sets, Israel J. Math. 2 (1964), pp. 173-176.
- [11] K. Morita, Simple extension of a space with respect to a uniformity, I, II, Proc. Japan Acad. 27 (1951), pp. 64-72; 130-137.

[12] K. Morita, Paracompactness and product spaces, Fund. Math. 50 (1962), pp. 223-236, - Topological completions and M-spaces, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A. 10 (1970), pp. 271-288.

[14] — On the dimension of the product of Tychonoff spaces, Gen. Top. and Appl. 3 (1973), pp. 125-133.

- [15] A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), pp. 977-982.
- [16] H. Tamano, On paracompactness, Pacific J. Math. 10 (1960), pp. 1043-1047.

SHIZUOKA UNIVERSITY

Accepté par la Rédaction le 19. 8. 1974